GRASP with path relinking for the 3-index assignment problem

Mauricio G. C. Resende

mgcr@research.att.com

www.research.att.com/~mgcr

Algorithms & Optimization Research Department
Information Sciences Research Center / AT&T Labs Research

Joint work with R.M. Aiex, P.M. Pardalos, & G. Toraldo
3-index assignment (AP3)

Complete tripartite graph: Each triangle made up of three distinctly colored nodes has a cost.

AP3: Find a set of triangles such that each node appears in exactly one triangle and the sum of the costs of the triangles is minimized.
3-index assignment (AP3)

- Let I, J, and K be disjoint sets of size n.
- Consider the complete tripartite graph:
 $K_{n,n,n} = (I \cup J \cup K, (I \times J) \cup (I \times K) \cup (J \times K))$
- If each triangle $(i, j, k) \in I \times J \times K$ costs $c_{i,j,k}$
- AP3 consists in finding a subset $A \subseteq I \times J \times K$ of n triangles such that every element of $I \times J \times K$ occurs in exactly one triangle of A and the cost of the chosen triangles is minimized.
3-index assignment (AP3)

- First stated by Pierskalla (1967) as a straightforward extension of the 2-dim assignment problem.
- AP3 is NP-complete (Frieze, 1983)
- Applications include:
 - Scheduling capital investments
 - Military troop assignment
 - Satellite coverage optimization
 - Production of printed circuit boards
Exact algorithms & heuristics for AP3

- Pierskalla (1967)
- Vlach (1967)
- Hansen & Kaufman (1973)
- Burkard & Fröhlich (1980)
- Balas & Saltzman (1991)
- Crama & Spieksma (1992)
- Burkard & Rudolf (1993)
- Burkard, Rudolf, & Woeginger (1996)
Summary of talk

• GRASP for AP3
 – Construction of greedy randomized solution
 – Local search
• Path relinking for AP3
• GRASP with path relinking for AP3
• Computational experience with sequential algorithms
• Parallel implementation & computation
GRASP: greedy randomized adaptive search procedure

- Multi-start meta-heuristic (Feo & R., 1989)
- Repeat:
 - Construct greedy randomized solution
 - Use local search to improve constructed solution
 - Keep track of best solutions found
GRASP for assignment problems

- **QAP:** Li, Pardalos, & R. (1994); Pardalos, Pitsoulis, & R. (1995); R., Pardalos, & Li (1996); Pardalos, Pitsoulis, & R. (1997); Rangel, Abreu, Boaventura-Netto, & Boeres (1998); Fleurent & Glover (1999); Pitsoulis (1999); Rangel, Abreu, & Boaventura-Netto (1999); Ahuja, Orlin, & Tiwari (2000)

- **Biquadratic assignment:** Mavridou, Pardalos, Pitsoulis, & R. (1998)

- **Multi-dimensional assignment:** Robertson (1998); Murphey, Pardalos, & Pitsoulis (1998); Pitsoulis (1999)
GRASP for assignment problems

• Intermodal trailer assignment: Feo & Gonzalez-Velarde (1995)

• Turbine balancing: Pitsoulis (1999); Pitsoulis, Pardalos, & Hearn (2001)
Greedy randomized construction for AP3

- Solution A is built by selecting n triplets, one at a time.
- Let C be the set of candidate triplets (initially the set of all triplets).
- $c_* = \min \{ c_{i,j,k} \mid (i,j,k) \in C \}$; $c^* = \max \{ c_{i,j,k} \mid (i,j,k) \in C \}$
- $C' = \{ (i,j,k) \in C \mid c_{i,j,k} \leq c_* + \alpha (c^* - c_*) \}$
 \[(\alpha \text{ random, } 0 \leq \alpha \leq 1)\]
Greedy randomized construction for AP3

- \(A = \emptyset \)
- **Repeat** \(n - 1 \) **times:**
 - Build restricted candidate list \(C' \)
 - Choose \((i,j,k) \in C' \) at random
 - \(A = A \cup (i,j,k) \)
 - Update candidate list \(C \)
- \(A = A \cup C \)

Data structure uses 4 doubly linked lists.
Local search for AP3

- Permutation representation of AP3 solution.

\[(p, q) = (\{2,1\}, \{1,2\})\]

Solution space consists of all \((n!)^2\) possible combinations of permutations.
Local search for AP3

- Difference between 2 permutations s and s':
 \[\delta(s,s') = \{ i \mid s(i) \neq s'(i) \} \]

- Distance between them:
 \[d(s,s') = |\delta(s,s')| \]

- The neighborhood used in our local search:
 \[N_2(p, q) = \{ p', q' \mid d(p,p') + d(q,q') = 2 \} \]
Local search for AP3

\((p,q) \) is starting solution;

\[
\text{while} \ (\exists (p',q') \in N_2(p,q) \mid c(p',q') < c(p,q)) \{
\]
\[
(p,q) = (p',q');
\]
\[
\}
\]
Path relinking

- Introduced in context of tabu search in Glover & Laguna (1997):
 - Approach to integrate intensification & diversification in search.
- Consists in exploring trajectories that connect high quality solutions.
Path relinking

- Path is generated by selecting moves that introduce in the initial solution attributes of the guiding solution.
- At each step, all moves that incorporate attributes of the guiding solution are analyzed and best move is taken.
Path relinking in GRASP

• Introduced by Laguna & Martí (1999)
• Maintain an elite set of solutions found during GRASP iterations.
• After each GRASP iteration (construction & local search):
 – Select an elite solution at random: guiding solution.
 – Use GRASP solution as initial solution.
 – Do path relinking between these two solutions.
Path relinking for AP3

- Path relinking is done between
 - Initial solution
 \[S = \{ (1, j_1^S, k_1^S), (2, j_2^S, k_2^S), \ldots, (n, j_n^S, k_n^S) \} \]
 - Guiding solution
 \[T = \{ (1, j_1^T, k_1^T), (2, j_2^T, k_2^T), \ldots, (n, j_n^T, k_n^T) \} \]
Path relinking for AP3

• Symmetric difference between S and T:
 \[
 \delta J = \{ i = 1, \ldots, n \mid j_i^S \neq j_i^T \} \\
 \delta K = \{ i = 1, \ldots, n \mid k_i^S \neq k_i^T \}
 \]

• while (|δJ| + |δK| > 0) {
 evaluate moves corresponding to δJ and δK
 make best move
 update symmetric difference
}

Path relinking moves

- **Guided by δJ:** for all $i \in \delta J$, let q be such that $j_q^T = j_i^S$

 Triplets $\{(i, j_i^S, k_i^S), (q, j_q^S, k_q^S)\}$ are replaced by

 triplets $\{(i, j_q^S, k_i^S), (q, j_i^S, k_q^S)\}$

- **Guided by δK:** for all $i \in \delta K$, let q be such that $k_q^T = k_i^S$

 Triplets $\{(i, j_i^S, k_i^S), (q, j_q^S, k_q^S)\}$ are replaced by

 triplets $\{(i, j_i^S, k_q^S), (q, j_q^S, k_i^S)\}$
Path relinking: Elite set

- P is set of elite solutions
- Each iteration of first $|P|$ GRASP iterations adds one solution to P.
- After that: solution x is promoted to P if:
 - x is better than best solution in P.
 - x is not better than best solution in P, but is better than worst and it is sufficiently different from all solutions in P.
Path relinking: Solution dissimilarity

- **Initial solution**
 \[S = \{ (1, j_1^S, k_1^S), (2, j_2^S, k_2^S), \ldots, (n, j_n^S, k_n^S) \} \]

- **Guiding solution**
 \[T = \{ (1, j_1^T, k_1^T), (2, j_2^T, k_2^T), \ldots, (n, j_n^T, k_n^T) \} \]

- **Dissimilarity**: \[\Delta (S, T) = \text{count of non-matching triplet indices.} \]

- **Solutions are sufficiently different if** \[\Delta (S, T) > n \]
Path relinking: Intensification & post-optimization

- Elite set intensification (periodically or as post-optimization phase):
 - Apply path relinking between all pairs of elite set solutions.
 - Update elite set, if necessary, and repeat until no change occurs.

- If done as post-optimization:
 - Apply local search to each elite set solution.
 - Repeat if necessary.
Path relinking: Variants

• How targets are chosen:
 – Select a subset of targets $P \subseteq P$ from elite set.
 – We test $|P| = 1$ and $|\underline{P}| = |P|$.

• Direction of path relinking:
 – Forward: from S to T.
 – Forward and back: from S to T, then from T to S.
Computational experiments

- **Test problems (358 instances):**
 - **Balas & Saltzman:** Integer costs $c_{i,j,k}$ randomly generated in uniform interval $[0,100]$. Five instances of sizes $n = 12, 14, 16, 18, 20, 22, 24, \text{ and } 26$.
 - **Crama & Spieksma:** Edge (i,j) of $K_{n,n,n}$ has cost $d_{i,j}$ and triplet (i,j,k) has cost $c_{i,j,k} = d_{i,j} + d_{i,k} + d_{k,j}$. Three types of instances use different schemes to generate the costs $d_{i,j}$. Each type has three instances of sizes $n = 33$ and 66.
 - **Burkard, Rudolf, & Woeginger:** $c_{i,j,k} = \alpha_i \cdot \beta_j \cdot \gamma_k$, where α_i, β_j, and γ_k are uniformly distributed in $[0,10]$. One hundred instances of sizes $n = 12$, 14, and 16.
Computational experiments:
Algorithm variants

- **GRASP**: pure GRASP with no path relinking
- **GPR(RAND)**: Adds to GRASP 2-way PR between initiating & randomly selected guiding solution.
- **GPR(ALL)**: Adds to GRASP 2-way PR between initiating & all elite solutions.
- **GPR(RAND,POST)**: Adds to GPR(RAND) a post-optimization PR phase.
- **GPR(ALL,POST)**: Adds to GPR(ALL) a post-optimization PR phase.
Computational experiments:
Algorithm variants

- **GPR(RAND, POST, INT):** Adds an intensification phase to GPR(RAND, POST). Intensification is done in fixed intervals.

- **GPR(ALL, POST, INT):** Adds an intensification phase to GPR(ALL, POST). Intensification is done in fixed intervals.
Computational experiments: Questions

• Does PR improve performance of GRASP and what is the tradeoff in terms of CPU time?
• What are the tradeoffs between CPU time and solution quality for the different variants of GRASP with PR?
• Are random variables \textit{time to target solution} exponentially distributed, and if so, how does a straightforward parallel implementation do?
200 independent runs of each algorithm.

![Graph showing the comparison between GRASP and GPR(RAND) algorithms]

look4 = 19
200 independent runs of each algorithm.

look4 = 20
200 independent runs of each algorithm.
200 independent runs of each algorithm.

look4 = 19
200 independent runs of each algorithm.

look4 = 7
200 independent runs of each algorithm.

look4 = 8
200 independent runs of each algorithm.

look4 = 7
200 independent runs of each algorithm.

look4 = 8
Computational experiments: General remarks

• Extensive computational experiments were done.
• GRASP with path relinking was shown to improve performance of pure GRASP
 – Finds solution faster.
 – Finds better solutions in fixed number of iterations.
• In general, variants requiring more work per iteration were shown to find solutions of a given quality in less time than variants doing less work per iteration.
• New GRASP with path relinking improved upon all previously described heuristics.
Use standard graphical methodology described in Aiex, R., & Ribeiro (2000) to study if random variable *time to target solution value* fits a two-parameter exponential distribution.

Since it does, one should expect approximate linear speedup in a straightforward parallel implementation.
60 independent runs of each algorithm.

Balas & Saltzman 20.1

MPI implementation.

look4 = 7
Balas & Saltzman 20.1

Average speedup of 60 independent runs.

look4 = 7

MPI implementation.
60 independent runs of each algorithm.

Balas & Saltzman 22.1

look4 = 8

MPI implementation.
Average speedup of 60 independent runs.

Balas & Saltzman 22.1

MPI implementation.

look4 = 8
60 independent runs of each algorithm. MPI implementation.

Balas & Saltzman 24.1

look4 = 7
Average speedup of 60 independent runs.

Balas & Saltzman 24.1

look4 = 7
60 independent runs of each algorithm.

Balas & Saltzman 26.1

look4 = 8
Average speedup of 60 independent runs.

Balas & Saltzman 26.1

look4 = 8
Concluding remarks

- We show that memory mechanisms using path relinking improve performance of GRASP.
- Sophistication pays off: faster and better.
- Running time is exponentially distributed and parallel implementations enjoy good speedup.
- We have recently implemented a parallel algorithm with collaborating elite sets and observe super-linear speedup.
- Paper is available at http://www.research.att.com/~mgcr