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Abstract

Telecommunication companies, such as Internet and
cellular service providers, are seeing rapid and uncer-
tain growth of traffic routed through their networks.
It has become a challenge for these companies to
make optimal decisions for equipment purchase that
simultaneously satisfy the uncertain future demand
while minimizing investment cost.

This paper presents a decision-making framework
for installing the required equipment into the net-
works while in the uncertain environment. The
framework is based on new multi-stage stochastic
programming mathematical models that capture the
complexity of the individual Central Office (CO)
decision-making process. The models are solved us-
ing the on-line NEOS server. Two examples are pre-
sented to illustrate the procedure. The optimization
model also addresses the equipment pricing problem,
i.e., what premium is worth paying for shorter instal-
lation times.

1 Introduction

Rapid but uncertain growth in traffic that is routed
through telecommunications networks has made it
extremely difficult for the companies that own these
networks to make optimal decisions for the provision-
ing of network equipment, i.e., to decide when to buy
and what equipment to buy so that the uncertain fu-
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ture demand can be met at minimum investment cost.
This paper proposes a decision-making framework for
installing the required equipment in the networks in
the uncertain environment. This work deals with the
costs and timings of the installation of new equip-
ment in a typical telecommunications service provider
network. The motivation is to develop algorithms
and models to help network planners make the right
decision under the contingent demand that is driv-
ing the expansion of their network. The proposed
framework is based on new multi-stage mathemati-
cal models that capture the complexity of the indi-
vidual Central Office (CO) decision-making process.
Stochastic programming is used in the formulation.
The problem is solved using the on-line NEOS server
(http://www-neos.mcs.anl.gov/).

The solution to the decision-making problem will
enable network planners to provision, purchase, and
install equipment such that the current and future
demand can be met, while minimizing the purchasing
costs.

There are several related methods that deal with
this type of problem. Laguna [8] uses robust opti-
mization to deal with the investment expansion prob-
lem for one location. The real option approach [4], [5]
is popular to deal with capacity problems under un-
certain future. Alternatively, one can use stochastic
programming [1] for this problem. See also [10] and
[9], for the computational issues in stochastic pro-
gramming.

2 Problem Definition

The existing capacity details of a particular
switch/router in a CO and the traffic demand history
data (i.e., the growth of the customer base) are given.
The objective is to find an optimal decision strategy
for buying new equipment. This optimal strategy is
based on possible future scenarios. The scenarios in-
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clude a time-line for buying necessary equipment to
satisfy possible future demand at a minimum cost.

Definition 2.1. An Option is a decision that in-
volves: ordering a piece of equipment with capacity
C and associated total cost P , and installing it by
time period T . (The money is paid at the end of
the installation period T , but this assumption is not
important and can be changed.)

Definition 2.2. The scenario tree consists of Scenar-
ios, where each scenario contains a sequence of events
(branches) and each event Eij is the transition from
node i to node j at the next time period. Each sce-
nario starts at the root node (time 0) and ends at a
leaf node.

The scenario tree reveals the uncertainties over the
planning horizon; thus a deterministic distribution of
the random variables is obtained at each time period.
Each node represents a state with a certain demand.

Problem 2.3.

1. Given:

(a) several pieces of equipment with several
options Oi;

(b) a scenario tree that describes the future
demand;

(c) penalty cost factors for deficiency in sat-
isfying the demand.

2. Decision to make:

• Choose the best options at time 0, that
minimize the penalty deficiency costs
plus the total installation costs.

3 Stochastic Programming
(SP) Model

To model Problem 2.3, the following points need to
be considered:

• Multistage nature of the problem: Since different
options reflect different order/installation times,
the problem has to be considered over the given
planning horizon consisting of several time peri-
ods.

• Infinite vs finite planning horizon: Given a finite
number of time periods, the solution can be af-
fected by the singularity at the last time period.

(Due to the unknown future beyond that point.)
This issue is resolved by extending the horizon
to the future simulating an infinite time series.

• Interest Rate: A discount (based on the interest
rate) is applied to obtain the present value of
future cash flows.

To address the above issues, a general problem for-
mulation is developed that provides a strategy on op-
tions selection.

Each event Eij representing the transition from
node i to node j is assigned a probability πij . Each
scenario Ss then has a probability πs that is found
from the product of probabilities assigned to each of
the events constituting the scenario path. (The sum
of all scenario probabilities is 1.) There is a family of
constraints representing relation between the demand
and capacities at each node of the scenario tree.

Defining a deterministic multi-stage SP problem
requires the enumeration of all the nodes in the sce-
nario tree. Each node is determined by two indices,
time period t and scenario index s.

The deterministic multi-stage SP model for the
problem described above follows.

min
∑

p

γ−TpPp xp +
∑

s

πs

K∑

t=1

∑

p

γ−(t+Tp)Pp ys
tp

+
∑

s

πs

K∑

t=0

~ω · ~zts

s.t. ~U +
∑

Tp≤t

∑

p

~Cp xp +

t∑

q=1

q+Tp≤t

∑

p

~Cp ys
qp

+ ~zts ≥ ~Dts ∀ s, t

(1)

~zts ≥ 0, and xp, ys
tp nonnegative integer.

where

K – number of time periods
t – time period index
p – option index
s – scenario index
xp – number of boxes (switches, routers, etc.)

ordered right now (t=0) using the option p

ys
tp – number of boxes ordered

using the option p at time t under scenario s

~zts – recourse variable, which represents deficiency
πs – probability of scenario s to occur
~ω – deficiency penalty factor
~U – initial total capacity
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Pp – cost of option p

Tp – order/installation time of option p
~Cp – capacity expansion provided by option p
~Dts– demand at time period t under scenario s

γ – cash discount factor

Note that ~zts, ~ω, ~U, ~Cp, ~Dts are vector variables in-
dexed by the capacity types.

The constraints ensure that the total equipment
capacity will be no less than the future demand ~Dts

minus allowable deficiency ~zts at each time period t

and under any scenario s. The total capacity includes
the initial capacity ~U , the capacity provided by the
boxes acquired at time period zero (

∑
Tp≤t

∑
p

~Cpxp),
and the capacity brought by the future time invest-
ments under scenario s (

∑t
q=1

q+Tp≤t

∑
p

~Cp ys
qp).

The objective is to minimize the total expected
cost which consists of three terms. The first term
is the investment cost associated with the decision
made at time period zero. The second term is the
expected cost of future investments depended on sce-
narios. The last term is the expected penalty cost of
allowing deficiencies.

3.1 Extension of the model

In the real network context the structure of a
switch/router is quite complicated. For example, a
typical access switch or a router has three level struc-
ture – box (switch or router chassis), shelf, and card.
Each box is a chassis and can be initially bought with
certain pre-installed shelves and cards. A box holds
several shelves; a shelf holds several cards; and a card
has several ports on it. Each port can be connected
to a port on another box. Whenever ports on all of
the cards are exhausted, a new card must be bought
and installed into one of the shelves. If there exists
no shelf that can accommodate the card, a new shelf
needs to be mounted into the box. If the box can not
carry additional shelves, then a new box needs to be
installed. The model can be extended as follows to

accurately reflect this situation.

min
∑

p=pc,ps, or pb

γ−TpPp xp

+
∑

s

πs

K∑

t=1

∑

p=pc,ps, or pb

γ−(t+Tp)Pp ys
tp

+
∑

s

πs

K∑

t=0

ω · ~zts

such that

U+
∑

Tp≤t

∑

p=pc

Cp xp +
t∑

q=1

q+Tp≤t

∑

p=pc

Cp ys
qp

+ zts ≥ Dts ∀ s, t

(2)

Ups
+

∑

Tps≤t

Cps
xps

+

t∑

q=1

q+Tps≤t

Cps
ys

qps

≥
∑

pc∈ps
Tpc≤t

xpc
+

∑

p=pc
pc∈ps

t∑

q=1

q+Tp≤t

ys
qp ∀ s, t, ps

(3)

Upb
+

∑

Tpb
≤t

Cpb
xpb

+
t∑

q=1

q+Tpb
≤t

Cpb
ys

qpb

≥
∑

ps∈pb
Tps≤t

xps
+

∑

p=ps
ps∈pb

t∑

q=1

q+Tp≤t

ys
qp ∀ s, t, pb

(4)

UB
pb

+
∑

Tpb
≤t

Bpb
xpb

+
t∑

q=1

q+Tpb
≤t

Bpb
ys

qpb
≥

∑

ps∈pb
pc∈ps
Tps≤t

Bpc
xpc

+
∑

q=1
ps∈pb,pc∈ps

q+Tp≤t

Bpc
ys

qpc
∀ s, t, pb

(5)

zts ≥ 0,

xp and ys
tp are nonnegative integers.

where

K – number of time periods
t – time period index
p(·) – option index for cards pc, shelves ps,

and boxes pb

s – scenario index
πs – probability of scenario s.
xp – number of units ordered right now

(t=0) using the option p

ys
tp – number of units ordered using the
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option p at time t under scenario s

zts – recourse variable, which represents
deficiency

ω – deficiency penalty factor
U – initial total capacity in terms of ports
Ups

, Upb
– initial extra capacity, number of cards

a certain kind of shelf can carry (Ups
)

and number of shelves a certain kind box
can accommodate (Upb

)
UB

pb
– extra bandwidth per box

Pp – cost of option p

Tp – order/installation time of option p

Cp – capacity expansion provided by option p

Dts – demand at time period t under scenario s

γ – cash discount factor
Bpb

– bandwidth capacity of a box (pb)
Bpc

– bandwidth a card (pc) can consume,
equals to the average bandwidth per
port times the number of ports on
the card

The main difference to the original model (1) is that
the option p is split into three categories, cards pc,
shelves ps, and boxes pb. Two families of constraints
(3) and (4) are also added to describe the relation
between the newly added cards, shelves, and boxes.
The constraints (2) ensure that the capacity provided
by the cards should be no smaller than the demand
minus allowable deficiency. The new family of con-
straints (3) says that the shelves capacity has to be
enough to accommodate the cards acquired so far,
and constraints (4) ensure that the boxes can carry
all the shelves. Finally constraints (5) specify that
boxes should have enough bandwidth to support all
the ports on cards.

4 Implementation

4.1 Scenario Construction

It is generally hard to predict the future. It is even
harder without solid analytical data to start with.
This subsection explains how the historical data is
analyzed and the future scenario tree is generated
based on the historical growth rate.

The history demand data is first collected and then
analyzed to estimate the distribution of the growth
rate. For example, using a particular history data
set, it can be found that the monthly growth rate al-
ways lies in the range [1%, 10%]. Assume now that
each node of the scenario tree has three branches.

For example, let us restrict the analysis to the two-
stage case, when every branch represents a single sce-
nario. The growth rate range can then be subdi-
vided into three equal intervals, and the number of
times the data falls into one of these intervals (i.e.,
the particular scenario is realized) can be computed.
In an example with 100 historical records, scenario
1 (growth rate in the range of [1%, 4%)) happens
25 times, scenario 2 (growth rate in the range of
[4%, 7%)) happens 45 times, and scenario 3 (growth
rate in the range of [7%, 10%]) happens 30 times.
These counts are used as estimates of the probabil-
ity each given scenario is likely to occur. To generate
the scenario tree, an average of the growth rate in the
range is taken as the growth rate for the correspond-
ing scenario. Hence, the future scenario tree has three
branches: scenario 1 represents a growth rate of 2.5%
and occurs with 0.25 probability, scenario 2 repre-
sents a growth rate of 5.5% and occurs with 0.45
probability, and scenario 3 represents a growth rate
of 8.5% and occurs with a probability of 0.30.

4.2 SMPS File Generation

The problem is solved using a stochastic program-
ming (SP) solver. The standard input format for
SP solvers is the stochastic MPS (SMPS) format.
The format specifications are outlined in [2, 7]. A
tool is created to generate the SMPS format for the
general model (1) as well as for the more detailed
model discussed in Section 3.1. The tool is coded in
C++ and does not rely on a modeling language like
GAMS or AMPL. The design of the tool leverages
the object-oriented concepts providing several model-
independent classes that generate the output SMPS
file and a model-dependent external interface that
supplies details of a particular model to the model-
independent classes.

5 Results

The SMPS file created by the tool described in Sec-
tion 4.2 is supplied as an input to the FortSP solver
on the NEOS server [3, 6]. The results are very sat-
isfactory.

5.1 Examples Run By NEOS

A specific example is used to illustrate the application
of the model (2-5). The list of equipment options is
given in Table 1.
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Equipment Price Installation time Capacity
Option (p(·)) Pp Tp Cp

Box1 253 1 23
Shelf1 52 2 42
Shelf2 42 1 52
Card1 1.1 0 11
Card2 2.1 1 21

Table 1: Equipment options.

Assume that the future demand is described by
a scenario tree with three branches on each node as
listed in Table 2. The initial demand D0· is 1000. The
initial capacity U is the same as the initial demand
D0·, which means there are no extra ports available
on the boxes.

Scenarios Growth Rate (Demand) Probability
Scenario 1 -0.2% (9998) 0.09
Scenario 2 1% (1010) 0.42
Scenario 3 2.4% (1024) 0.49

Table 2: Scenarios.

For simplicity, the number of time periods is fixed
to K = 2. The deficiency penalty factor ω is 1. The
initial extra capacities for both shelves and boxes are
Ups

= 12, Upb
= 13, respectively. The initial extra

bandwidth of a box UB
pb

is 503. The bandwidth capac-
ity of a box Bpb

is 1500 and the bandwidth consumed
by a card Bpc

is 5 for Card1 and 10 for Card2. Since
UB

pb
is large compare to Bpc

(5 and 10), it can be seen
that the bandwidth constraints are not active for this
example, which means that the box has enough ca-
pacity to support the bandwidth growth attributed
to adding of new cards.

Based on the above parameters, the tool generates
the desired SMPS file. The SMPS file is then up-
loaded online using NEOS web service which redirects
the problem to the chosen solver and prints out the
solution.

The solution to the above example suggests to re-
frain from buying anything at the present time (stage
one). This means that one can wait till the second
stage and then re-run the optimization. If Scenario
1 realizes then the solution suggests buying nothing,
therefore the cost of this outcome is 0. If Scenario
2 realizes one unit of Card1 has to be bought. And
the cost of this outcome equals to price of the card,
which is 1.1. Under Scenario 3 a higher demand is

faced and three units of Card1 are needed leading to
the cost of 3.3. The expected cost at the second stage
is thus 0×0.09+1.1×0.42+3.3×0.49 = 2.079. Since
the Card1’s installation time is 0, it explains why it is
possible to wait till the next stage. There is no need
in planning ahead since a desired capacity level can
be achieved instantaneously.

Suppose that the installation time of the Card1 is
changed to 1, and that the program is re-run. The op-
timum strategy changes to ordering one unit of Card1
and one unit of Card2 at the stage one and no activ-
ities on the second stage. Since under this strategy
there is no deficiency at the second stage the total
cost is just the price of new cards, which is 3.2. To
illustrate the optimality of this solution, consider an-
other strategy where only one unit of Card2 is or-
dered. The cost at the first stage is 2.1, but at the
second stage, if Scenario 3 occurs, there will be a de-
ficiency of 3 (1024 − 1000 − 21 = 3). The penalty
factor ω for deficiency is 1. So the cost of deficiency
is 3 if the scenario 3 happens. The expected defi-
ciency cost is 3 × 0.49 = 1.47. Therefore, the total
cost is 2.1 + 1.47 = 3.57, which is larger than 3.2 –
the optimal cost.

The two examples above illustrate how the stochas-
tic programming-based model can be used to make
intelligent decisions based on forecasts of future de-
mand.

6 Option Pricing

The decision-maker is often faced with the question
of how much of a premium is worth paying for shorter
installation times. This important practical question
can be answered by changing the parameters of the
above model.

The decision-maker can reduce the total cost by
adding new options with a smaller installation time
(and normally higher cost). The change in the total
cost is caused by the decrease of the penalty due to
less deficiency, and partially offset by the increase of
the cost of the option. Hence, by changing the asso-
ciated cost for the option so as to obtain a total cost
that is the same as the original one, the premium peo-
ple are willing to pay for a shorter installation time
can be obtained. The detailed steps are as follows:

1. Start with a small set of options describing the
longest desirable installation times. Solve the
model with a given set of options obtaining total
cost.
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2. Add one or more new options with a smaller in-
stallation time than the existing options have,
and higher associated cost.

3. Solve the model with the new set of options, ob-
taining an updated total cost.

4. By changing the associated cost for the added
option, the ranges can be observed for which the
new total cost is still smaller than the older one.
In this way, the range of associated costs for the
new added option without increasing the total
cost is obtained. This range of associated cost
minus the original cost is the premium we are
willing to pay for the shorter installation time.

7 Conclusion

A stochastic programming model is created to handle
a complex investment decision problem under uncer-
tainty. Implementation issues are discussed. Two
examples illustrate how the stochastic programming
model is able to make intelligent decisions based on
the predicted future demand. The model can also be
used to answer the question of how much premium a
decision maker should be willing to pay for a shorter
installation time.
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and Condor: Solving optimization problems over
the Internet. ACM Trans. on Math. Software,
26(1):1–18, 2000.

[7] H.I. Gassmann and E. Schweitzer. A comprehen-
sive input format for stochastic linear programs.
Ann. Oper. Res., 104:89–125, 2001.

[8] M. Laguna. Applying robust optimization to ca-
pacity expansion of one location in telecommuni-
cations with demand uncertainty. Management
Science, 44(11):S101–S110, 1998.

[9] J. Linderoth and S.J. Wright. Decomposition al-
gorithms for stochastic programming on a com-
putational grid. Comput. Optim. Appl., 24(2-
3):207–250, 2003. Stochastic programming.

[10] J. Linderoth and S.J. Wright. Computational
grids for stochastic programming. In Applica-
tions of stochastic programming, volume 5 of
MPS/SIAM Ser. Optim., pages 61–77. SIAM,
Philadelphia, PA, 2005.

6


	Introduction
	Problem Definition
	Stochastic Programming (SP) Model
	Extension of the model

	Implementation
	Scenario Construction
	SMPS File Generation

	Results
	Examples Run By NEOS

	Option Pricing
	Conclusion
	Acknowledgments

