Hard Combinatorial Problems, Doubly Nonnegative Relaxations, Facial Reduction, and Alternating Direction Method of Multipliers

Henry Wolkowicz Dept. Comb. and Opt., University of Waterloo, Canada

Monday, Aug. 2, 2021, 9:00-10:00 AM, EDT

7th Annual LLU Algorithm Workshop

Main References and Collaborators

- [7] F. Burkowski, J. Im, and H. Wolkowicz, *A Peaceman-Rachford splitting method for the protein side-chain positioning problem*, 2020.
- [6] F. Burkowski, Y-L. Cheung, and H. Wolkowicz, Efficient use of semidefinite programming for selection of rotamers in protein conformations, INFORMS J. Comput. 26 (2014), no. 4, 748–766.
- [9] N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz, *A restricted dual Peaceman-Rachford splitting method for QAP*, Tech. report, Waterloo, Ontario, 2020.
- [10] X. Li, T.K. Pong, H. Sun, and H. Wolkowicz, A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem, Comput. Optim. Appl. 78 (2021), no. 3, 853–891. MR4221619

Outline/Background/Motivation I

- Solving hard combinatorial/discrete optimization problems requires: efficient upper/lower bounding techniques.
- These problems are often MODELLED using quadratic objectives and/or quadratic constraints, i.e., QQPs.
- Lagrangian relaxations of QQPs lead to Semidefinite Programming, SDP, and SDP relaxations, e.g., Handbooks on SDP [13, 1].
- SDP relaxations are expensive to solve using interior-point approaches. This becomes *doubly* expensive when cutting planes are added, e.g., using Doubly Nonnegative, DNN, relaxations

Outline/Background/Motivation II

- Strict feasibility fails for many of the SDP relaxations of these hard combinatorial problems. (Compare Rademacher Theorem: Loc. Lip. functions are differentiable a.e.)
 Facial reduction, FR, e.g., [3, 4, 5, 8] provides a means of regularizing the SDP relaxations.
- FR appears to provide a natural splitting of variables for the application of Alternating Direction Method of Multipliers, ADMM, type methods for large scale problems; and for exploiting structure.
- Classes of Problems:

QAP; Maxcut; Graph Partitioning;

Min-Cut (application to SIDE-CHAIN POSITIONING)

Preliminaries on Application to Protein Structure

Important Subproblem of Protein Structure Prediction:

Figure: Diagram of Protein Side-Chain Positioning Problem, SCP

Biological Preamble

Side chain positioning (SCP)

- Given: constituent atoms of a protein; the side chain positioning (SCP) problem is one of the multiple subproblems of the hard problem of predicting a protein's three dimensional structure.
- Our protein macromolecule is a chain of amino acids, also called reisdues.

Amino acid is characterized by composition of its side chain

- amino acid consists of an "alpha" carbon atom (-C_α-), and three components attached to it:
 - -(i) amino group ((H₂N-);
 - -(ii) carboxyl group (-COOH);
 - -(iii) atom group called a side chain

Famous protein folding problem

Outline:

For tractability, accurate prediction of all atomic positions for folded minimal energy conformation typically uses:

- calculate the positions of atoms in the backbone (e.g., homology modeling; fold recognition techniques)
- given the positions of backbone atoms, calculate the conformations of all side chains, SCP.

Rotamericity/discretization of side chain conformations

- side chain typically adopts a conformation close to one of finitely many possible dihedral angles; each of the finite number of three dimensional conformations is called a rotamer.
- the more complicated side chains have rotamer sets with as many as 81 members for the twenty amino acids that make up proteins.

Modelling

$\mathcal{G} = (\mathcal{V}, \mathcal{E}, E)$ weighted, undirected graph

- node set V = U^p_{i=1} V_i, V_i subset of rotamers for *i*-th amino acid side chain/residue position,
 p is the number of residues.
- edge set *E*; weights (energy between rotamers) *E_{uv}* for edge *uv* ≅ (*u*, *v*) ∈ *E*; *E_{uu}* is energy between backbone and chosen rotamer *u*.

Further: SDP notation

- S^t , $t \times t$ real symmetric matrices, trace inner-product $\langle S, T \rangle = \text{trace } ST$; Löwner partial order $S \succeq T$, $S \succ T$.
- for v ∈ ℝ^s, corresp. diagonal matrix is Diag (v) ∈ S^s adjoint linear transformation is Diag*(S) = diag (S) ∈ ℝ^s the adjoint satisfies (diag (S), v) = (S, Diag (v))

• $\bar{e} = \bar{e}_p$ ones vector; $\bar{E} = \bar{E}_k = \bar{e}_k \bar{e}_k^T$ ones matrix

global minimum-energy conformation (GMEC)

Choose one rotamer from each set V_i ; minimize sum of weights/energies on edges in *E*.

•
$$m := (m_1 \ldots m_p)^T$$
 size of subsets \mathcal{V}_i .

- $n_0 = |\mathcal{V}| (= \sum_k m_k)$
- $n := n_0 + 1$ size of matrices in SDP relaxation.

Quadratic integer programming (QIP) model

Computing the GMEC, a QIP

X_U

$$val_{QIP} = \min_{x} \sum_{\substack{(u,v) \in \mathcal{E} \\ u \in \mathcal{V}_k}} E_{uv} x_u x_v \quad (\text{quadr. form})$$
s.t.
$$\sum_{\substack{u \in \mathcal{V}_k \\ x_u \in \{0,1\},}} x_u = 1, \quad (\text{linear}) \quad \forall k = 1, \dots, p,$$

$$x_u \in \{0,1\}, \quad (\text{hard constr}) \quad \forall u \in \mathcal{V},$$

$$= \begin{cases} 1 & \text{if rotamer } u \text{ is chosen} \\ 0 & \text{otherwise} \end{cases}$$

Move onto Modelling and Duality

- We have seen an example/application (one of MANY) of where an IQP, Integer Quadratic Program, arises.
- These are NP-hard problems.
- move onto next step in solving such problems.

Hard Combinatorial Problems and Modelling with Quadratic Functions; Importance of Duality

Instance /Modelling with Quadratic Functions

$$\begin{array}{ll} \min & q_0(x) & (=x^T H x + 2g^T x + \alpha) \\ \text{s.t.} & Ax = b & (\text{linear constraint}) \\ & x \in K \subseteq \mathbb{R}^N & (K \text{ hard constraints}) \end{array}$$

Hard (Combinatorial) Constraints: e.g.,

• both 0, 1 and ± 1 modelled with quadratic const., resp.,

$$\begin{array}{lll} \mathcal{K} := \{0,1\}^N & \text{or} & \mathcal{K} := \{\pm 1\}^N \\ q_i(x) := x_i^2 - x_i = 0, \forall i & \text{or} & q_i(x) := x_i^2 - 1 = 0, \forall i \end{array}$$

- *K* is partition matrices, $x \in M_m$, (GP)
- *K* is permutation matrices, $x \in \Pi_n$, (QAP)

Can Close the Duality Gap by Changing Model

Example: (Lagrangian) Duality Gap for QP

$$1 = p^* = \max\{-x_1^2 + x_2^2 : x_2 = 1\} < \infty = d^* = \inf_{\lambda} \max_{x} L(x, \lambda) = -x_1^2 + x_2^2 - \lambda(x_2 - 1)$$

BUT with a Model Change (same problem!)

$$1 = p^* = \max \left\{ -x_1^2 + x_2^2 : \boxed{(x_2 - 1)^2 = 0} \right\}$$

= $d^* = \inf_{\lambda} \max_{x} \{ -x_1^2 + x_2^2 - \lambda(x_2 - 1)^2 \}$

since stationarity and the Lagrangian function value satisfy:

$$0 = 2x_2 - 2\lambda(x_2 - 1) \implies x_2 = \frac{\lambda}{\lambda - 1} \rightarrow 1;$$

$$L(x, \lambda) = x_2^2 - \lambda(x_2 - 1)^2 = \frac{\lambda^2}{(\lambda - 1)^2} - \lambda \frac{1}{(\lambda - 1)^2} = \frac{\lambda}{\lambda - 1} \rightarrow 1$$

Further Ex.: Close Duality Gap (Eig Relax QAP)

• Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$, $X^* = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
 $10 = p^* = \min \text{ trace } AXBX^T$
s.t. $XX^T = I$, $X \in \mathbb{R}^{n \times n}$

• $L(X, S) = \text{trace } AXBX^T + \text{trace } S(XX^T - I), S \in S^n$ trace $AXBX^T = x^T(B \otimes A)x, x = \text{vec } X$

Lagrangian dual is an SDP: $d^* = \max_{S \in S^n} \min_X L(X, S)$

۲

$$10 = p^* > 9 = d^* = \max - \operatorname{trace} S$$

s.t. $B \otimes A + I \otimes S \succeq 0, \quad S \in S^n$
where $B \otimes A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix} \implies S_{11} \ge -3, S_{22} \ge -6$

Change Model; Add Redundant Constraint; Increase Number of Lagrange Dual Multipliers

Duplicate orthogonality constraint $X^T X = I, XX^T = I$

Add: $X^T X = I$ closes duality gap by exploiting the new Lagrange multipliers in $T \in S^n$

$$10 = p^* = 10 = d^* = \max \quad \text{trace} - S - T$$

s.t. $B \otimes A + I \otimes S + T \otimes I \succeq 0$,

Theorem (Anstreicher, W. '95, [2])

Strong duality holds for

min trace
$$AXBX^T$$

s.t. $XX^T = I, X^TX = I, X \in \mathbb{R}^{n \times n}$

QP: Obtain Strong Duality in General? A Modelling Issue

 $H \in S^n$, A, $m \times n$, m < n, K compact

Theorem (Poljak, Rendl, W. '95, [11])

$$p^* = \max_{x} \{q_0(x) := x^T H x + 2g^T x + \alpha : Ax = b, x \in K\}$$

=
$$\max_{x} \{q_0(x) : \|Ax - b\|^2 = 0, x \in K\}$$

=
$$d^* = \boxed{\min_{\lambda}} \phi(\lambda)$$

where the dual functional is:

$$\phi(\lambda) := \max_{x \in K} L(x, \lambda) := q_0(x) - \lambda \|Ax - b\|^2$$

Summary: To strengthen the Lagrangian dual

- linear constraints Ax b = 0 to quadratic $||Ax b||^2 = 0$
- Add redundant constraints

- We have seen that adding redundant constraints and *squaring* linear constraints can close the duality gap, strengthen the Lagrangian relaxation.
- The Lagrangian relaxation of a QQP is an SDP; and the dual of this SDP is the *lifted/linearized* SDP relaxation.
- Move onto liftings/relaxations.

Model with Quadratics Details; Homogenize, and Lift to Matrix Space

Homogenize using
$$x_0 \in \mathbb{R}$$
 with $x_0^2 - 1 = 0$

$$\min q_0(x, x_0) = x^T H x + 2g^T x x_0 + \alpha x_0^2$$
$$Ax - b = 0 \cong ||Ax - bx_0||_2^2 = 0$$

Lifting (linearization):

$\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, \ Y = yy^T \in \mathbb{S}^{N+1}_+, \text{ symmetric, psd}, \ Y_{00} = 1$$

obj. fn.
$$y^T \begin{bmatrix} \alpha & g' \\ g & H \end{bmatrix} y = \text{trace} \begin{bmatrix} \alpha & g' \\ g & H \end{bmatrix} Y$$
, $\operatorname{rank}(Y) = 1$

Relaxation to Convex Problem:

Discard the (hard) rank one constraint on Y

Lifting with QQP and FACIAL REDUCTION

Lifting Linear Equality Constraint

$$0 = \|Ax - bx_0\|_2^2 = \left\| \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix} \right\|_2^2$$
$$= \begin{pmatrix} x_0 \\ x \end{pmatrix}^T \begin{bmatrix} -b^T \\ A^T \end{bmatrix} \begin{bmatrix} -b & A \end{bmatrix} \begin{pmatrix} x_0 \\ x \end{pmatrix}$$
$$= \operatorname{trace} \begin{bmatrix} \|b\|^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} Y = 0$$

EXPOSING VECTOR $W \in \mathbb{S}^{N+1}_+$, with: spectr. decomp., FR

$$W := \begin{bmatrix} \|b\|^2 & -b^T A \\ -A^T b & A^T A \end{bmatrix} = \begin{bmatrix} V & U \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} V & U \end{bmatrix}^T, \ D \in \mathbb{S}^{N+1-r}_+$$

Y feasible \implies YW = 0 (Strict feasibility (Slater) fails)

 $\Rightarrow \quad Y = VRV^T, R \in \mathbb{S}_+^r \quad \text{(facial reduction)}$

Ex: Relaxation of 0, 1 Hard Discrete Constraint

Zero-One; Homogenize with x_0 , $x_0^2 - 1 = 0$ ($Y_{00} = 1$)

$$q_i(x, x_0) := x_i^2 - x_i x_0 = 0, \, \forall i$$

Lifting (linearization): $\mathbb{R}^{N+1} \to \mathbb{S}^{N+1}$

$$y = \begin{pmatrix} x_0 \\ x \end{pmatrix}, \ Y = yy^T \in \mathbb{S}^{N+1}_+, \quad ext{symmetric, psd}, \quad Y_{00} = 1$$

constr. for $\{0, 1\}$: arrow $(Y) = e_0 := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbb{R}^{N+1}$ $(\text{diag}(Y) = Y_{:,0})$

Adjoint: Arrow \cong arrow^{*}

 $\langle \mathsf{Arrow}(\nu), S \rangle = \langle \nu, \mathsf{arrow}(S) \rangle, \quad \forall \nu \in \mathbb{R}^{N+1}, \forall S \in \mathbb{S}^{N+1}$

Move onto a Natural Splitting, FR

- We have modelled hard problems with quadratics, QQPs; we add redundant constraints when possible; after homogenization, we apply Lagrangian relaxation to get the SDP relaxation; we apply facial reduction, FR, and remove redundant constraints.
- The method of choice for SDP was/is primal-dual interior-point methods. However, they do not scale well, and have difficulty getting high accuracy. Adding cutting planes from e.g., nonnegativity constraints, DNN relaxations, makes the problems doubly hard numerically.
- Facial reduction, FR, appears to provide a natural splitting to be able to apply ADMM type first order methods.

Splitting Methods, Facial Reduction, FR, for DNN

Natural Splitting? $Y \in \mathcal{P}, R \in \mathcal{R} \subseteq \mathbb{S}_{+}^{r}$ $Y = VRV^{T}$

 $Y \in \mathcal{P} \subset \mathbb{S}^{N+1}_+, \qquad R \in \mathcal{R} \subseteq \mathbb{S}^r_+, \quad r < N+1$

Facial reduction generally provides a reduction in dimension and a guarantee that strict feasibility holds. There is a natural separation of constraints where

 $Y \in \mathcal{P}$ polyhedral $R \in \mathcal{R}$ convex set

Adding Redundant Constraints Back

- FR results in many constraints becoming redundant; and these are deleted for e.g., interior-point methods.
- However, after the splitting, many of the redundant constraints can be added back to the separate split problems to form smaller sets \mathcal{P}, \mathcal{R} .

Given: Undirected Graph $G = (\mathcal{V}, \mathcal{E})$, Adjacency Matrix A

edge set \mathcal{E} and node set $|\mathcal{V}| = n$ $m = (m_1 \ m_2 \ \dots \ m_k)^T, \sum_{i=1}^k m_i = n$; given partition into *k* sets

MC Problem:

partition vertex set \mathcal{V} into k subsets with given sizes in m to *minimize the cut* after removing the k-th set; X is the unknown 0, 1 partition matrix.

Applications

re-orderings for sparsity patterns; microchip design and circuit board, floor planning and other layout problems.

```
(k = 3, vertex separator problem)
```

Quadratic-Quadratic Model/Homogenized

Include Many Redundant Constraints; X a Partition Matrix

- A adjacency; B structured for k-th set
- $X, n \times k$ partition matrix; cols are indicator vectors for sets
- e_j is the vector of ones of dimension j; M = Diag(m).
- $u \circ v$ Hadamard (elementwise) product.

SDP Constraints, FR and Exposing Vectors

Trace constraints (from linear equality constraints

$$\begin{array}{ll} \operatorname{trace} D_1 \, Y = 0, \qquad D_1 := \begin{bmatrix} n & -e_k^T \otimes e_n^T \\ -e_k \otimes e_n & (e_k e_k^T) \otimes I_n \end{bmatrix}, \\ \operatorname{trace} D_2 \, Y = 0, \qquad D_2 := \begin{bmatrix} m^T m & -m^T \otimes e_n^T \\ -m \otimes e_n & I_k \otimes (e_n e_n^T) \end{bmatrix}, \end{array}$$

 e_j vector of ones of dimension j; $D_i \succeq 0, i = 1, 2$; nullspaces of these matrices yield the facial reduction $Y = VRV^T$.

Block: trace, diagonal and off-diagonal

$$\begin{array}{lll} \mathcal{D}_{t}(Y) & := & \left(\mathrm{trace} \, \overline{Y}_{(ij)} \right) = M \in \mathbb{S}^{k}; \\ \mathcal{D}_{d}(Y) & := & \sum_{i=1}^{k} \mathrm{diag} \, \overline{Y}_{(ii)} = \boldsymbol{e}_{n} \in \mathbb{R}^{n}; \\ \mathcal{D}_{o}(Y) & := & \left(\sum_{s \neq t} \left(\overline{Y}_{(ij)} \right)_{st} \right) = \hat{M} \in \mathbb{S}^{k} \end{array}$$

where $\hat{M} := mm^T - M$.

Gangster constraints on Y are Strong

The Hadamard product and orthogonal type constraints lead to gangster constraints

i.e., simple constraints that restrict elements to be zero (shoot holes in the matrix) and/or restrict entire blocks. $(X_{:i} \circ X_{:i} = 0 \implies Y_{si,ti} = 0, \forall s, t)$

gangster and restricted gangster constraint on Y:

$$\mathcal{G}_H(Y)=0,$$

for specific index sets *H*.

SDP Relaxation

SDP Relaxation with Many (some redundant) Constraints

$$cut(m) \ge p_{SDP}^* := \min \quad \frac{1}{2} \operatorname{trace} L_A Y$$

s.t. $\operatorname{arrow}(Y) = e_0$
 $\operatorname{trace} D_1 Y = 0, \operatorname{trace} D_2 Y = 0$
 $\mathcal{G}_{J_0}(Y) = 0, \ Y_{00} = 1$
 $\mathcal{D}_t(Y) = M, \ \mathcal{D}_d(Y) = e, \ \mathcal{D}_o(Y) = \widehat{M}$
 $Y \in \mathbb{S}_+^{kn+1}$

Equivalent FR greatly simplified SDP; with $Y = \widetilde{V}R\widetilde{V}^T$

$$\begin{aligned} \mathsf{cut}(m) \geq p_{\mathrm{SDP}}^* &= \min \quad \frac{1}{2}\operatorname{trace}\left(\widetilde{V}^T L_A \widetilde{V}\right) R\\ \text{s.t.} \quad \mathcal{G}_{\widehat{J}_{\mathcal{I}}}(\widetilde{V}R\widetilde{V}^T) = \mathcal{G}_{\widehat{J}_{\mathcal{I}}}(e_0 e_0^T)\\ R \in \mathbb{S}_+^{(k-1)(n-1)+1}\end{aligned}$$

Theorem

satisfies strict feasibility.

Difficulties for Primal-dual interior-point Methods for SDP

- solving large problems
- obtaining high accuracy solutions
- exploiting sparsity
- adding on nonnegativity and other cutting plane constraints

First order operator splitting methods for SDP

- FR provides a natural (successful) splitting, Y = VRV^T, (Y polyhedral, R cone/convex)
- Flexibility in dealing with additional constraints
- separable/split optimization steps are inexpensive

Strengthen model with redundant constraint

Set Constraints, Low Rank (helps with early stopping)

$$\mathcal{R} := \{ R \in \mathbb{S}_{+}^{(k-1)(n-1)+1} : \text{trace } R = n+1 \},$$

$$\mathcal{Y} := \{ Y \in \mathbb{S}^{nk+1} : 1 \ge Y(J^c) \ge 0,$$

$$\mathcal{G}_{\overline{J}}(Y) = \mathcal{G}_{\overline{J}}(e_0 e_0^T)$$

$$\mathcal{D}_o(Y) = \widehat{M}, \ e^T Y_{(i0)} = m_i, \forall i \}$$

Strengthened model for Splitting Approach

(DNN)
$$p_{DNN}^* = \min \frac{1}{2} \operatorname{trace} L_A Y + \mathbb{1}_{\mathcal{Y}}(Y) + \mathbb{1}_{\mathcal{R}}(R)$$

s.t. $Y = \widehat{V}R\widehat{V}^T$,

where $\mathbb{1}_{\mathcal{S}}(\cdot)$ is indicator function of set \mathcal{S} .

Solve the DNN using the Splitting Method

Augmented Lagrangian Function, $\mathcal{L}_{\beta}(R, Y, Z) =$

$$= f_{\mathcal{R}}(R) + g_{\mathcal{Y}}(Y) + \langle Z, Y - \widehat{V}R\widehat{V}^{\mathsf{T}} \rangle + \frac{\beta}{2} \left\| Y - \widehat{V}R\widehat{V}^{\mathsf{T}} \right\|^2$$

• $\beta > 0$ penalty parameter for quadratic penalty term,

• (*L*_s diagonally scaled objective $L_s := \frac{1}{2}L + \alpha I \succ 0$)

$$f_{\mathcal{R}}(R) = \mathbb{1}_{\mathcal{R}}(R), \quad g_{\mathcal{Y}}(Y) = \operatorname{trace} L_s Y + \mathbb{1}_{\mathcal{Y}}(Y).$$

sPRSM, Strictly Contractive Peaceman-Rachford Splitting

i.e., alternate minimization of \mathcal{L}_{β} in the variables *Y* and *R* interlaced by an update of the *Z* variable. In particular, we update the dual variable *Z* both after the *R*-update *and* the *Y*-update (both of which have unique solutions).

FRSMR, FR Splitting Method with Redundancies

• Pick any
$$Y^0, Z^0 \in \mathbb{S}^{nk+1}$$
. Fix $\beta > 0$ and $\gamma \in (0, 1)$.

$$\begin{aligned} \bullet R^{t+1} &= \operatorname{argmin}_{R \in \mathcal{R}} \mathcal{L}_{\beta}(R, Y^{t}, Z^{t}) \\ &= \operatorname{argmin}_{R} f_{\mathcal{R}}(R) - \langle Z^{t}, \widehat{V}R\widehat{V}^{T} \rangle + \frac{\beta}{2} \left\| Y^{t} - \widehat{V}R\widehat{V}^{T} \right\|^{2} \\ \bullet Z^{t+\frac{1}{2}} &= Z^{t} + \gamma\beta(Y^{t} - \widehat{V}R^{t+1}\widehat{V}^{T}), \\ \bullet Y^{t+1} &= \operatorname{argmin}_{Y \in \mathcal{Y}} \mathcal{L}_{\beta}(R^{t+1}, Y, Z^{t+\frac{1}{2}}) \\ &= \operatorname{argmin}_{Y} g_{\mathcal{Y}}(Y) + \langle Z^{t+\frac{1}{2}}, Y \rangle + \frac{\beta}{2} \left\| Y - \widehat{V}R^{t+1}\widehat{V}^{T} \right\|^{2}, \\ \bullet Z^{t+1} &= Z^{t+\frac{1}{2}} + \gamma\beta(Y^{t+1} - \widehat{V}R^{t+1}\widehat{V}^{T}). \end{aligned}$$

The argmins can be found explicitly.

Theorem

Let { R^t }, { Y^t } and { Z^t } be the generated sequences from FRSMR. Then { (R^t, Y^t) } converges to an optimal solution (R^*, Y^*) of the DNN relaxation, { Z^t } converges to some Z^* , and (R^*, Y^*, Z^*) satisfies the optimality conditions of the DNN relaxation

$$\begin{array}{rcl} \mathbf{0} & \in & -\widehat{V}^T Z^* \widehat{V} + \mathcal{N}_{\mathcal{R}}(R^*), \\ \mathbf{0} & \in & L_s + Z^* + \mathcal{N}_{\mathcal{Y}}(Y^*), \\ \mathcal{I}^* & = & \widehat{V} R^* \widehat{V}^T, \end{array}$$

where $\mathcal{N}_{S}(x)$ denotes the normal cone of S at x.

1. Explicit solution for R^{t+1}

With the assumption that $\hat{V}^T \hat{V} = I$

$$\begin{aligned} R^{t+1} &= \operatorname{argmin}_{R \in \mathcal{R}} - \langle Z, \widehat{V}R\widehat{V}^T \rangle + \frac{\beta}{2} \left\| Y^t - \widehat{V}R\widehat{V}^T \right\|^2 \\ &= \mathcal{P}_{\mathcal{R}}(\widehat{V}^T(Y^t + \frac{1}{\beta}Z^t)\widehat{V}), \end{aligned}$$

where $\mathcal{P}_{\mathcal{R}}$ denotes the projection (nearest point) onto the intersection of the SDP cone $\mathbb{S}^{(k-1)(n-1)+1}_+$ and the hyperplane $\{R \in \mathbb{S}^{(k-1)(n-1)+1} : \text{trace } R = n+1\}.$

(diagonalize; then project eigenvalues onto simplex)

2. Explicit solution of Y^{t+1}

The *Y*-subproblem yields a closed form solution by projection onto the polyhedral set \mathcal{Y} , i.e.,

$$Y^{t+1} = \operatorname{argmin}_{Y \in \mathcal{Y}} \frac{\beta}{2} \left\| Y - \widehat{VR^{t+1}} \widehat{V}^T - \frac{1}{\beta} (L_s + Z^{t+\frac{1}{2}}) \right\|^2.$$

Note that the update (projection of \tilde{Y}) satisfies e.g.,

$$(\mathbf{Y}^{t+1})_{ij} = \left\{ egin{array}{ccc} 1 & ext{if } i=j=0 \ 0 & ext{if } ij \in J ackslash \{00\} \ 0 & ext{if } ij \in J^c, \ Y_{ij} \leq 0 \ \widetilde{\mathbf{Y}}_{ij} & ext{if } ij \in J^c, \ 0 < Y_{ij}. \end{array}
ight.$$

Lower bound from Inaccurate Solutions

Theorem (Fenchel Dual)

 $\begin{array}{l} \textit{Define modified dual functional} \\ g(Z) := \min_{Y \in \widetilde{\mathcal{Y}}} \langle L_s + Z, Y \rangle - (n+1) \lambda_{\max}(\widehat{V}^T Z \widehat{V}), \\ \textit{with } \widetilde{\mathcal{Y}} := \\ {}_{\{Y \in \mathbb{S}^{nk+1} : \ \mathcal{G}_{\widehat{J}_0}(Y) = \ \mathcal{G}_{\widehat{J}_0}(e_0 e_0^T), \ 0 \le \mathcal{G}_{\widehat{J}_0}(Y) \le 1, \\ \mathcal{D}_o(Y) = \widehat{M}, \ \mathcal{D}_t(Y) = M, \ e^T Y_{(i0)} = m_i, i = 1, \dots, k \}. \end{array}$ $\begin{array}{l} \textit{Then} \end{array}$

$$p^*_{\mathrm{DNN}} = d^*_Z := \max_Z g(Z),$$

and the latter (dual) problem is attained, i.e., strong duality holds.

The Lower Bound

Evaluating $g(Z^t)$ always yields a lower bound for the DNN relaxation optimal value

$$p^*_{\mathrm{DNN}} \geq g(Z^t)$$

Upper bound from feasible solution

Approx. output Yout

- Obtain a vector $v = (v_0 \ \overline{v})^T \in \mathbb{R}^{nk+1}, v_0 \neq 0$ from Y^{Out}
- Reshape \bar{v} ; get $n \times k$ matrix X^{out}
- Since X implies trace $X^T X = n$, a constant, we get

$$\left\|X^{\mathsf{out}} - X\right\|^2 = -2 \operatorname{trace} X^T X^{\mathsf{out}} + \operatorname{constant}.$$

• Solve the linear program (transportation problem)

$$\hat{\pmb{X}} \in \operatorname{argmax}\left\{ \langle \pmb{X}^{m{\mathsf{OUT}}}, \pmb{X}
angle : \pmb{X} \pmb{e} = \pmb{e}, \pmb{X}^{\mathcal{T}} \pmb{e} = \pmb{m}, \pmb{X} \geq \pmb{\mathsf{0}}
ight\}$$

• Upper bound
$$= \frac{1}{2}$$
 trace $A\hat{X}B\hat{X}^T$

Choosing the vector v for X^{out} for upper bound

rank $Y = 1 \implies$ column/eigenvector 0 yields opt. X

- column 0 of Y^{out};
- eigenvector corresponding to largest eigenvalue of Y^{out};
- random sampling/repeated: sum of random weighted-eigenvalue eigenvectors of Y^{out},

$$\mathbf{v} = \sum_{i=1}^{r} \mathbf{w}_i \lambda_i \mathbf{v}_i,$$

where ordered eigenpairs of Y^{out} and ordered weights; *r* here is the *numerical rank* of Y^{out} .

Numerics; Protein Data Bank (PDB)

- MATLAB 2018b; Dell PowerEdge M630; two Intel Xeon E5-2637v3 4-core 3.5 GHz (Haswell); 64 Gigabyte. (times are reasonable)
- relative gaps are approx. 0; we have essentially solved the original NP-hard problem.

Table Headings:

- problem: instance name;
- **p**: number of amino acids;
- n₀: total number of rotamers;
- Ibd: lower bound;
- ubd: upper bound;
- rel.gap: relative gap;
- iter: number of iterations with tolerance $\epsilon = 10^{-10}$;
- time(sec): CPU time (in seconds)

	Numeric	3. 011		D motaneco,	χ angics p		, ici ya		sormany g	iobai opt.
	Problem	ı Data			Numerical Resu	lts	Г	iming	χ a	ingle
#	name	р	n ₀	lbd	ubd	rel-gap	iter	time(sec)	χ_1 angle	χ_{12} angle
1	1AIE	26	34	-46.95892	-46.95892	7.03672e-15	200	0.09	0.654	0.480
2	2ERL	34	103	55.33284	55.33284	5.61228e-14	300	5.52	0.588	0.476
3	1CBN	37	112	-40.42751	-40.42751	2.51561e-13	1652	33.40	0.821	0.727
5	1BX7	41	99	16.96026	16.96026	3.47516e-11	200	3.31	0.610	0.522
6	2FDN	42	51	-59.43092	-59.43092	2.45420e-14	100	0.01	0.738	0.583
7	1MOF	46	94	-79.05580	-79.05580	8.57412e-15	200	2.56	0.717	0.514
8	1CTF	47	74	-97.18893	-97.18893	1.28887e-13	100	0.82	0.766	0.639
9	1NKD	50	199	-51.78466	-51.78466	7.80603e-13	4845	282.37	0.700	0.659
10	2IGD	50	126	-78.50608	-78.50608	8.99352e-15	495	9.91	0.760	0.677
11	2SN3	53	112	-5.56818	-5.56818	4.78619e-12	600	10.95	0.736	0.541
12	1MSI	54	112	-87.46958	-87.46958	1.53466e-14	600	10.97	0.796	0.722
13	1AHO	54	140	24.66925	24.66925	7.76341e-15	1400	39.72	0.722	0.556
15	1CTJ	61	258	-103.32705	-103.32705	1.84748e-12	1919	143.33	0.902	0.679
16	1RZL	65	121	17.26470	17.26470	1.17993e-12	2177	42.27	0.831	0.758
17	1TIF	66	614	-155.17859	-155.17859	5.42223e-14	700	207.67	0.758	0.567
18	1BDO	69	221	-136.29933	-136.29933	3.94748e-15	500	27.28	0.855	0.646
19	10PD	70	112	-139.64632	-139.64632	4.76581e-14	200	2.86	0.657	0.438
20	1VQB	75	406	-96.94940	-96.94940	2.24575e-14	700	93.15	0.824	0.611
21	1IUZ	75	221	-150.88238	-150.88238	4.31820e-15	3400	194.65	0.880	0.712
22	1ABA	76	376	-137.59962	-137.59963	1.35194e-11	400	46.04	0.895	0.734
23	1FNA	76	131	-172.01313	-172.01313	1.72989e-14	700	13.49	0.800	0.651
24	1CYO	78	220	-75.36668	-75.36668	1.33555e-13	500	27.53	0.833	0.639
26	2MCM	80	123	-135.14024	-135.14024	2.16748e-11	200	3.04	0.850	0.800
28	1A68	81	424	-178.12555	-178.12555	9.54680e-16	1000	142.07	0.840	0.662
30	2ACY	84	580	-146.32254	-146.32254	2.88432e-14	8200	2063.31	0.857	0.667
31	1BM8	85	687	-119.54537	-119.54537	3.55137e-16	1200	405.69	0.835	0.618
32	1BKF	89	339	-170.80514	-170.80514	1.24600e-13	1832	177.58	0.843	0.545
33	3CYR	91	137	-144.06405	-144.06405	1.42138e-11	1900	33.93	0.846	0.593
34	3VUB	92	544	-229.38312	-229.38312	4.94542e-15	900	205.25	0.804	0.574
35	1JER	96	462	-120.78401	-120.78400	6.02020e-13	3050	505.43	0.777	0.541
36	2HBG	97	275	-178.42210	-178.42210	4.28894e-15	300	21.82	0.825	0.520
37	1POA	97	470	278.08280	278.08280	8.16180e-14	4992	860.25	0.773	0.529
38	1C52	99	256	-223.31096	-223.31096	1.18101e-14	2700	172.67	0.828	0.690
39	240B	99	642	-161 45228	-161 45228	1 983096-14	5400	1616 92	0 765	0.650

Numerics: Small PDB Instances; χ angles percent correct; rel-gap shows essentially global opt.

Numerics: Big PDB Instances; χ angles percent correct; rel-gap shows essentially global opt.

	Probler	n Data			Jum ariaal Daau	14 -	T:	and an an	-	
		n Dala			Numerical Resu	Its		ming	χ a	ingle
#	name	р	n ₀	lbd	ubd	rel-gap	iter	time(sec)	χ_1 angle	χ_{12} angl
96	1AL3	201	1077	119.66598	119.66598	5.10139e-12	12877	9773	0.791	0.549
97	1ARB	202	1466	-61.52823	-61.52823	1.22112e-13	7200	11157	0.851	0.693
99	1NLS	203	1060	-297.73578	-297.73578	3.50702e-14	2600	1851	0.818	0.603
100	1MRJ	208	1178	-295.13711	-295.13711	1.23056e-13	1931	1700	0.813	0.636
101	10AA	208	854	-317.83422	-317.83422	2.39277e-14	2300	1012	0.803	0.680
102	2DRI	210	906	-398.45564	-398.45564	3.10608e-14	6400	3003	0.805	0.616
103	2CBA	223	1018	-86.52145	-86.52145	1.30549e-11	3200	1979	0.857	0.665
104	2POR	224	1304	-83.22221	-83.22221	8.82520e-12	12846	14255	0.830	0.642
105	3SEB	224	1412	77.15853	77.15852	3.38717e-13	267900	346506	0.782	0.592
106	1MLA	227	1322	-484.10542	-484.10542	1.87677e-14	40100	42801	0.815	0.617
107	1DCS	232	1170	-342.68600	-342.68600	1.65634e-14	4300	3519	0.817	0.609
108	1AKO	234	1387	-244.65691	-244.65691	1.39815e-13	5100	6209	0.808	0.605
109	1PDA	239	891	-423.50226	-423.50226	1.97074e-14	5500	2427	0.860	0.696
110	1EZM	239	1497	-217.36581	-217.36581	5.10340e-13	2000	3136	0.862	0.575
111	1C3D	243	1679	-400.69876	-400.69876	1.38850e-14	23900	85403	0.827	0.655
113	8ABP	245	1743	-273.90716	-273.90716	1.59505e-14	7100	27815	0.802	0.640
114	1CVL	246	910	-537.04249	-537.04249	4.37792e-14	7900	3525	0.850	0.711
115	1RYC	248	1831	-202.60568	-202.60568	1.11948e-15	12500	56371	0.802	0.561
116	1MRP	248	1648	-350.97062	-350.97062	5.27240e-14	11600	44124	0.754	0.596
117	1IXH	252	1134	-289.75241	-289.75241	1.37089e-14	1000	770	0.821	0.663
118	1FNC	253	1940	-310.60998	-310.60999	9.51745e-13	27600	151870	0.802	0.627
120	1SBP	256	1704	-271.08838	-271.08838	4.18600e-15	43300	170625	0.816	0.596
121	2CTC	264	1536	-213.88596	-213.88596	1.59617e-13	10000	34876	0.826	0.635
122	1PGS	265	2190	-16.14049	-16.14049	4.69696e-14	22800	156081	0.837	0.541
123	1MSK	271	1798	-162.50978	-162.50978	1.03393e-13	152200	606216	0.775	0.585
124	1BG6	271	784	-452.62383	-452.62383	3.17007e-13	13300	4072	0.819	0.640
125	1ARU	271	939	-314.40589	-314.40589	9.99588e-12	73500	33326	0.775	0.629
126	1A8E	274	1096	-249.85499	-249.85499	3.17872e-15	103700	68466	0.825	0.613
127	1AXN	278	2343	-300.34290	-300.34291	2.41852e-14	13400	105053	0.831	0.631
128	1TAG	279	1330	-253.22167	-253.22167	2.78928e-13	4200	4301	0.817	0.634
129	1ADS	280	1560	733.91440	733.91440	6.19197e-16	13000	46057	0.771	0.498
130	3PTE	284	2006	161.17216	161.17216	3.88515e-14	11000	58278	0.856	0.651
131	1CEM	292	2400	-24.20196	-24.20196	2.92824e-13	7100	55850	0.860	0.662

Conclusion

- We discussed strategies for finding new, strengthened lower and upper bounds, for hard discrete optimization problems.
- In particular, we exploited the fact that strict feasibility fails for many of these problems and that facial reduction, FR, leads to a natural splitting approach for ADMM, sPRSM, type methods.
- The FR makes many constraints redundant and simplifies the problem. We strengthened the subproblems in the splitting by *returning* redundant constraints.
- A special scaling, and a random sampling provided strengthened lower and upper bounds from low approximate solutions from our approach. (Allowing for early stopping.

References I

- A.F. Anjos and J.B. Lasserre (eds.), Handbook on semidefinite, conic and polynomial optimization, International Series in Operations Research & Management Science, Springer-Verlag, 2011.
- K.M. Anstreicher and H. Wolkowicz, On Lagrangian relaxation of quadratic matrix constraints, SIAM J. Matrix Anal. Appl. 22 (2000), no. 1, 41–55.
- J.M. Borwein and H. Wolkowicz, Characterization of optimality for the abstract convex program with finite-dimensional range, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 4, 390–411. MR 83i:90156

Facial reduction for a cone-convex programming problem, J. Austral. Math. Soc. Ser. A 30 (1980/81), no. 3, 369–380. MR 83b:90121 Regularizing the abstract convex program, J. Math. Anal. Appl. 83 (1981), no. 2, 495–530. MR 83d:90236

- F. Burkowski, Y-L. Cheung, and H. Wolkowicz, Efficient use of semidefinite programming for selection of rotamers in protein conformations, INFORMS J. Comput. 26 (2014), no. 4, 748–766. MR 3265805
- F. Burkowski, J. Im, and H. Wolkowicz, *A Peaceman-Rachford splitting method for the protein side-chain positioning problem*, 2020.
- D. Drusvyatskiy and H. Wolkowicz, *The many faces of degeneracy in conic optimization*, Foundations and Trends[®] in Optimization **3** (2017), no. 2, 77–170.

References III

- N. Graham, H. Hu, J. Im, X. Li, and H. Wolkowicz, *A restricted dual Peaceman-Rachford splitting method for QAP*, Tech. report, University of Waterloo, Waterloo, Ontario, 2020, 29 pages, submitted, research report.
- X. Li, T.K. Pong, H. Sun, and H. Wolkowicz, A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem, Comput. Optim. Appl. **78** (2021), no. 3, 853–891. MR 4221619
- S. Poljak, F. Rendl, and H. Wolkowicz, A recipe for semidefinite relaxation for (0, 1)-quadratic programming, J. Global Optim. 7 (1995), no. 1, 51–73. MR 96d:90053

References IV

- T.K. Pong, H. Sun, N. Wang, and H. Wolkowicz, *Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem*, Comput. Optim. Appl. 63 (2016), no. 2, 333–364. MR 3457444
- H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of semidefinite programming, International Series in Operations Research & Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000, Theory, algorithms, and applications. MR MR1778223 (2001k:90001)

Tests using:

Matlab R2017a on a ThinkPad X1 with an Intel CPU (2.5GHz) and 8GB RAM running Windows 10.

Three classes of problems:

- (a) random structured graphs (compare with previous results in Pong et al. [12])
- (b) partially random graphs with various sizes classified by the number of 1's, $|\mathcal{I}|$, in the vector *m* (similar to QAP)
- (c) vertex separator instances

Lifting Linear Equality Constraint

	Table: Data terminology
imax	maximum size of each set
k	number of sets
п	number of nodes (sum of sizes of sets)
р	density of graph
<i>u</i> ₀	known lower bound
$I = e^T m_{one}$	number of 1's in <i>m</i>
Iters	number of iterations
CPU	time in seconds
Bounds	best lower and upper bounds and relative gap
Residuals	final values of:
	$\left\ Y^{t+1} - \widehat{V} R^{t+1} \widehat{V}^T \right\ (\cong \Delta Z);$
	$\left\ Y^{t+1} - Y^t \right\ (\cong \Delta \overset{\parallel}{Y})$

Comparison small structured graphs with Pong et al

	C	Data		Lower b	ounds	Upper b	ounds	Rel-	gap	Time	(cpu)
n	k	E	<i>u</i> ₀	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek	FRSMR	Mosek
20	4	136	6	6	6	6	6	0.00	0.00	0.21	3.96
25	4	222	8	8	8	8	8	0.00	0.00	0.20	10.94
25	5	170	14	14	14	14	14	0.00	0.00	0.31	34.19
31	5	265	22	22	22	22	22	0.00	0.00	1.28	149.49

ones, $\mathcal{I} = \emptyset$, mean over 3 instances

	Sp	ecification	S		ltor	CDU		Bounds		Resi	duals
imax	k	n	р	1	1101	opu	low	up	rel-gap	prim.	dual
5	6	19.0	0.49	0	333.33	0.89	38.0	38.33	0.01	4.15e-03	6.18e-03
6	7	24.67	0.44	0	500.0	3.03	60.0	61.67	0.02	4.86e-03	8.74e-03
7	8	31.0	0.37	0	966.67	9.53	68.33	71.0	0.04	8.44e-04	3.74e-04
8	9	40.0	0.31	0	833.33	22.75	100.33	110.67	0.09	1.43e-03	6.92e-04
9	10	50.33	0.23	0	1100.0	75.26	119.67	132.33	0.09	1.53e-03	6.81e-04

Numerics cont... Random Graphs

$k \notin \mathcal{I} \neq \emptyset$, mean over 4 instances

	S	Specificatio	ons		Itors	cou		Bounds		Resi	duals
imax	k	n	р	1	liers	l cha	lower	upper	rel-gap	primal	dual
5	6	16.25	0.51	1.50	450.00	1.02	22.25	23.00	0.03	2.36e-03	1.64e-03
6	7	17.00	0.43	3.25	325.00	1.18	23.00	23.25	0.00	3.75e-02	5.90e-02
7	8	21.00	0.38	3.50	625.00	4.98	34.50	36.00	0.02	3.66e-03	1.95e-03
8	9	21.75	0.30	5.00	400.00	3.36	20.75	21.25	0.01	8.37e-02	9.51e-02
9	10	38.00	0.23	3.25	775.00	25.84	55.25	63.50	0.11	3.26e-03	1.37e-03

	5	Specificatio	ns		Itors	cou		Bounds		Resi	duals
imax	k	п	р	1	11013	Cpu	lower	upper	rel-gap	primal	dual
5	6	13.60	0.49	2.80	160.00	0.33	22.60	22.60	0.00	2.55e-02	3.02e-02
6	7	18.00	0.42	3.40	460.00	1.99	37.80	39.00	0.02	5.66e-02	7.10e-02
7	8	22.20	0.39	3.80	560.00	3.96	57.80	60.20	0.02	1.04e-02	1.19e-02
8	9	22.60	0.30	5.20	540.00	4.92	37.20	38.00	0.01	3.48e-02	4.29e-02
9	10	31.00	0.23	4.80	700.00	16.78	61.80	68.00	0.06	1.44e-02	1.01e-02

 $k \in \mathcal{I} \neq \mathcal{K}$, mean 5 instances

$\mathcal{I} = \mathcal{K}$, mean 6 instances

	Speci	fications		Itore	Time (cpu)		Bounds		Resi	duals
k	n	р	1	ILEIS	Time (cpu)	lower	upper	rel-gap	primal	dual
6	6.00	0.59	6.00	100.00	0.06	4.67	4.67	0.00	5.12e-03	5.10e-03
7	7.00	0.48	7.00	100.00	0.08	5.67	5.67	0.00	8.66e-02	1.27e-01
8	8.00	0.41	8.00	150.00	0.18	7.17	7.17	0.00	2.64e-01	1.68e-01
9	9.00	0.34	9.00	233.33	0.37	7.83	8.00	0.03	1.88e-01	3.99e-02
10	10.00	0.25	10.00	266.67	0.56	7.50	7.50	0.00	6.28e-02	8.71e-02

Table: Comparisons on the bounds for MC and bounds for the cardinality of separators

Name	n	E	m1	m ₂	m3	lower	upper	lower	upper	lower	upper	lower	upper
						MC by	SDP ₄	MC by	DNN-final	Separato	r by SDP ₄	Separator	r by DNN-final
Example 1	93	470	42	41	10	0.07	1	0	1	11	11	11	11
bcspwr03	118	179	58	57	3	0.56	1	0	2	4	5	4	5
Smallmesh	136	354	65	66	5	0.13	1	0	1	6	6	6	6
can-144	144	576	70	70	4	0.90	6	0	6	5	6	5	8
can-161	161	608	73	72	16	0.31	2	0	2	17	18	17	18
can-229	229	774	107	107	15	0.40	6	0	6	16	19	16	19
gridt(15)	120	315	56	56	8	0.29	4	0	4	9	11	9	12
gridt(17)	153	408	72	72	9	0.17	4	0	4	10	13	10	13
grid3dt(5)	125	604	54	53	18	0.54	2	0	4	19	19	19	22
grid3dt(6)	216	1115	95	95	26	0.28	4	0	4	27	30	27	31
grid3dt(7)	343	1854	159	158	26	0.60	22	0	27	27	37	27	44
	_	_	_	_	_	_	_						

Numerics for SCP, Small, Medium Proteins

Ductoin			run ti	me (sec)	dual S	DP optval	objva	l in IQP	relati	ve diff	relativ	/e gap
Frotein	110	р	SCPCP	[6]	SCPCP	[6]	SCPCP	[6]	SCPCP	[6]	SCPCP	[6]
1AAC	117	85	6.58	296.06	-206.33	-206.33	-206.33	-206.33	5.75E-11	1.72E-05	1.30E-09	4.21E-04
1AHO	108	54	7.97	364.73	33.53	33.53	33.53	33.53	8.44E-11	4.95E-05	2.45E-09	4.68E-04
1BRF	130	45	14.96	977.08	-31.11	-31.11	-31.11	-31.11	3.92E-11	2.27E-05	3.08E-09	1.24E-04
1CC7	160	66	28.60	1059.06	-63.76	-2.30E+07	-63.76	$3.73E{+}04$	1.13E-11	2.01	1.27E-09	1.11
1CKU	115	60	5.46	815.18	113.83	113.83	113.83	113.83	7.17E-11	4.79E-05	3.42E-09	1.13E-04
1CRN	65	37	12.76	46.42	-14.87	-14.87	-14.87	-14.87	1.64E-12	3.05E-05	2.20E-10	3.66E-04
1CTJ	153	61	16.15	777.31	-129.53	-6.69E + 06	-129.53	174.65	2.98E-11	2.00	2.29E-09	1.07
1D4T	188	89	41.32	2775.34	-173.03	-2.96E+07	-173.03	291.13	3.88E-11	2.00	1.35E-09	1.20
1IGD	82	50	5.51	189.04	-69.25	-69.25	-69.25	-69.25	4.79E-10	2.74E-06	5.76E-09	3.39E-05
1PLC	129	82	14.32	1766.03	-1.50	-1.50	-1.50	-1.50	1.28E-11	7.28E-04	4.60E-10	1.09E-03
1VFY	134	63	23.49	1765.36	-90.09	-90.09	-90.09	-90.09	1.67E-11	-1.11E-05	9.15E-10	3.79E-05
4RXN	98	48	18.44	366.48	-21.65	-21.65	-21.65	-21.65	1.48E-11	2.62E-05	4.19E-10	6.67E-05

Table 3 Results on small proteins

Table 4 Results on medium-sized proteins

Dustain			run ti	me (min)	dual S	DP optval	objva	l in IQP	relative	diff	relative	gap
Frotem	no	р	SCPCP	[6]	SCPCP	[6]	SCPCP	[6]	SCPCP	[<mark>6</mark>]	SCPCP	[<mark>6</mark>]
1B9O	265	112	0.64	254.85	-140.24	-5.63E+07	-140.24	$1.91E{+}06$	1.19E-11	2.14	1.45E-09	1.24
1C5E	200	71	2.59	70.63	-131.75	-6.46E + 04	-131.75	148.82	4.93E-11	2.01	5.02 E- 09	1.00
1C9O	207	53	2.15	66.50	-83.55	$-1.88E{+}06$	-83.55	1628.10	3.35E-12	2.00	$2.77\mathrm{E}\text{-}10$	1.02
1CZP	237	83	1.90	143.95	-37.88	-2.26E + 04	-37.88	1254.42	8.30E-11	2.24	1.03E-08	1.00
1MFM	216	118	0.19	102.11	-201.29	-7.36E + 07	-201.29	1369.92	2.01E-11	2.00	1.24E-09	1.09
1QQ4	365	143	5.70	-	-102.40	-	-102.40	-	6.49E-11	-	2.27E-08	-
1QTN	302	134	5.04	-	-178.77	-	-178.77	-	2.24E-11	-	4.12E-09	-
1QU9	287	101	7.55	-	-124.96	-	-124.96	-	1.80E-11	-	5.52E-09	-

Table 5 Results on large proteins (SCPCP only)

Protein	n ₀	р	run time	dual SDP	Objval	rel. diff	rel. gap	numcut	# iter	Final
			(hr)	optval	in IQP					# cuts
1CEX	435	146	0.08	140.20	140.20	1.26E-11	5.57E-09	40	9	485
1CZ9	615	111	3.96	497.46	497.46	2.98E-13	6.37E-10	60	25	1997
1QJ4	545	221	0.15	-286.83	-286.83	5.31E-12	1.14E-09	60	14	1027
1RCF	581	142	0.85	-191.54	-191.54	3.71E-12	1.15E-08	60	17	1305
2PTH	930	151	29.65	-159.41	-159.41	8.69E-09	7.63E-06	120	34	7247
5P21	464	144	0.31	-135.75	-135.75	1.39E-12	7.33E-10	40	16	822

Thanks for your attention!

Hard Combinatorial Problems, Doubly Nonnegative Relaxations, Facial Reduction, and Alternating Direction Method of Multipliers

Henry Wolkowicz Dept. Comb. and Opt., University of Waterloo, Canada

Monday, Aug. 2, 2021, 9:00-10:00 AM, EDT

7th Annual LLU Algorithm Workshop