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Outline

◦ Motivations

◦ Robust optimization: modeling and computational
efficiency

◦ Applications

• Mean-variance model

• Sharpe ratio maximization
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Motivations

Motivations

Problem input data frequently suffers from estimation error, and
sometimes even very small errors can render the “optimal” solution
irrelevant (e.g. seriously infeasible).

e.g. Pilot 4 from NETLIB : constraint 372

aTx = − 15.79081x826 − 8.598819x827 − 1.88789x828 − 1.362417x829

− 1.526049x830 − 0.031883x849 − 28.725555x850 − 10.792065x851

− 0.19004x852 − 2.757176x853 − 12.290832x854 + 717.562256x855

− 0.057865x856 − 3.785417x857 − 78.30661x858 − 122.163055x859

− 6.46609x860 − 0.48371x861 − 0.615264x862 − 1.353783x863

− 84.644257x864 − 122.459045x865 − 43.15593x866 − 1.712592x870

− 0.401597x871 + x880 − 0.946049x898 − 0.946049x916

� b = 23.387405
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Motivations

Motivations

Problem input data frequently suffers from estimation error, and because of
this the “optimal” solution computed is far from optimal in reality.

e.g. Computation of efficient frontier from mean-variance model

◦ True asset returns μ and covariance matrix Q

◦ Estimate asset returns μ̂ and covariance matrix Q̂

max
x

μTx − λxTQx s.t. 1Tx = 1 (QPλ)

Family of true optimal portfolio {xλ : xλ solves (QPλ), λ > 0}
True efficient frontier : {(

√
xT
λQxT

λ,μTxλ) : λ > 0}
(↑ What you would have obtained if you knew the true parameters μ and Q.)
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Motivations

Problem input data frequently suffers from estimation error, and because of
this the “optimal” solution computed is far from optimal in reality.

e.g. Computation of efficient frontier from mean-variance model

◦ True asset returns μ and covariance matrix Q

◦ Estimate asset returns μ̂ and covariance matrix Q̂

max
x

μ̂Tx − λxTQ̂x s.t. 1Tx = 1 (Q̂Pλ)

Family of “optimal” portfolio {x̂λ : x̂λ solves (Q̂Pλ), λ > 0}
(↑ What you actually obtain based on the estimates μ̂ and Q̂.)

Estimated efficient frontier : {(
√

x̂T
λQ̂x̂T

λ, μ̂Tx̂λ) : λ > 0}
(This efficient frontier is what you think you would get.)
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Motivations

Motivations

Problem input data frequently suffers from estimation error, and because of
this the “optimal” solution computed is far from optimal in reality.

e.g. Computation of efficient frontier from mean-variance model

◦ True asset returns μ and covariance matrix Q

◦ Estimate asset returns μ̂ and covariance matrix Q̂

max
x

μ̂Tx − λxTQ̂x s.t. 1Tx = 1 (Q̂Pλ)

Family of “optimal” portfolio {x̂λ : x̂λ solves (Q̂Pλ), λ > 0}
(↑ What you actually obtain based on the estimates μ̂ and Q̂.)

Actual efficient frontier : {(
√

x̂T
λQx̂T

λ,μTx̂λ) : λ > 0}
(This efficient frontier is what you actually get in reality!)
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Motivations

Motivations

Source: Computing Efficient Frontiers using Estimated Parameters, M. Broadie, 1993, Annals of Operations Research, Vol.

45, 21-58.
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Motivations

Motivations

◦ Problem input data frequently suffers from estimation
error.

◦ Solving an optimization problem based on nominal data
alone could produce some “optimal solution” that is
irrelevant in reality.

◦ Even if feasibility is not an issue, the “optimal” solution
obtained is very likely far from optimal.
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Robust optimization and efficiency

Robust optimization: modeling

◦ Nominal LP problem:

min
x

ĉTx + d̂ s.t. Âx � b̂

◦ Uncertain data (Â, b̂) takes value in UA,b (and (ĉ, d̂) in Uc,d)

◦ Robust counterpart:

min
x

c̃(x) s.t. Ax � b for all (A, b) ∈ UA, b

where c̃(x) := sup
(c, d)∈Uc, d

cTx + d .
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Robust optimization and efficiency

Robust optimization: modeling

◦ Nominal problem:

min
x

f (x; η̂) s.t. g(x; ξ̂) � 0

◦ Uncertain data η̂ and ξ̂ vary withinUη and Uξ resp.

◦ Robust counterpart:

min
x

f̃ (x) s.t. g(x;ξ) � 0 for all ξ ∈ Uξ

where f̃ (x) := sup
η∈Uη

f (x;η).
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Robust optimization and efficiency

Robust optimization: modeling

◦ But what are the uncertainty sets?

◦ In finance, the uncertainty structure corresponds to the
confidence region.

◦ So this problem is deterministic, but is a semi-infinite
(and possibly non-smooth) programming problem!

◦ Infinite number of constraints poses computational
difficulty.

◦ But constraints such as the last one can be dealt with
efficiently.
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Robust optimization and efficiency

Robust optimization: efficiency

An illustration in LP case:

◦ Consider an uncertain constraint

âTx � b̂ where [â; b̂] =
{
[a0; b0] +

L∑
l=1

ζl[a
l; bl] : ‖ζ‖2 � 1

}

◦ Robust counterpart:

(a0)Tx +

L∑
l=1

ζl[a
l]Tx � b0 +

L∑
l=1

ζlb
l ∀ ‖ζ‖2 � 1
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Robust optimization and efficiency

Robust optimization: efficiency

An illustration in LP case:

◦ Consider an uncertain constraint

âTx � b̂ where [â; b̂] =
{
[a0; b0] +

L∑
l=1

ζl[al; bl] : ‖ζ‖2 � 1
}

◦ Robust counterpart:
∥∥([a1]Tx − b1, . . . , [aL]Tx − bL)T

∥∥
2 � b0 − (a0)Tx

which is not a “hard” constraint to deal with.
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Robust optimization and efficiency

Robust optimization: efficiency

Robust counterparts of some classes of non-linear
programming problems and LP with different uncertainty sets
may have a finite representation, and can be solved efficiently.

Vris Cheung (University of Waterloo) Robust optimization 2009 11 / 19



Applications

Mean-variance model

(λ-)parametric QP

max
x

μTx − λxTQx s.t. 1Tx = 1

where (assuming n stocks are available to choose)

x ∈ Rn : proportion of investment on the available assets

μ ∈ Rn : expected return of the available assets

Q ∈ Rn×n : covariance matrix of the available assets

λ > 0 : risk aversion parameter
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Applications

Mean-variance model

(μ0-)parametric QP

min
x

xTQx s.t. μTx � μ0 , 1Tx = 1

where (assuming n stocks are available to choose)

x ∈ Rn : proportion of investment on the available assets

μ ∈ Rn : expected return of the available assets

Q ∈ Rn×n : covariance matrix of the available assets

μ0 ∈ R : minimum expected return guarantee

Vris Cheung (University of Waterloo) Robust optimization 2009 12 / 19



Applications

Mean-variance model

Uncertain (μ0-)parametric QP

min
x

xTQ̂x s.t. μ̂Tx � μ0 , 1Tx = 1

Robust counterpart

min
x

{
max
Q∈UQ

xTQx : μTx � μ0 ∀μ ∈ Uμ , 1Tx = 1
}

UQ : uncertainty set for Q

Uμ : uncertainty set for μ
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Applications

Mean-variance model

Robust counterpart:

min
x

{
max
Q∈UQ

xTQx : μTx � μ0 ∀μ ∈ Uμ , 1Tx = 1
}

Some special cases:

◦ Q is certain :

Uμ = {μ : μ̂− δ � μ � μ̂ + δ}

=⇒ min
x

xTQx s.t. μTx − δT|x| � μ0 , 1Tx = 1
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Applications

Mean-variance model

Robust counterpart:

min
x

{
max
Q∈UQ

xTQx : μTx � μ0 ∀μ ∈ Uμ , 1Tx = 1
}

Some special cases:

◦ Q is certain :

Uμ = {μ : (μ − μ̂)TQ−1(μ − μ̂) � χ2}

=⇒ min
x

xTQx s.t. μTx � μ′
0 , 1Tx = 1

for some μ ′
0 � μ0.
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Applications

Mean-variance model
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Source: Robust Asset Allocation, R.H. Tütüncü and M. Koenig. Annals of Operations Research, 132, 2004.
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Applications

Sharpe ratio maximization

(σ
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 , μ
m
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Portfolio return

Portfolio SD

max
x

μTx − rf√
xTQx

s.t. 1Tx = 1

(rf = risk free rate)
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Applications

Sharpe ratio maximization

Nominal problem:

max
x

μ̂Tx − rf√
xTQ̂x

s.t. 1Tx = 1 , x � 0

Robust counterpart:

max
x

{
min
μ, Q

μTx − rf√
xTQx

s.t. μ ∈ Uμ , Q ∈ UQ

}
s.t. 1Tx = 1 , x � 0

It can be shown that the above max-min problem can be
reduced to a SOCP (with 2n + 6 variables and 8 constraints).
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Applications

Sharpe ratio maximization

Advantages of robustification:

◦ Lower turnover [Ceira]
• At 95% confidence level, turnover drops by 4%.
• At 99% confidence level, turnover drops by 7%.

◦ This indicates a lower aggregate transaction cost.

◦ Higher terminal wealth [Goldfarb and Iyengar]
• At 95% confidence level, final wealth is 40% higher.
• At 99% confidence level, final wealth is 50% higher.
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Applications

Summary

◦ Robust optimization can give uncertainty-immune
solutions

◦ Many robust optimization problems can be solved
efficiently

◦ Robust optimization can producing “stable” solutions
=⇒ lower turnover rate
=⇒ suitable for long term planning
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