Chapter 9

On the admissibility of
intermediate shocks

9.1 Introduction

In this Chapter we discuss the admissibility of intermediate shocks in
MHD. In Sec. 3.3 we have reviewed the various types of MHD discon-
tinuities which are allowed by the MHD Rankine-Hugoniot (RH) rela-
tions. Not all types of MHD discontinuities allowed by the RH relations
can arise in MHD flows, however. A clear example are the so-called
expansion shocks, which take fluid elements from a high-entropy state
to a low-entropy state. Expansion shocks are perfectly allowed by the
RH relations and are weak solutions of the ideal MHD equations, but
they cannot exist in ideal MHD flows because they cannot be formed
through wave steepening and because they would disintegrate imme-
diately upon even the smallest perturbation. Another way to see that
expansion shocks cannot exist is that they violate the second law of ther-
modynamics. Such improper shock solutions of the equations are called
inadmissible shocks, as opposed to admissible shocks which can arise in
flow solutions.

The hydrodynamic (HD) equations are strictly hyperbolic — wave
speeds do not coincide — and convex (see Sec. 3.3.5). Expansion shocks
are the only type of inadmissible discontinuities in HD. Ideal HD and
dissipative HD behave completely similarly regarding admissibility of
shocks.

In contrast, the MHD equations are non-strictly hyperbolic and non-
convex, and have a peculiar type of rotational invariance. Because of
these properties, next to expansion shocks also other types of disconti-
nuities can be inadmissible in MHD. The matter is complicated by the
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fact that for MHD admissibility of shocks is different for the ideal sys-
tem and the dissipative system. It is said that dissipative MHD does not
uniformly approach ideal MHD in the limit of vanishing dissipation.

In ideal MHD several types of intermediate shocks are inadmissible.
For this reason intermediate shocks have been considered extraneous or
unphysical since the early sixties [2, 71, 87]. However, recently it has
been shown that intermediate shocks are admissible in dissipative MHD
[170, 43, 110], and can thus not be termed ‘unphysical’.

The MHD system is extremely complex and allows for many types of
degeneracies and singularities which can coincide and interact. For these
reasons the problem of the admissibility of MHD shocks has probably
not been solved yet in full. Much can be learned about the possible
pathologies by considering model problems of reduced complexity which
each retain certain aspects of the singular behavior of the MHD system.
In Sec. 9.2 we describe the admissibility of discontinuities in such model
systems. Due to space constraints we limit ourselves to sketching the
general ideas while omitting technical details which can be found in the
literature.

The admissibility of shocks is very different in the planar and the full
MHD systems. Planar MHD (v, = B, = 0) does not allow for Alfvén
waves, whereas full MHD does. In Sec. 9.3 we discuss the admissibil-
ity of shocks in the planar MHD system. We show how the planar 2D
magnetically dominated bow shock flows around cylinders that were dis-
cussed in Chap. 6 form excellent illustrations in 2D of the theory on the
admissibility of shocks in planar MHD. We compare the performance of
various numerical schemes for the calculation of these flows and relate
the results to the occurrence of physical and numerical instabilities. In
Sec. 9.4 the admissibility of shocks in the full MHD system is discussed.
The 3D magnetically dominated bow shock flows around spheres that
were discussed in Chap. 7 are shown to be excellent illustrations in 3D
of the theory on the admissibility of shocks in full MHD. Intermediate
shocks have been found previously in 1D and in some 2D simulation
results [12, 147], but the bow shock flows described in Chaps. 6 and
7 are the first clear illustrations in 2D and 3D of the whole variety of
intermediate shock phenomena that can arise in MHD flows.

We limit our exposition of the theory of MHD shock admissibility
in Secs. 9.3 and 9.4 to sketching general results which are illustrated
by analogies with the model systems discussed in Sec. 9.2. A complete
and rigorous derivation of the theoretical results is far beyond the scope
of this dissertation, not only due to space constraints but also because
many aspects of the problem have not been solved yet in full. For in-
stance, theoretical results have only been derived for systems which are
limited to variation in one spatial dimension. Some of the reasonings
presented in this Chapter have obvious loose ends, and many open prob-
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lems remain for which we can only provide speculative answers. We have
found the recent literature on this subject very confusing and contradic-
tory [173, 46, 110, 35]. As is often true in such cases, the confusion and
contradiction mainly seem to stem from vagueness in concepts, termi-
nology and problem definition. We think that a reasonably consistent
picture of the admissibility of shocks in MHD can be distilled from the
recent literature. We have found references [103, 102, 48, 46] the most
useful. References [170, 173, 110, 35] are also of interest. In this Chapter
it is our aim to sketch a consistent theory of the admissibility of MHD
shocks, and to verify whether the simulation results with shock fronts of
various types that were described in Chaps. 6 and 7 confirm this theory.

9.2 Admissibility of shocks in model sys-
tems

9.2.1 Scalar model

Consider the Burgers equation (see also Secs. 3.2.1 and 3.3.5) which
describes the evolution of scalar u(x,t) as

ou  Ou?/2 0u
- Tt =N3>
ot oz Ox?
with flux f(u) = u?/2 and the dissipative coefficient n a positive con-
stant. We choose s = 0 and feonst = 1/2 in the Rankine-Hugoniot
relation (see Sec. 3.3.1)

(9.1)

—su+ f(u) = feonst- (9.2)

Eq. 9.2 then allows for two solutions, u; = 1 and us = —1. Let us
consider the case that 7 = 0 in Eq. 9.1. In this case Eq. 9.1 allows for
discontinuous weak solutions with vanishing shock thickness. The two
states satisfying the RH relations can be connected with a shock in two
ways, with u; either on the left or on the right side of the shock, and
with us on the other side.

Fig. 9.1 sketches the behavior of the characteristic curves (see Sec.
3.2.1) with slope f'(u) = w in the zt plane for the two possible configura-
tions. These configurations both are solutions of the integral form of Eq.
9.1 with n = 0. In Sec. 3.3 we have postulated that only shocks in which
the characteristics converge are admissible. Following this criterion, the
configuration of Fig. 9.1a is inadmissible, while the configuration of Fig.
9.1b is admissible. We now review several possible shock admissibility
criteria and the reasoning which leads to them. We start out with ad-
missibility criteria for discontinuous solutions of the ideal dissipation-free
equation (n =0 in Eq. 9.1), followed by admissibility criteria for shocks
described by the dissipative equation.
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Figure 9.1: Two possible ways in which a pair of states satisfying the
RH relations for the ideal Burgers equation can be connected by a shock
(thick). (a) (u;,u,)=(-1,1). The characteristics (thin) diverge from
the shock on the two sides. This configuration is inadmissible. (b)
(ug,u.)=(1,-1). The characteristics converge into the shock on the two
sides. This configuration is admissible.

Admissibility of shocks described by the ideal equation

The following are four important criteria used in the literature (e.g.
[109]).

e I1: Steepening criterion

The shock of Fig. 9.1b is admissible because it can be formed
through wave steepening due to the nonlinearity of the equation
(Fig. 3.2), whereas the shock of Fig. 9.1a is inadmissible because it
cannot be formed through wave steepening. Indeed, if we replace
the discontinuities in Fig. 9.1 by steep linear profiles connecting
the left and the right states, then the profile of Fig. 9.1b steep-
ens into a shock because the characteristics are bound to intersect.
In contrast, the profile of Fig. 9.1a decays into a rarefaction wave
which broadens in time because characteristics diverge.

e I2: Perturbation criterion
Let us perturb the configuration u(z,t) of Fig. 9.1b with a profile
m(z,0) which has limited spatial extent such that the weight of
the perturbation

M= /m(:r,O) dz, (9.3)

is bounded (Fig. 9.2a). The time evolution of the solution of the
perturbed problem u'(z,t) = u(x,t) + m(x,t) is governed by the
constraint that [m(z,t)dz remains constant in time, as follows
from the conservation law Eq. 9.1. Due to the convergence of the
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Figure 9.2: Perturbation of the configuration of Fig. 9.1b with a profile
m(x,0) which has limited spatial extent. The solution of the perturbed
problem (a) evolves in finite time to the solution represented in (b) with
a shock connecting the original left and right state and with the same
shock speed (stationary in this case) as the original shock. The shock is
translated over a distance Az.

characteristics the perturbed system evolves in finite time to the
solution of Fig. 9.2b with a shock connecting the original left and
right state and with the same shock speed (stationary in this case)
as the original shock. The only difference between the unperturbed
configuration and the final state of the perturbed problem is that
the shock is translated over a distance Az, with Az = M/Au,
and Au = u; — u,. The distance of translation Az decreases with
decreasing perturbation weight M. The evolution of the perturbed
system is subject to one constraint, and by adjusting the free pa-
rameter of the shock location a solution can be found for which this
constraint is satisfied. The shock in the configuration of Fig. 9.1b is
stable against perturbations, and is thus admissible. The shock in
the configuration of Fig. 9.1a, however, breaks up into a rarefaction
wave upon even the smallest perturbation, since characteristics di-
verge. We say that it is unstable against generic perturbations,
and thus inadmissible.

e I3: Lax criterion
Motivated by the theory of free boundary value problems [88], the
following admissibility criterion has been proposed. The scalar ver-
sion of the RH relation reads (f(u,) — f(ui))/(u, — u;) = s. This
constitutes one equation in three variables. If the values of u, and
u; are specified externally, then this relation can be satisfied at
a discontinuity and determines the shock speed s. Two incoming
characteristics specify the values of u, and w;, and it is concluded
that in this case the shock is admissible. When the characteris-
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tics leave the shock, the RH relation is underdetermined and it is
concluded that the shock is inadmissible. This criterion is due to
Lax [88]. It constitutes a condition on the geometry of shocks and
characteristic curves in the zt plane, and is therefore also called
the geometrical admissibility criterion. Shocks admissible under
the Lax criterion are called Laz shocks.

e I4: Linearized stability or evolutionarity criterion

The linearized stability or evolutionarity criterion is closely related
to the Lax criterion. It is argued that the perturbation problem of
the linearized RH relation should have a unique solution for shocks
to be admissible [2, 71, 87, 44]. In this case it is said that shocks
are evolutionary or linearized stable. For the scalar case it is found
that shocks with impinging characteristics are evolutionary, while
shocks with diverging characteristics are non-evolutionary.

In this case of a scalar equation the criteria I1-14 all give the same
result for the admissibility of shocks. These criteria are extended to
systems of conservation laws in Sec. 9.2.2. As is shown below, these
admissibility criteria for ideal shocks can be related to criteria for dis-
sipative shocks. In the case of physical systems like the HD equations,
this allows for instance to relate the ideal criteria I1-I4 to the concept
of increasing entropy.

It is interesting to discuss the implications of the obtained results on
shock admissibility for the solution of Riemann problems. For the case
of the Burgers equation, shocks admissible under criteria I1-14 allow
for a unique solution of all Riemann problems. Riemann problems are
well-posed in the usual sense, namely that a unique solution exists and
that small changes in the initial conditions (left and right states) only
imply small changes in the solution. If this is true, it is said that a con-
tinuous solution operator exists for the Riemann problem [46]. For the
Burgers equation a continuous solution operator exists which contains
the admissible shocks and rarefaction waves [88].

Admissibility of shocks described by the dissipative equation

A co-stationary traveling wave solution of Eq. 9.1 with non-vanishing
dissipation satisfies

—su~+ f(u) = feonst = n%. (9.4)

We now investigate under which conditions traveling wave solutions with
uniform left and right states u; and u, connected by a narrow smooth
profile are possible. These solutions can be formed through nonlinear
steepening and are the analogs of the shocks described by the ideal
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equation. The width of the dissipative shock layer is determined by
the balance between nonlinear steepening and dissipation. In the uni-
form regions where u = u; or u = u, the dissipative term vanishes, such
that the left and the right state still have to satisfy the RH relation Eq.
9.2.
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Figure 9.3: Autonomous system describing viscous profiles of the Burgers
equation. The system has fixed points where du/0x = 0. uw =1 is an
unstable fixed point, but u = —1 is stable. A viscous profile exists from
u =1tou, =—1.

We choose shock speed s = 0, flux constant feonst = 1/2 and dissipa-
tion coefficient n = 1 in Eq. 9.4. The shock structure equation 9.4 now
mathematically describes an autonomous system of first order, which
relates variable u and its derivative Ou/0z. This autonomous system
can be analyzed using the theory of dynamical systems [113]. This au-
tonomous system has fized points when Ou/0x = 0. For the flux function
and parameters s and f.,nst under consideration, these fixed points —
which satisfy the RH relations — are u = 1 and v = —1. Fig. 9.3 plots
the relation between u and du/0x. The fixed points are located where
this curve crosses the du/0x = 0 axis, and we want to determine now
if a trajectory or a wviscous profile exists on the plotted curve which can
connect the two fixed points. Strictly speaking we should rather call
the profile a dissipative profile, but the terminology of the Navier-Stokes
case for which viscosity acts as dissipation is often used in a generalized
manner.

Suppose u; = 1 and u, = —1. Can these two states in this ordering
be connected by a viscous profile? If we start from u; = 1 and want to
decrease u; towards u, = —1 in moving to the right (increasing x), we

see from the curve in Fig. 9.3 that 0u/0z becomes negative, such that u
can indeed decrease further while moving further to the right (increasing
x). When we approach u, = —1, Qu/dz increases towards zero. We can
reach u, = —1, but once we reach this right state, du/0x = 0, and
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u does not change anymore. This is exactly what we want: uw; = 1
can be connected to u, = —1 by a viscous profile. For given left and
right states this viscous profile is unique, and an explicit solution can
be found [90]. If we would take u; = —1 and u, = 1, then we see that
no viscous profile exists, because state u = —1 cannot be increased in
going to the right. Fixed point u = 1 is an unstable node, because the
slope of the curve is positive, and fixed point © = —1 is a stable node,
with negative slope. In going from left to right (increasing z), we can
connect an unstable node with a stable node via a viscous profile. For the
dissipative equation, admissible shocks are shocks which have a viscous
profile. The configuration of Fig. 9.1a, with diverging characteristics,
is not admissible, while the configuration of Fig. 9.1b, with converging
characteristics, is admissible.

As in Fig. 9.2 localized perturbation of the viscous shock by a per-
turbation m(z,t) with finite weight M results in a translation of the
shock over a distance Axz which is determined by the constraint that
[ m(z,t)dr remains constant in time. The translated shock has the
same left and right states, shock speed and shock profile as the origi-
nal shock. The existence of the viscous profile and the behavior under
perturbations does not depend on the magnitude of the dissipation 7,
so we say that the shock profile is uniformly stable in the dissipative
parameter.

An additional requirement for the admissibility of the shock is that
the autonomous system has to be structurally stable, which means that
small variations in shock speed s, flux constant f.,nst and dissipative
coefficient 1 (which imply small variations in the fixed points) may not
change the existence and stability properties of viscous profiles. It is
intuitively clear that in the above described case the autonomous system
is structurally stable, and this can be proven rigorously as well [48].

Ideal solutions as uniform vanishing viscosity limits of dissipa-
tive solutions

An important observation is that precisely the shocks which are admis-
sible in the ideal analysis (Lax shocks) turn out to have viscous profiles!
The (ideal) Lax criterion and the (dissipative) viscosity admissibility
criterion give the same result for the admissibility of shocks in the re-
spective ideal and dissipative context. This suggests that solutions of
the ideal equation 9.1 with n = 0 may be the vanishing viscosity limits
of solutions of the dissipative equation 9.1. The admissibility properties
of dissipative shocks are indeed uniform in the dissipative parameter,
which is required if one wants to take the limit of vanishing viscosity
in a meaningful way. It can be proven rigorously [48, 90] that in the
limit of vanishing viscosity the solutions of the dissipative equation 9.1
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uniformly approach the solutions of the ideal equation (n = 0). It would
seem that this behavior should always arise, but in the following Sections
we show that this is not the case.

The fact that the ideal and dissipative physical systems uniformly
approach each other warrants the use of the dissipative viscosity admis-
sibility criterion to determine or motivate the admissibility of shocks in
the ideal system, and vice versa. This means that the ideal criteria I1-14
can be justified a posteriori by the results of the viscosity admissibility
study.

9.2.2 Convex strictly hyperbolic system

(©)

Figure 9.4: Shock configurations for a 2 x 2 system. (a) Lax shock with
n + 1 converging characteristics. (b) Undercompressive shock with less
than n + 1 converging characteristics. (c¢) Overcompressive shock with
more than n + 1 converging characteristics.

Most of the results on shock admissibility described above for the
Burgers equation carry over to the case of a convex strictly hyperbolic
system of conservation laws. In this Section we do therefore not repeat
all considerations, but we limit the discussion to some aspects which are
slightly different from the scalar case.

Consider the 2 x 2 system of strictly hyperbolic conservation laws

gl v o] =0 09

with the flux functions f and g chosen such that wave speeds cannot
coincide. In the zt plane 2 families of characteristic curves exist. Fig. 9.4
shows some possible shock configurations that can arise for a 2x2 system.
For the configuration in Fig. 9.4a exactly one family of characteristics
converges into the shock, while the other family has one diverging and
one converging characteristic. This type of shock is called a Lax shock.
For a general strictly hyperbolic n x n system a Lax shock has n +
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1 converging characteristics. It is explained below that for a strictly
hyperbolic system all admissible shocks have to be of this type. The
shock in Fig. 9.4b has less than n 4 1 converging characteristics, and is
called undercompressive. The shock in Fig. 9.4c is called overcompressive
since it has more than n 4+ 1 converging characteristics.

Admissibility of shocks described by the ideal system

Some of the ideal admissibility criteria I1-14 that were described above
have to be altered slightly to make them applicable to systems of con-
servation laws.

e I2: Perturbation criterion

(a) (b)
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Figure 9.5: Perturbation of the configuration of Fig. 9.4a with a profile
which has limited spatial extent (only the u component is sketched).
The solution of the perturbed problem (a) evolves in finite time to the
solution represented in (b) with a shock which connects the original left
and right state and which has the same shock speed (stationary in this
case) as the original shock, and with a wave perturbation which travels
away from the shock. The shock is translated over a distance Ax.

Let us perturb the u and v components of the configuration of Fig.
9.4a with perturbation profiles m,(z,0) and m,(z,0) which have
bounded weight (Fig. 9.5a). The time evolution of the solution of
the perturbed problem is now governed by the two constraints that
J my(z,t)de and [ m,(z,t) de remain constant in time, as follows
from the conservation laws. The perturbed system evolves in finite
time to the solution of Fig. 9.5b with a shock which connects the
original left and right state and which has the same shock speed
(stationary in this case) as the original shock, and with a wave
perturbation traveling away from the shock. The wave can travel



208

Chapter 9. Intermediate shocks

outwards because one of the characteristics diverges away from
the shock (Fig. 9.4a). The shock is translated over a distance
Az which is determined by the weights of the perturbation. The
distance of translation Az decreases with decreasing perturbation
weight. The evolution of the perturbed system is subject to two
constraints, which can be satisfied by adjusting the shock location
(one free parameter) and by sending out a wave. The shock in
the configuration of Fig. 9.4a is stable against perturbations, and
is thus admissible. The shock in the configuration of Fig. 9.4b,
however, breaks up into a rarefaction wave upon even the smallest
perturbation. It is unstable against generic perturbations, and
thus inadmissible.

e I3: Lax criterion

For a general n x n system, the RH relations constitute n relations
between 2n + 1 variables. n + 1 variables have thus to be specified
externally, which means that n + 1 characteristics have to impinge
on a shock in order to make the shock admissible. Shocks with
n + 1 impinging characteristics are called Lax shocks. Lax shocks
are admissible, and overcompressive and undercompressive shocks
are inadmissible.

e I4: Linearized stability or evolutionarity criterion
For a general n x n system, the perturbation problem of the lin-
earized RH relations has a unique solution when n + 1 character-
istics impinge on the shock. It is concluded that only shocks with
n + 1 impinging characteristics are admissible. Those shocks are
called evolutionary.

Admissibility of shocks described by the dissipative system

For given left and right states, dissipative shocks are admissible when
traveling wave solutions exist which connect the two states. The shock
structure equations — the systems version of Eq. 9.4 — now mathemat-
ically describe a higher order autonomous system, which relates state
variables and their spatial derivatives. This autonomous system can be
analyzed using the theory of dynamical systems [113]. The fixed points
of the autonomous system satisfy the RH relations. For a convex strictly
hyperbolic system, two fixed points generally exist for given shock speed
and flux constants in Eq. 3.73. One fixed point is an unstable node, and
the other one is of saddle type. There thus exists a unique viscous pro-
file connecting the two fixed points. This profile is structurally stable.
Configurations like in Fig. 9.4b do not have a viscous profile and are not
admissible, while configurations like in Fig. 9.4a do have a viscous profile
and are admissible.



9.2 Admissibility of shocks 1n model systems

209

As in Fig. 9.5 localized perturbation of the viscous shock results in a
translation of the shock over a distance Az and in the emission of a wave.
The translated shock has the same left and right states, shock speed and
shock profile as the original shock. The existence of the viscous profile
and the behavior under perturbations does not depend on the magnitude
of the dissipative coefficients, so we say that the shock profile is uniformly
stable in the dissipative parameters.

9.2.3 Non-strictly hyperbolic system

Consider the non-strictly hyperbolic system

% { Z ] +a% { au2U/22/J2rbv } o, (9.6)

with a and b positive constants. We follow the analysis of this model
problem which was presented in [103]. The characteristic speeds are
A1 = au and Ay = v. They coincide when au = v. The system is thus
non-strictly hyperbolic.

1,0

4‘%//{ \12)

Figure 9.6: Points in phase space uv that can be connected to the state
(1,1) by a discontinuity with speed zero. The constant ¢ = /1 + 4b/a.
The thick curves with arrows represent viscous profiles.
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In Fig. 9.6 we show which points in phase space uv can be connected
to the state (1,1) by a discontinuity with speed zero. The state (1,1)
and the shock speed determine the flux constants in Eq. 3.73, and this
equation then has the four solutions indicated in Fig. 9.6. We now
investigate the admissibility of ideal and dissipative shocks.

Admissibility of shocks described by the ideal system

A simple calculation of the characteristic speeds in states 1, 2, 3 and 4
of Fig. 9.6 shows that according to the Lax and evolutionarity criteria
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(I3 and 14), shocks 1-2, 1-3, 2-4 and 3-4 are admissible because they
have n + 1 = 3 converging characteristics. Shock 1-4, however, has 4
incoming characteristics, and is thus overcompressive and inadmissible!
Shocks 2-3 and 3-2 are undercompressive.

(a) (b)
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Figure 9.7: A localized perturbation of an ideal 1-4 overcompressive
shock makes the shock split into two shocks of 1-3 and 3-4 (or 1-2 and
2—4) types with the same speed.

1-4 shocks are indeed unstable against generic perturbations (crite-
rion 12). Fig. 9.7 sketches how a localized perturbation of a 1-4 over-
compressive shock makes the shock split into two shocks of 1-3 and
3-4 (or 1-2 and 2-4) types. The time evolution of the solution of the
perturbed problem is again governed by the two conservation constraints
that [ my(z,t)dz and [ m,(z,t) dz remain constant in time. In the case
of an overcompressive shock, a wave cannot be sent out from the shock
because all the characteristics converge into the shock! The two con-
straints can also not be satisfied by adjusting the free parameter which
describes the shock location, because this is only one free parameter.
It follows from detailed analysis of the time evolution [103] or from nu-
merical simulation that the shock necessarily has to break up. The two
shocks still connect the original left state with the original right state,
and have the same speed as the original overcompressive 1-4 shock. The
distance of separation between the two shocks decreases with decreasing
perturbation weight.

Like the non-evolutionary undercompressive shock of Fig. 9.1a, 1-4
shocks are inadmissible according to the evolutionarity criterion, but the
behavior of these two types of shocks upon perturbation is quite differ-
ent. The shock of Fig. 9.1a degenerates completely upon the smallest
perturbation and the resulting flow is not in any way close to the un-
perturbed flow for large times. The 1-4 shock also ceases to exist upon
a generic perturbation, but the flow after perturbation remains close to
the unperturbed flow for all times. In some flow problems 1-2 and 24
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(and also 1-3 and 3-4) shocks coincide and may then be considered as
a single 1-4 shock. In this sense 1-4 shocks are admissible in ideal flows
described by system 9.6.

Admissibility of shocks described by the dissipative system

State 1 in Fig. 9.6 is an unstable node, 4 is a stable node, and 2 and 3 are
saddles. Shocks 1-2, 1-3, 2—4 and 3—4 have unique viscous profiles and
are thus admissible. Shock 1-4 has a one-parameter family of viscous
profiles, and is thus admissible too.

Localized perturbation of a viscous 1-4 shock does notresult in break-
up of the shock in two separate shocks! Again, translation of the shock
can only account for one constraint, and the other constraint cannot be
satisfied by sending out a wave because the shock is overcompressive.
However, the one-parameter family of viscous profiles provides another
free parameter. Upon perturbation, the shock is translated and the vis-
cous profile jumps to a different member of the one-parameter family,
such that the two constraints are met. 1-4 shocks are thus admissible
solutions of the dissipative system. The existence of the viscous profile
and the behavior under perturbations do not depend on the magnitude of
the dissipative coefficients, so we say that the shock profile is uniformly
stable in the dissipative parameters. There seems to be a contradic-
tion between the fact that 1-4 shocks are non-evolutionary in the ideal
system, but have viscous profiles in the dissipative system. This contra-
diction is partially resolved by noting that 1-4 shocks can arise in ideal
flows as the limit of coinciding 1-2 and 24 (or 1-3 and 3-4) shocks.

9.2.4 Rotationally invariant non-strictly hyperbolic
system

Consider the non-strictly hyperbolic system

)2l e

We follow the analysis of this model problem which was presented in [102]
and [48]. The characteristic speeds are A\; = u®+v? and Ay = 3 (u® +v?),
which describe waves in the angular and radial directions in phase space
respectively (see Fig. 9.10). The characteristic speeds coincide when
u = v = 0. The system is thus non-strictly hyperbolic. We can consider
the restricted system obtained by setting v = 0. This restricted system
has the non-convex flux function f(u) = u® which is of the type discussed
in Sec. 3.3.5. The flux function F of system 9.7 satisfies a peculiar kind
of rotational invariance [48], namely that

F(U) = ¢(|[U]") U, (9-8)
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with ¢ the identity function in this case.

v
(-3/4.0)
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(-1/40)

Figure 9.8: Points in phase space uv that can be connected to the state
(1,0) by a discontinuity with speed 13/16. The thick curves with arrows
represent viscous profiles.

In Fig. 9.8 we show which points in phase space uv can be connected
to the state (1,0) by a discontinuity with speed 13/16. The state (1,0)
and the shock speed determine the flux constants in Eq. 3.73, and this
equation then has the three solutions indicated in Fig. 9.8. We now
investigate the admissibility of ideal and dissipative shocks.

Admissibility of shocks described by the ideal system

A simple calculation of the characteristic speeds in states 1, 2 and 3 of
Fig. 9.8 shows that shock 3-1 is overcompressive (and 1-3 thus under-
compressive), 3-2 is a Lax shock and 2-1 is Lax too. According to the
Lax and evolutionarity criteria (I3 and I4), shocks 3-2 and 2-1 are ad-
missible because they have n + 1 = 3 converging characteristics. Shock
3-1 has 4 incoming characteristics and is thus inadmissible!

3-1 shocks are indeed unstable against generic perturbations (crite-
rion 12). Fig. 9.9 sketches how a localized perturbation of a 3-1 over-
compressive shock makes the shock split into two shocks. This can be
understood by a reasoning on conservative constraints and converging
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Figure 9.9: A localized perturbation of an ideal 3-1 overcompressive
shock makes the shock split into two shocks which propagate away from
the location of the original shock.

characteristics similar to the reasoning presented in Sec. 9.2.3. A crucial
difference with the case of Sec. 9.2.3, however, is that the two shocks do
not propagate with the same speed as the original unperturbed shock.
This behavior, like most other peculiar properties of system 9.7 described
in this Section, is generic for non-strictly hyperbolic systems with a rota-
tionally invariant flux function [48]. The distance of separation between
the two shocks thus increases in time without bounds for even the small-
est perturbation.

The 3—-1 shock described by system 9.7 thus behaves similarly to the
non-evolutionary undercompressive shock of Fig. 9.1a, in the sense that
the resulting flow is not in any way close to the unperturbed flow for large
times. 3—1 shocks are thus inadmissible in ideal flows, not only according
to the evolutionarity criterion, but also according to the perturbation
criterion. 3-1 shocks cannot exist in ideal flows. This behavior is very
different from the behavior of the 1-4 shocks in the system of Sec. 9.2.3.

Remark that in the restricted system 9.7 with v = 0 ideal shock
admissibility is entirely different. The rotational mode \; disappears. 3—
1 shocks become admissible Lax shocks. 2—1 shocks remain Lax shocks,
but 3-2 and 2-3 shocks are both undercompressive (Fig. 3.17). The
presence of the rotational wave mode in the full system thus completely
destabilizes ideal 3—1 shocks, and stabilizes 3-2 shocks.

Admissibility of shocks described by the dissipative system

In Fig. 9.8 state 1 is a stable node, 3 is an unstable node, and 2 is a
saddle. Shocks 3-2 and 2-1 have unique viscous profiles and are thus
admissible. Shock 3-1 has a one-parameter family of viscous profiles,
and is thus admissible too.
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Localized perturbation of a viscous 3—1 shock does not result in break-
up of the shock in two separate shocks when the perturbation weight is
small. Upon perturbation, the shock is translated and the viscous profile
jumps to a different member of the one-parameter family, such that the
two conservation constraints are met. 3-1 shocks are thus admissible
solutions of the system 9.7 with dissipation. This conclusion seems to
be analogous to the conclusion for the 1-4 shocks described by system
9.6 as discussed in Sec. 9.2.3.

However, there are two crucial differences.

First, when the weight M, of the perturbation of v increases, the
viscous profile of the 3-1 shock approaches the 3-2-1 orbit (Fig. 9.8).
When M, is further increased, the 3—-1 shock splits up into a 3-2 and a
2-1 shock. Those shocks propagate away with speeds which are different
from the speed of the original unperturbed shock (Because of the larger
M, state 2 shifts to the left in Fig. 9.8!). The resulting flow is not in any
way close to the unperturbed flow for large times, similar to the ideal
case discussed above.

Second, the critical perturbation mass M, required for break-up of
the shock decreases with decreasing dissipation, and vanishes for vanish-
ing dissipation. This means that 3—1 shocks become less stable when the
dissipation is decreased. For the 3—1 shock the behavior under perturba-
tions does thus depend on the magnitude of the dissipative coefficients,
so we conclude that the shock profile is not uniformly stable in the dis-
sipative parameters!

3-1 shocks are admissible in the dissipative system, and inadmissi-
ble in the ideal system. This contradiction is resolved by the fact that
the dissipative 3—1 shocks become generically unstable for vanishing dis-
sipation. The dissipative system thus approaches the ideal system for
vanishing dissipation, but not in a uniform way, since 3—1 shocks are
admissible in the dissipative system and not in the ideal system.

Solution of Riemann problems

It is interesting to investigate the implications of the above described
results on shock admissibility for the solution of Riemann problems. In
Fig. 9.10 a Riemann problem with U; = (1,0) and U, = (-1,0) is
sketched in phase space. Two different solutions are proposed.

The restriction of the system to the u-axis suggests the solution which
contains a sonic shock connecting U; with U* = (—1/2,0), followed
by a rarefaction wave which connects U* with U,. This is the com-
pound shock type solution which has been discussed in Sec. 3.3.5 for a
non-convex scalar system. Another solution is a single rotational wave
(associated with the angular mode A1) which brings U; directly to U,..

Which solution is valid? The reader may anticipate from the above



9.2 Admissibility of shocks 1n model systems

265

vA

(-1/2,0)

(1,0)
>

[

Figure 9.10: Riemann problem with U; = (1,0) and U, = (—1,0). Two
different solutions are proposed (thick lines with arrows).

discussion that the answer depends on whether one considers the ideal
or the dissipative system.

In the ideal system, the compound shock solution cannot arise be-
cause the sonic shock is a 3-1 shock which is inadmissible in the ideal
system. The 3-2 rotational shock is admissible, so the solution to the
Riemann problem is the rotational shock. The Riemann problem is thus
well-posed, because the solution is unique and depends continuously on
the initial data. Indeed, consider a Riemann problem with left state
U; = (1,0) and right state U, = (—cosd,sind). The solution with a
rotational wave over angle m — § for non-vanishing § goes over smoothly
in the solution with angle 7 for vanishing 4.

It is remarkable that the solution of the Riemann problem for the
ideal system restricted to the u-axis — with the compound shock — is
very different from the Riemann problem solution for the full system.
How can a Riemann problem which is in a way ‘the same’ in the two
cases have so different solutions? The answer lies in the influence of
the rotational mode, which is present in the full system but not in the
restricted system. On one hand the rotational mode destabilizes ideal 3—
1 shocks such that compound shocks cannot arise in Riemann problem
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solutions of the full system. On the other hand the rotational mode
introduces a new wave mode which can play the role of the 3-1 shock
— which consists in changing the sign of u — in solutions of Riemann
problems for the full system.

In the dissipative system, the compound shock solution can arise be-
cause the 3—1 shock is admissible. The 3-2 rotational shock is admissible
too, but due to the symmetry of the initial condition — v = 0 in the
initial condition of the Riemann problem, and thus has to remain zero
in the Riemann problem solution, also in the profile of the viscous shock
—, the compound shock solution is obtained. This symmetry constraint
did not play in the ideal problem because the 3—2 rotational shock has
no profile in the ideal case!

The fact that Riemann problems can have a completely different so-
lution in the ideal and dissipative system has been illustrated beautifully
by Freistuehler and Pitman [48]. They perform numerical simulations of
the ideal problem using a dissipation-free numerical technique based on
the Glimm scheme, and do indeed find the solution with the rotational
wave for the Riemann problem of Fig. 9.10. Use of numerical techniques
with intrinsic numerical dissipation results in the solution with the com-
pound shock, because the numerical dissipation plays a role analogous
to a physical dissipation.

Freistuehler and Pitman [48] also analyze numerically the vanishing
viscosity limit solution of the Riemann problem of Fig. 9.10. It turns
out that in the limit of vanishing viscosity the solution of the Riemann
problem of Fig. 9.10 is the compound shock solution! How can the
vanishing viscosity limit solution be different from the solution of the
ideal problem? The reason for this is that the dissipative system does
not uniformly approach the ideal system for vanishing dissipation. We
propose the following analogy to illustrate this.

Let us first recall the concept of a uniformly convergent row of func-
tions. The row of functions {y,(z) = exp(—nz)|z € (0,+00),n =
0,1,2,...} clearly converges to the function y(z) = 0 in (0, +o0), but
it is said that the convergence is not uniform because if one wants to
approach the limit y(z) = 0 within a certain distance €, then arbitrary
large values of n are required if one moves closer to z = 0 (Fig. 9.11,
left panel). The limit function y(z) = 0 can be extended continuously
to the domain = € [0, +00) which includes the point z = 0 by defining
y(0) = 0.

In [48] the Riemann problem with left state U; = (1,0) and right
state U, = (—cosd, sin ) is investigated numerically for the two limits
of vanishing dissipation and vanishing §. For a finite value of the dissipa-
tion and 4, it is found that the solution to the Riemann problem consists
of some kind of ‘mixed solution’ with elements from both the rotational
wave and the compound shock. For a constant § and decreasing dissipa-
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Figure 9.11: Left panel: The row of functions {y,(z) = exp(—nz)|z €
(0,+00),n = 0,1,2,...} clearly converges to the function y(z) = 0 in
(0,+00) (thick), but the convergence is not uniform. Right panel: The
vanishing viscosity approach for Riemann problems does not converge
uniformly.

tion, the solution becomes more like a rotational wave, and the rotational
solution is perfectly obtained in the limit of vanishing dissipation. For
constant dissipation but decreasing d, the solution becomes more like the
compound shock solution, and the compound shock solution is perfectly
obtained in the limit of § = 0. The vanishing viscosity limits of the
Riemann problem solutions — i | 0 with é constant — do thus not con-
tain compound shocks, except for the case § = 0, for which a compound
shock solution is obtained. Remark that for vanishing dissipation the
compound shock solution becomes generically unstable because the per-
turbation weight required for destruction of the 3-1 shock vanishes [46].
The vanishing viscosity limit of the Riemann problem is not uniform, or
the vanishing viscosity approach — consisting in determining the van-
ishing viscosity limit of flow solutions — does not converge uniformly for
the system 9.7. The vanishing viscosity Riemann solution operator is not
continuous. The right panel of Fig. 9.11 draws an analogy between this
behavior and the non-uniformly converging row of functions described
above.

The non-uniform convergence of the vanishing viscosity approach for
the Riemann problems described above is related to the fact that 3—
1 shocks are stable non-uniformly in the dissipation strength. Indeed,
3-1 shocks are less stable for smaller dissipation, and become less dom-
inant in Riemann problem solutions for a given § when the dissipation
is decreased. Both these phenomena are manifestations of the fact that
the dissipative system does not uniformly approach the ideal system for
vanishing dissipation [46].

For the ideal system the Riemann problem solution for § = 0 con-
tains the rotational wave — like for non-vanishing §. The ideal Riemann
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solution operator is thus continuous, and can be interpreted as the con-
tinuous extension of the vanishing viscosity Riemann solution operator.

9.2.5 Discussion

The most important lessons to be learned from the discussion in this
Section are that for non-strictly hyperbolic systems shock admissibility
can be very different in the ideal and the dissipative case, and that
a dissipative system may not uniformly approach its associated ideal
system for vanishing dissipation.

The criterion of evolutionarity is not a good criterion for shock ad-
missibility in dissipative systems because non-evolutionary shocks can
be admissible in dissipative systems. Even in the ideal context the evo-
lutionarity criterion is not very appropriate to determine shock admis-
sibility, because it does not differentiate enough. For instance, the over-
compressive shock of Fig. 9.4c is considered inadmissible according to
the evolutionary criterion, but the behavior of this type of shock un-
der perturbations is very different for different non-strictly hyperbolic
systems. The overcompressive 3—1 shock discussed in Sec. 9.2.4 is inad-
missible under the perturbation criterion, but the 1-4 shock discussed in
Sec. 9.2.3, although non-evolutionary, can arise in ideal flows as the limit
of two coinciding admissible shocks. Evolutionarity is thus not a good
criterion to determine shock admissibility. Most authors agree with this
conclusion [173, 109], but other authors do not agree [107, 35].

Freistuehler and Pitman [48] discuss how for some non-strictly hyper-
bolic systems the non-uniform nature of the vanishing dissipation limit
has profound implications for the numerical calculation of solutions. A
clear distinction has to be made between solving the ideal system and its
associated dissipative system. For some problems the ideal and the dis-
sipative solutions are entirely different. Numerical solutions of the ideal
system are to be calculated by numerical methods which do not intro-
duce any numerical dissipation. Solutions of the dissipative system are
obtained when numerical methods are used which introduce numerical
dissipation. Stability of shocks may depend on the precise mechanism
and magnitude of the dissipation, such that the dissipative terms should
preferably be discretized explicitly. When the dissipation is decreased
there is no guarantee that the ideal solution is approached, as the van-
ishing viscosity limit may differ from the ideal solution.

The HD system is strictly hyperbolic. The associated dissipative sys-
tem — the Navier-Stokes equations — approaches the ideal system —
the Euler equations — uniformly for vanishing dissipation. Ideal HD
is thus a good approximation of dissipative HD with small dissipation.
We have to remark that this holds at least as far as shock admissibility
and Riemann problem solutions are concerned, while it may not hold



9.3 Planar VMIHD

269

in the context of turbulence. Dissipative shock admissibility criteria
can be applied directly to select admissible shock solutions of the ideal
system. This is called the entropy or vanishing viscosity approach to
determine the admissibility of ideal shocks. Numerical simulations with
codes which introduce numerical dissipation produce solutions which ap-
proach solutions of the ideal system when the (numerical) dissipation is
decreased.

In contrast, the MHD system is non-strictly hyperbolic and many of
the desirable properties that were sketched above for the HD system do
not hold. This is discussed in more detail in the following sections.

9.3 Planar MHD

9.3.1 Admissibility of shocks in planar MHD

The 6 x 6 system of planar MHD (Eq. 3.12 with v, = B, = 0) in one
dimension has six characteristic waves: two fast waves which propagate
with speeds v, % c¢,, two slow waves with propagation speeds v, =+ c,y,
and entropy and divergence waves which propagate with speed v, (Eq.
3.35). The planar MHD system is non-strictly hyperbolic, because in
the direction perpendicular to the magnetic field the slow wave speed
cse vanishes, such that the slow characteristic speeds v, £ c¢s, coincide
with the speed v, of the entropy and divergence waves. The Alfvén
waves, which are rotational waves of the type discussed in Sec. 9.2.4, are
not present in planar MHD. The planar MHD system is not rotationally
invariant.

Shock admissibility in the planar MHD system is analogous to the
case of the non-rotationally invariant and non-strictly hyperbolic system
discussed in Sec. 9.2.3. In addition the fast and slow characteristic fields
are non-convex, such that compound shocks can occur (see Sec. 3.3.5).
The discussion in Sec. 3.3 showed that for given shock speed s and flux
constant vector F.,,s; the RH relation 3.73 has up to four solutions
which can be connected by shocks. Fig. 3.9b shows an example. The
four states are labeled 1, 2, 3 and 4 in order of increasing entropy (Fig.
3.7).

Let us first consider the ideal system. Shocks which do not increase
the entropy are undercompressive and thus non-evolutionary. Shocks
1-2, 1-3, 2-4 and 34 are evolutionary and are thus admissible. This
means that 1-3 and 2—4 intermediate shocks are admissible in planar
ideal MHD. The 1-4 shock is overcompressive, and the 2-3 shock is
undercompressive. According to the evolutionarity criterion they thus
both are inadmissible. However, analogous to the case of the 1-4 shock
in Sec. 9.2.3, the 1-4 shock can arise in ideal MHD flows when 1-2 and
2-4 (or 1-3 and 3-4) shocks coincide.
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For the dissipative system, the 1-2, 1-3, 24 and 34 shocks have a
unique viscous profile. The 1-4 shock has a 1-parameter family of viscous
profiles. Because of the non-convexity of the flux function, compound
shocks arise. The 2—3 shock does not have a viscous profile. When the
flow is such that a 2-3 shock would be required, a compound shock with
a 1=2-3 or 2-3=4 sonic shock preceded or followed by a rarefaction wave
is obtained instead [109].

Myong and Roe [109, 110] show that with these admissible waves
all planar MHD Riemann problems have a unique solution. The planar
Riemann problem is thus well-posed.

The admissibility of shocks is thus similar in the ideal and the dissi-
pative cases. The only problem seems to be the 1-4 shock which has a
viscous profile which is stable uniformly in the dissipation, but which is
not evolutionary. However, this contradiction can partially be resolved
by realizing that the 1-4 shock can be found in ideal flows when 1-2
and 2-4 (or 1-3 and 3-4) shocks coincide, and that small perturbations
split up the 1-4 shock over a distance which vanishes for vanishing per-
turbation weight. This indicates that the dissipative system uniformly
approaches the ideal system for vanishing dissipation. It can thus be
speculated that the vanishing viscosity limit of dissipative flow prob-
lems converges to the ideal solution. This would mean that in numerical
simulations the ideal solution can be approached by refining the grid
and thus reducing the numerical dissipation. Myong (private commu-
nication) indeed argues that the solution of the planar MHD Riemann
problem which was proposed in [109, 110] is valid for the ideal system
as well as for the dissipative system.

9.3.2 Shock types in 2D magnetically dominated bow
shock flows

All shocks of type 1-2, 1-3, 2-4, 3-4 and 1-4 are admissible in planar
MHD. Compound shocks with 1=2-3 and 2-3=4 intermediate shocks can
arise in flow problems. Fast 1-2 and slow 3—4 shocks have of course been
known for a long time. All the other types of shocks have been found
recently in 1D numerical simulation results [12, 172], and the presence
of 1-3 and 1-4 shocks has been claimed in simulated time-dependent 2D
flows [146]. The planar magnetically dominated bow shock flows around
cylinders that were discussed in Chap. 6 are the first clear example of 2D
flows containing intermediate shocks. Moreover, these flows contain all
the shock types allowed in planar MHD flows, and form thus excellent
new illustrations in 2D of the theory on the admissibility of shocks in
planar MHD.

We recall from Figs. 6.7, 6.9 and 6.10 that shock segments A-B and
D-E are of 1-2 type, B-D is 1-3, E-F is 1-4, D-G-H-1 is 2-4, 2=3-4



9.3 Planar VMIHD

271

or 3—4 depending on the exact location along the shock front, and E-H
is a tangential discontinuity. Shock segment E-G is a 1=2-3=4 double
compound shock. This type of shock is required for the solution of some
planar MHD Riemann problems [110], and it is remarkable that the shock
E-G forms a double steady zy compound shock which is mathematically
completely equivalent to the double time-dependent xt compound shock
that was described in [110]. This has been discussed in detail in Sec.
6.4.3.

Falle and Komissarov [35] argue that the 1-4 shock front in the mag-
netically dominated bow shock flows breaks up at points D and E (Fig.
6.9) because the 1-4 shock is non-evolutionary. We argue that the 1-4
front does not break up because of evolutionarity reasons, but because
the intermediate 1-4 shock cannot exist for angles between the upstream
magnetic field and the shock normal which are larger than a critical an-
gle. This critical angle is 3° (Fig. 3.9¢) for the flow of Fig. 6.9. The break-
up of the 1-4 shock front has thus nothing to do with non-evolutionarity
or instability against generic perturbations, but is due to the properties
of the RH relations.

The planar magnetically dominated bow shock flows described in
Chap. 6 were obtained by simulation with a numerical scheme which
introduces numerical dissipation. Based on the discussion on vanishing
viscosity limits given above, we argue that the solution we obtain ap-
proaches the solution to the ideal problem and that the ideal solution
thus most probably has the topology of Fig. 6.7.

9.3.3 Numerical and physical instabilities

The numerical simulation results of the 2D magnetically dominated bow
shock flows presented in Chap. 6 were obtained with the Lax-Friedrichs
flux function (see Sec. 4.2.5) on moderately fine grids. The resulting
flow solutions are in a perfect steady state, and the physically consistent
interpretation given validates the numerical results. However, we have
found that various instabilities occur when we decrease the numerical
dissipation further, by considering very fine grids or by employing less
dissipative numerical flux functions, while keeping the simulation do-
main limited to the upper left quadrant. These instabilities may be of a
numerical nature, or they may be caused by physical mechanisms, some
of which may be related to the stability of shocks as discussed above.
We have found that instabilities can change the flow locally while the
global topology is conserved, and the flow can become intermittent or
quasi-periodic, instead of stationary. It is often difficult to reach definite
conclusions about the nature of instabilities in numerical results. In this
Section we leave the discussion on MHD shock stability for a while and
report on our experiences regarding these local instabilities. We attempt
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to find explanations for the observed behavior of numerical methods and
physical flows.

Failure of numerical schemes for bow shock flows
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Figure 9.12: Mach 10 hydrodynamic bow shock flow simulated using
Roe’s flux function. (a) The density contours show a deformation of the
bow shock at the nose. (b) The solution is intermittent.

It is well-known that numerical flux functions may suffer from various
types of numerical instability problems [121, 108, 91]. In this Section we
give some examples of the so-called carbuncle phenomenon, which is a
well-known failure of many flux functions. For steady state, blunt body
calculations the bow shock close to the stagnation line can be deformed,
as can be seen in Fig. 9.12a for a Mach 10 hydrodynamic bow shock
flow on a 100 x 201 grid simulated with our code using the second order
scheme and Roe’s flux function (see Sec. 4.2.5). The inflow quantities
are p =1, p =1 and v, = 11.8. Fig. 9.12b shows that the solution
is intermittent and does not reach a steady state. The carbuncle effect
appears to be more pronounced the more closely the grid is aligned to
the bow shock, and for high Mach number flows. It is sometimes argued
that this problem can be cured by applying the so-called entropy fix
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to all the characteristic waves [121], but we have found that this does
not help for high resolution simulations. The result in Fig. 9.12a is not
perfectly symmetrical, although the initial and boundary conditions are
symmetrical and this symmetry is conserved by the HD equations. This
means that our code and the grid we use is not perfectly symmetrical (as
in [121]). It is very hard to make a numerical code perfectly symmetrical,
for instance because numerical operations are not fully associative up to
the last digit on a computer. The order of computation is thus important,
and compilers may change this order and may thus introduce a-symmetry
in the process of optimizing the code.
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Figure 9.13: Mach 10 hydrodynamic bow shock flows simulated in the
upper left quadrant. Density contours and time convergence plots. (a,d)
Roe. (b,e) HLLE. (c,f) LF.

The bow shock flow simulations presented in Chap. 6 have been per-
formed on a grid restricted to the upper left quadrant and with the
symmetry explicitly imposed. The carbuncle phenomenon appears at
the stagnation line in this configuration, as can be seen in Fig. 9.13a for
simulation with the Roe flux on a 120 x 160 grid. The HLLE flux is
known to be more robust [121, 99], and does not show the carbuncle in
Fig. 9.13b, but the solution does not reach a steady state (Fig. 9.13e).
The Lax-Friedrichs scheme (Fig. 9.13c and f) performs well due to its
high and well-behaved numerical dissipation, but we are not aware of a
proof that for very high grid resolution the carbuncle phenomenon does
not appear.
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Numerical dissipation

In general numerical instabilities are more likely to occur when the nu-
merical diffusion is low or ill-behaved. Numerical diffusion is low on fine
grids or for numerical flux functions which introduce a very small amount
of diffusion for some characteristic waves. Some numerical flux functions
introduce an ill-behaved numerical dissipation in the sense that the effec-
tive dissipation coefficient can become negative. This means that those
numerical flux functions can decrease the entropy of fluid elements in nu-
merically calculated flows. It is said that those numerical flux functions
are not entropy consistent or not entropy stable [7]. The Roe scheme,
for instance, is not entropy stable [7]. It follows clearly from the dis-
cussion on shock admissibility given above that an ill-behaved numerical
dissipation may produce inadmissible shocks in numerical simulation re-
sults. For instance, for a negative value of the dissipative coefficient state
-1 in Fig. 9.3 becomes unstable, and state 1 becomes stable, such that
only shocks with diverging characteristics (Fig. 9.1a) would have viscous
profiles! Expansion shocks can be produced by the Roe scheme [121].
An entropy fix is proposed to cure these problems with the Roe scheme
[121, 90], but this fix does not cure all problems, like for instance the car-
buncle phenomenon. The LF flux function has a well-behaved numerical
dissipation, so we expect less influence from numerical instabilities. This
was a motivation for the use of the LF flux function in the simulations
presented in Chap. 6.

Decreasing the numerical dissipation in the 2D bow shock flow
simulations

We now describe what happens when we substantially decrease the nu-
merical dissipation for the bow shock flow simulation described in Sec.
6.2.

Let us first discuss simulations in which we used the Lax-Friedrichs
flux function. The stationary simulation result discussed in Sec. 6.2 was
faithfully reproduced on grids of size 60 x 60 to about 160 x 160. The so-
lution has been reproduced with a different numerical code by Keppens
et al. [83]. For finer resolutions, however, we have noticed some instabil-
ities. In Fig. 9.14 we show the result of a simulation on a 320 x 320 grid.
We have failed to obtain convergence to a perfect steady state, as can
be seen in the convergence plot Fig. 9.14c. The solution is still close to a
steady state though, and the fluctuations visible on time-animations of
the solution are very small. Comparison of Fig. 9.14a with Fig. 6.9 shows
some differences which can be interpreted as local instabilities, notably
along the stagnation line, along the tangential discontinuity E-H, and
near the intersection of the tangential discontinuity E-H with the inter-
mediate shock D-G-H-I at point H. It is well-known that shear layers
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Figure 9.14: LF simulation on a 320 x 320 grid. (a) Density contours
and magnetic field lines. (b) Magnetic field profile along the stagnation
line. (c) Convergence of the density residual.

are physically unstable and show roll-up behavior, so this may explain
the instability at the tangential discontinuity E-H. The instability on the
stagnation line may be related to the numerical instability of carbuncle
type discussed in the previous Section. The fact that the magnetic field
is discontinuous in point F, as shown in Fig. 9.14b, seems to support
this interpretation, because due to symmetry a continuous variation is
required, as in the solution shown in Fig. 6.11d.

Regardless of these local instabilities and their nature, and regard-
less of the fact that the solution has become intermittent, we see that
the flow retains the same general topology as the solution of Fig. 6.9.
All the different segments of various MHD shock types are still present,
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including the intermediate and compound shocks, so the analysis and
interpretation given in Chap. 6 remains valid for flows with lower (nu-
merical) dissipation.

0.06

0.04
>
0.02
0.00 |
-0.22 -0.17 -0.12
X
(b) ()
1.40 ‘ 0.50 ‘
1.30 025l
120+ El
S
§ 0.00
1.10 )
2
1.00 -025+¢
0.90 ! -0.50 !
-0.220 -0.205 -0.190 0 5000 10000
X iterations

Figure 9.15: Roe simulation on a 80 x 80 grid. (a) Density contours and
magnetic field lines. (b) Magnetic field profile along the stagnation line.
(c) Convergence of the density residual.

Now we discuss the simulation results obtained with the Roe scheme
and Linde’s HLLE scheme. In Fig. 9.15 we show the result of a simula-
tion on a 80 x 80 grid using Roe’s scheme. This scheme has a lower and
less well-behaved numerical dissipation than the LF scheme, and local
instabilities already show up for coarse grids. This time the instabilities
have a stronger influence on the temporal behavior of the solution. The
residual fluctuates strongly and at high levels (Fig. 9.15¢ shows a part
of the residual profile for a time interval well after the start of the sim-
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ulation, and re-normalized to start with a value of zero), and animation
of the simulation results shows strong fluctuations. Instabilities seem to
be present at similar locations as in the case of LF simulations on fine
grids. The instability at the stagnation line is probably a manifestation
of the numerical carbuncle instability. We see an additional density layer
at the ideal cylinder, which is probably related to the numerical effect
of wall heating [90], a well-known defect of the Roe solver.
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Figure 9.16: HLLE simulation on a 480 x 480 grid. (a) Density contours
and magnetic field lines. (b) Magnetic field profile along the stagnation
line. (c) Convergence of the density residual.

In Fig. 9.16 we show the result of a simulation on a 480 x 480 grid
using Linde’s HLLE scheme. This scheme is also much less dissipative
than the LF scheme, so local instabilities show up quite strongly on fine
grids. The instabilities again have a strong influence on the temporal
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behavior of the solution. The residual fluctuates at high levels, and ani-
mation of the simulation results shows strong fluctuations. Instabilities
seem to be present at similar locations as in the case of LF simulations
on fine grids. The density is very oscillatory also away from the shocks,
and this is due to the effect of entropy oscillations generated at the
shocks — which are in a way too sharp — , which are transported along
streamlines, as in Fig. 5.10a. This effect is much stronger on fine grids
and for flux functions with low dissipation, like the HLLE flux function.
The HLLE scheme seems to be remarkably robust against the carbuncle
instability at point F, as the continuity of the magnetic field profile on
the stagnation line proves. At point I, however, the solution is markedly
different from the LF solution in Fig. 6.9. Also, the 1-4 shock segment
E-F seems to become much smaller as point E migrates towards the
stagnation streamline. This effect is investigated in more detail below.
Wall heating effects seem not to be present in these HLLE simulations.

For both the Roe and the HLLE solver, the effects of the instabilities
seem to be more severe than for the LF solver. However, the flow retains
the same general topology as the LF solution of Fig. 6.9.

Stability of the 1-4 shock segment

We now look in some more detail at the behavior of the 1-4 shock seg-
ment for increasing grid resolution.
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Figure 9.17: Detailed representation of the 1-4 shock segment (density
contours) near the perpendicular point F on the stagnation line, for LF
simulations with different grid resolutions. (a) 80x 80 grid. (b) 120x 120
grid.
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Figure 9.18: Detailed representation of the 1-4 shock segment for LF
simulation on a 320 x 320 grid. (a) Density contours and field lines. (b)
Entropy contours.
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Figure 9.19: Detailed representation of the 1-4 shock segment (density
contours). (a) Roe on 80 x 80 grid. (b) HLLE on 480 x 480 grid.

Fig. 9.17 shows detailed representations of this 1-4 shock segment
for LF simulations with intermediate grid resolutions. The Figure shows
that the 1-4 shock segment seems to be well-defined in the sense that it
does not change its shape or extent when the grid is refined. However, in
the LF simulation result with fine grid of Fig. 9.18, the 1-4 shock seems
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to split up into two shocks.

Fig. 9.19 shows detailed representations of this 1-4 shock segment for
the Roe and HLLE simulations presented above. The 1-4 shock remains
intact for the Roe simulation on a 80 x 80 grid, but breaks down in the
fine grid HLLE simulation such that point E moves much closer to the
stagnation line. Close to the stagnation line, however, the 1-4 shock
seems to remain intact. We have to admit that these results do not
show much consistency. We can propose several possible explanations
for the behavior of the 1-4 segment for increasing grid resolution. In
Figs. 9.18 and 9.19b the 1-4 segment seems to split up into two shocks.
This may be interpreted as supporting Falle and Komissarov’s claim [35]
that the 1-4 shock is non-evolutionary and should split up into two evo-
lutionary shocks as the ideal MHD solution is approached by decreasing
the dissipation. However, we have argued that a 1-4 shock can exist
in ideal MHD flows. In simulations with numerical dissipation the 14
shock is stable against perturbations. Therefore we favor the following
alternative interpretation for the breakup of the 1-4 shock. Physical or
numerical instabilities, e. g. roll-up of the tangential discontinuity E-H
or occurrence of the carbuncle instability at point F, may perturb the
orientation of the 1-4 shock front EF. When in this process somewhere
along the shock front EF the angle between the upstream magnetic field
and the shock normal exceeds 3°, the shock front splits up (Fig. 3.10).
Another possible explanation for the break-up in Fig. 9.19b is that the
numerical dissipation of the HLLE scheme may not be well-behaved.
It seems that high-resolution simulations of the MHD equations with a
well-controlled small dissipation or with a code which does not introduce
any numerical dissipation [35, 48] are needed to clarify the issue of the
stability of the 1-4 front.

Comparison of the Powell technique and the projection ap-
proach

It is interesting to compare the Powell technique and the projection
approach for the 2D bow shock flows and to verify if the approach used
to control the V - B constraint (see Sec. 4.4) influences the stability of
the solution.

Fig. 9.20 shows the comparison of LF flow simulation results on a
120 x 120 grid for simulation with the Powell source term (thin) and sim-
ulation with the projection scheme (thick), for various quantities along
the stagnation streamline. First we can remark that the solutions are al-
most everywhere very close, so the two approaches both seem to produce
valid results. Only near the stagnation point the results differ apprecia-
bly — see for instance the density in Fig. 9.20a. Then the question is
which of the two results is more accurate. Fig. 9.20c shows that the
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Figure 9.20: Comparison of LF flow simulation results for simulation
with the Powell source term (thin) and the projection scheme (thick),
for various quantities along the stagnation streamline.

Powell technique produces a solution for which the Alfvénic Mach num-
ber rises above one close to the cylinder. This is of course not physical,
so the projection technique is more accurate. It is not unexpected that
the Powell technique performs not so well at stagnation points, because
the Powell technique can be interpreted as to advect V - B away with
the flow. At a stagnation point the flow velocity vanishes, so V - B can
accumulate. Fig. 9.20d shows that this is indeed the case (V - B=0
up to machine accuracy in our projection scheme approach). This ac-
cumulation of V - B leads to inaccuracies near the stagnation point, as
the Powell technique is based on the cancellation of terms proportional
to V - B on both sides of Eq. 3.12. Subtraction of two big numbers that
are almost equal then leads to a high absolute error.

The projection scheme may thus lead to more accurate results in some
cases, but still we have chosen to perform most simulations using Powell’s
technique, for several reasons. First, the Powell technique is much faster.
Second, it can easily be parallelized, whereas the projection scheme ne-
cessitates the solution of a linear system in every time step, which is
a non-local operation and thus hard to parallelize. Third, the solution
of the elliptic projection equation introduces a coupling between all the
points in the domain, and this may lead to contamination of upstream
superfast regions which in theory should not be affected. Fourth, the
projection scheme we use, like the schemes proposed in [129, 162, 161],
leads to spurious modes due to odd-even decoupling. These oscillations
are effectively damped out by the LF dissipation for the results shown
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in Fig. 9.20, but on finer grids or for less dissipative flux functions the
oscillations are much more pronounced.

9.4 Full MHD

9.4.1 Admissibility of shocks in full MHD
Shock admissibility

The 8 x 8 system of full MHD (Eq. 3.12) in one dimension has eight
characteristic waves: two fast waves which propagate with speeds v, £
Cte, two Alfvén waves with propagation speeds v, £ ca,, two slow waves
with propagation speeds v, £ c¢q,, and entropy and divergence waves
which propagate with speed v, (Eq. 3.35).

The full MHD system is non-strictly hyperbolic. In the direction
parallel to the magnetic field the Alfvén speed ca, coincides with cg,
when c4, > ¢, or with ¢z when ¢4, < ¢. In each of these cases there
are two degeneracies in which two characteristic speeds coincide. When
additionally cq, = c, there are two degeneracies in which three charac-
teristic speeds coincide, since ¢y, = cap = ¢s.. In the direction perpen-
dicular to the magnetic field ¢4, and ¢y, vanish, such that the Alfvén
and slow characteristic speeds coincide with the speed v, of the entropy
and divergence waves, implying a six-fold degeneracy.

The Alfvén waves are rotational waves of the type discussed in Sec.
9.2.4, and the full MHD system is rotationally invariant in the sense
discussed in Sec. 9.2.4 [42, 46]. The fast and slow characteristic fields
are non-convex, such that compound shocks can occur (see Sec. 3.3.5).

Some aspects of shock admissibility in the full MHD system are anal-
ogous to the case of the rotationally invariant and non-strictly hyper-
bolic system discussed in Sec. 9.2.4, but due to the many possibilities of
multiple-fold degeneracies, the overall behavior is quite more complex.

Like in the planar case, for given shock speed s and flux constant
vector F.,s: the RH relation 3.73 has up to four solutions which can be
connected by shocks, labeled 1, 2, 3 and 4 in order of increasing entropy
(Fig. 3.7). The shock admissibility in the full MHD system is, however,
entirely different from the admissibility in the planar system, because
rotational Alfvén waves exist which destabilize intermediate shocks.

Let us first consider the ideal system. Shocks which do not increase
the entropy are undercompressive and thus non-evolutionary. Fast 1-2
shocks and slow 3-4 shocks are evolutionary and are thus admissible. All
intermediate shocks (1-3, 1-4, 2-3 and 2-4) are overcompressive [87, 35].
According to the evolutionarity criterion they are inadmissible.

For the dissipative system, the dissipative parameters are the electric
resistivity 7, the thermal conduction x, and two coefficients of viscosity
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w and v [46]. Fast 1-2 shocks and slow 3—4 shocks have unique viscous
profiles for all values of the dissipative parameter vector 6 =( 7, &, 4,
v). All intermediate shocks do not have viscous profiles for some range
of 4, with this range depending on the shock type and the left and right
states. All intermediate shocks do have viscous profiles for some range
of 0. This has been proven in [49], where it is shown that the profiles
are generated in a global heteroclinic bifurcation controlled by ratios of
the dissipative coefficients. Good numerical illustrations of the effect of
this bifurcation for MHD flows can be found in [173].

When profiles exist for intermediate shocks, they generally are not
unique but are members of families of profiles. As shown in Sec. 9.2.4,
this allows the overcompressive intermediate shocks to be conditionally
stable against Alfvénic perturbations which introduce magnetic field out
of the plane of coplanarity of the shock. The quantity I. = [ B.dx,
with z the direction out of the plane of coplanarity, = the direction
perpendicular to the shock front and integration over the length of the
shock profile, plays an important role in the stability of intermediate
shocks [173, 109]. For a given intermediate shock — left and right states
satisfying the RH relations — and for a given value of § for which the
shock can have viscous profiles, a shock profile can exist only if the
weight I, of B, in the profile is smaller than a certain I g”t. When the
shock is perturbed — for instance by sending in an Alfvén wave packet
— I, builds up in the shock profile, until it exceeds the critical value
and the shock splits up in other waves. The stability is non-uniform in
the magnitude of the dissipation, in the sense that the critical value I¢"#
vanishes for vanishing § with constant ¢/||d|| [46, 47]. This resolves the
contradiction between the fact that intermediate shocks are inadmissible
in the ideal system, but have viscous profiles in the dissipative system.
Dissipative MHD thus approaches ideal MHD for vanishing dissipation.
Vanishing viscosity limits are not uniform and are not unique because
the existence of intermediate shocks in solutions depends on ratios of
dissipative coefficients.

The dissipative system does thus not uniformly approach the ideal
system for vanishing dissipation. One manifestation of this is that shock
admissibility is different for the ideal and the dissipative systems. This
implies that shock admissibility criteria from the ideal system cannot
simply be used to determine admissibility of dissipative shocks — what
Falle and Komissarov [35] apparently try to do —, and vice versa, that
dissipative criteria cannot simply be used to determine admissibility of
ideal shocks — what Myong and Roe [109, 110] apparently try to do.
For strictly hyperbolic systems like the HD equations, ideal admissibil-
ity criteria can be applied to the dissipative system and vice versa. For
MHD this is not true, and it seems that much of the confusion in the
literature on the admissibility of MHD shocks stems from attempts to
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apply dissipative criteria to the ideal system [109, 110] or the other way
around [35]. It has been argued that dissipative criteria can be used to
determine admissibility of ideal shocks if one considers waves that are
non-uniformly stable in the dissipation inadmissible in the ideal system,
while considering uniformly stable waves admissible [102]. Indeed, dissi-
pative and ideal MHD do approach each other, but the non-uniformity
has to be taken into account.

Riemann problems

The non-uniformity of vanishing viscosity limits can be illustrated by
considering Riemann problems, analogous to the Riemann problem for
the rotationally invariant model problem which was discussed in Sec.
9.2.4. Fig. 9.21 shows a solution of the Riemann problem introduced
by Brio and Wu [12] obtained by our numerical code. A slow com-
pound shock arises in the solution. The 2-3=4 sonic intermediate shock
is admissible in the dissipative system, so our numerical code with nu-
merical dissipation produces a solution with the compound shock. We
have performed the simulation in full MHD, so Alfvénic perturbations
due to non-perfect symmetry of the code would destroy the shock if it
were generically unstable. Such small perturbations of B, do indeed
arise, but the shock clearly persists. In the ideal system, intermediate
shocks are not admissible. Rotational Alfvén waves destabilize interme-
diate shocks, and at the same time provide a different way of changing
the sign of the tangential magnetic field component. A rotational dis-
continuity thus takes over the role of the compound shock in the ideal
solution of the Riemann problem. Falle and Komissarov indeed produce
this ideal solution with their dissipation-free numerical code based on
the Glimm scheme [35].

It seems that the fact that numerical codes with or without numer-
ical dissipation produce different solutions to this Riemann problem is
thus satisfactorily explained by the above observations. Some authors
still seem to think that the existence of two solutions is a problem, and
claim that one of the two is the only valid solution. Falle and Komis-
sarov [35] argue that the solution with the rotational discontinuity is ‘the
only physically admissible solution to the Riemann problem’. This is of
course not true. Their claim is probably true if they were to restrict it to
the ideal MHD system (which they do not!), but in the dissipative MHD
system the solution with the compound shock is certainly admissible!
Even in the limit of vanishing dissipation — equivalent to refining the
grid in a code which employs numerical dissipation — the solution of
this problem is the compound shock solution [48]. Myong and Roe [109]
claim that intermediate shocks are ‘physical’. They argue that interme-
diate shocks are admissible in full MHD, and can thus arise in Riemann
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Figure 9.21: Riemann problem solution. The density, the pressure, the
tangential component B, of the magnetic field in the plane of copla-
narity and the component B, out of this plane are shown. The following
waves can be identified (from left to right): a fast rarefaction, a slow
compound shock (a sonic slow shock with an attached rarefaction), a
contact discontinuity, a slow shock and a fast rarefaction.

problem solutions. This claim would be true if they were to specify that
they talk about the dissipative system only (which they do not specify!).
In solutions of the ideal system intermediate shocks can probably not
arise. We can thus conclude that if controversy remains, this is mainly
due to the fact that some authors do not precisely formulate the range
of validity for their claims or, equivalently, do not specify precisely what
they mean by ‘physically admissible’. We come back to the question of
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‘physical admissibility’ in Sec. 9.4.3.

Time-dependent intermediate shocks

Due to the non-strictly hyperbolic nature of MHD, the dissipative MHD
system allows for the peculiar phenomenon of time-dependent interme-
diate shocks [173, 178, 177]. This phenomenon has no analogy in HD
flow.

In the strictly hyperbolic HD system, an initial discontinuity which
does not satisfy the RH relations — this is the initial condition of a
Riemann problem — splits up in waves which each satisfy the RH con-
ditions and move with the shock speeds dictated by the RH relations.
This is true for both ideal and dissipative HD. In dissipative HD the
shocks have unique viscous profiles.

In the dissipative MHD system, however, an initial discontinuity
which does not satisfy the RH relations splits up in waves of which
some may be compressive waves which do not satisfy the RH conditions.
In these compressive waves dissipation balances compressional steepen-
ing — characteristics converge into the wave — and they thus have a
profile of limited spatial extent. The flow is sub-Alfvénic upstream and
sub-Alfvénic downstream. These waves are called time-dependent inter-
mediate shocks. The profile of waves that do not satisfy the RH relations
necessarily undergoes a change in time. This can be seen by integrating
the conservation law over the length of the profile in the frame mov-
ing with the wave. For a wave satisfying the RH relations we find that
O([ udz)/dt = f(u,)— f(u;) = 0, while for a wave not satisfying the RH
relations the weight [w dz of the profile has to change in time according
to O(f udz)/0t = f(uy) — f(w) # 0. We propose the conjecture that
this continuous change in profile is possible in MHD because intermedi-
ate shocks have families of viscous profiles, whereas in the HD system
shocks have unique profiles and time-dependent shocks do not occur in
1D Riemann problems. In dissipative MHD, time-dependent interme-
diate shocks arise in the solution of non-coplanar Riemann problems.
They do not move with constant speed. For large times they evolve to
non-intermediate discontinuities which satisfy the RH relations.

In ideal MHD time-dependent intermediate shocks cannot occur be-
cause ideal discontinuities do not have a profile and thus necessarily have
to satisfy the RH relations! Solutions of non-coplanar Riemann problems
do not contain any intermediate shocks, but instead they contain from
the start the shocks which appear in the dissipative solution for large
times.
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9.4.2 Shock types in 3D magnetically dominated bow
shock flows

Intermediate shocks have to our best knowledge previously not been
observed in 3D MHD simulations.

The magnetically dominated bow shock flows around spheres that
were presented in Chap. 7 (e.g. Fig. 7.1) clearly show the presence of
stationary intermediate shocks of 1-3 and 2—4 types. The necessary
presence of intermediate shocks in the bow shock topology for the mag-
netically dominated parameter regime is confirmed by reasoning based
on the geometric properties of MHD shocks (Fig. 7.5b). A 1-3 shock
segment arises in the leading shock front of the flow of Fig. 7.1, and the
secondary front is of 24 type (Figs. 7.10 and 7.8).
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Figure 9.22: Bow shock simulation results in the xy plane for the param-
eters of Fig. 7.1, on a randomly perturbed 60 x 80 x 80 grid covering the
half space on the upstream side of the sphere (solid), and on a symmet-
rical 60 x 60 x 40 grid covering the upper upstream quadrant (dotted).
The two solutions agree, thus the solution containing 3D intermediate
shocks is stable against non-symmetrical grid perturbations.
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Falle and Komissarov [35] argue that intermediate shocks can some-
times ‘pollute’ full MHD flows due to artificial symmetry. One could
argue that the simulation result of Fig. 7.1 contains artificial symmetry
because we have performed the simulation only in the top left quadrant
and we explicitly impose the symmetry at the zy plane. Uniform MHD
flow around a sphere always has such a plane of symmetry, however.
This symmetry is intrinsic to the physical problem, and is thus not ar-
tificial. We have verified if the intermediate shocks remain present in
the bow shock flow solution when the symmetry at the zy plane is not
perfectly imposed. To this end we have simulated the bow shock flow
of Fig. 7.1 on a randomly perturbed grid covering the half space on the
upstream side of the sphere, and not just the upper upstream quadrant.
Fig. 9.22 shows that the solution with intermediate shocks survives when
we perturb the symmetry of the zy plane slightly by perturbing the grid.
The two solutions in Fig. 9.22 agree, thus the solution containing 3D in-
termediate shocks is stable against non-symmetrical grid perturbations.

Fig. 7.20 shows that compound shocks can arise in 3D simulations of
the full MHD system. Falle and Komissarov [35] claim that full MHD is
effectively convex and that compound shocks cannot arise in full MHD
flows. Again, there claim may be justified for the ideal MHD system,
but is clearly false in the general way they put it, because compound
shocks can arise in full MHD flows with small dissipation.

In brief, our simulation results of 3D bow shock flows show that in
physically realistic flows described by full MHD with small dissipation
intermediate shocks can exist and persist.

9.4.3 Physical admissibility of intermediate shocks
Are intermediate shocks physical?

Intermediate shocks are physical if they can be observed in plasmas
in nature. It seems justified to suppose that dissipative processes are
active in some way in all plasmas in nature. These dissipative processes
do not necessarily have to be of a collisional nature, but may be due
to microscopic particle-wave interactions and instabilities. Let us thus
assume that all physical plasmas undergo some kind of dissipation. Let
us further assume that MHD is a good description of shock phenomena
in plasmas. This is not entirely obvious, and we refer the reader back
to Sec. 2.3.1 for some thoughts on this issue. Under these assumptions
we can say that intermediate shocks are physical if they can arise in
solutions of the full MHD equations with small dissipation.

The discussion in Sec. 9.4.1 has shown that intermediate shocks are
admissible in full MHD for large ranges of the dissipative parameters.
Our 3D simulation results of bow shock flows have shown that inter-
mediate shocks can be formed and can persist in realistic MHD flows
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with small dissipation. We thus conclude that intermediate shocks are
physical.

It is probably true that intermediate shocks cannot arise in ideal
MHD flows. But this does not mean that intermediate shocks are un-
physical, because all plasma flows are presumably subject to dissipation

and ideal MHD is in some sense not a good description of small dissipa-
tion MHD.

Falle and Komissarov [35] indeed agree that intermediate shocks
‘may, perhaps, appear under some exceptional circumstances as tran-
sient phenomena’ (at which point we have to assume that they speak in
the context of dissipative MHD, although again this is not clearly spec-
ified). It then seems unjustified that they keep on calling intermediate
shocks ‘unphysical’. The reason why they still do so, is their claim that
in any physical system intermediate shocks can never exist long enough
to be observed, because existing intermediate shocks would supposedly
be destroyed by small Alfvénic perturbations. They argue that the am-
plitude of Alfvénic perturbations necessary for destroying intermediate
shocks is very small in space plasmas because the dissipation is very low.
They give the example of interplanetary intermediate shocks traveling
in the solar wind. Chao [18] claims the observation of an interplanetary
intermediate shock by the Voyager 1 spacecraft. Falle and Komissarov
[35] argue that when an intermediate shock would travel from the sun
in the direction of a satellite, Alfvénic perturbations in the solar wind
would destroy the intermediate shock before it can reach the satellite.
This may be true, but does in our opinion not mean that intermediate
shocks cannot be observed in other physical contexts.

Indeed, Falle and Komissarov [35] never consider how intermediate
shocks can be formed in space plasmas. Their reasoning is based on
physical intuition which stems from considering 1D Riemann problems.
Riemann problems are artificial in a sense, because the initial state is
given as such and has not been formed by physical processes. Once
shocks are destroyed by perturbations, there is no driving mechanism to
reform them. When a certain symmetry or coplanarity is present in a
given Riemann problem, it can always be argued that the symmetry is
arbitrarily imposed and that Riemann problems with symmetry do not
constitute generic cases [35]. The shocks arising in these symmetrical or
coplanar cases are then considered artificial too, and it is easily concluded
that these ‘exceptional’ shocks do not arise in ‘generic’ physical flows.
These interpretations are based on physical intuition stemming from
Riemann problems. In the literature shock admissibility is almost always
discussed in the context of 1D Riemann problems. This context is not
necessarily the most physically relevant. For instance, perturbation of
the left or right states of a Riemann problem implies a perturbation
with an unbounded weight I, which certainly is not the only physically
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relevant way of perturbing a shock. We think that a different and more
pertinent physical intuition is provided by considering driven problems
in multiple dimensions.

The bow shock flows we have discussed in Chaps. 6 and 7 are driven
problems in which shocks are formed by physical processes. When shocks
are destroyed by perturbations, they can possibly be reformed. The bow
shock flows possess an intrinsic symmetry due to the physical nature of
the problem. In the case of 3D flow over a sphere the uniform inflow
can be changed — for instance by rotating the magnetic field vector
around the velocity vector — such that the plane of symmetry of the
solution ceases to be a plane of symmetry, but by the physical nature of
the problem the new inflow defines a new plane of symmetry! The bow
shock flows are 2D and 3D. In 2D and 3D geometrical constraints can
arise which necessitate the occurrence of certain shocks like switch-on
shocks and intermediate shocks. For instance, the reasoning leading to
the topology of Fig. 7.5b was clearly based on such constraints. These
constraints do not arise in 1D Riemann problems.

The physical nature of driven problems in multiple dimensions is thus
entirely different from the nature of 1D Riemann problems. In contrast
to the conclusions often derived from considerations in the context of
Riemann problems, we conclude from our simulation results of driven
bow shock problems that intermediate shocks can be formed and can
persist in physically relevant flows. If they are destroyed by perturba-
tions, they can be reformed by the same process by which they were
formed initially. The symmetry or coplanarity required for this refor-
mation is intrinsic to the physical nature of realistic driven problems in
multiple dimensions. This indicates that intermediate shocks are phys-
ical and can be observed. They may even be observable as close to the
earth as in the bow shock formed in front of the earth by the solar wind
when the solar wind is magnetically dominated! The 4 CLUSTER satel-
lites, planned to be launched by mid-2000, may be able to detect a 1-3
intermediate shock segment in the earth’s bow shock under magnetically
dominated solar wind conditions.

On the relevance of ideal MHD

The discussion above raises questions about the relevance of ideal MHD
for the description of real plasmas.

In their writing Falle and Komissarov [35] seem to claim implicitly
that ideal MHD can be used to describe real plasmas because the differ-
ences between ideal and dissipative MHD are considered small and not
observable because of omni-present small perturbations.

In contrast, Wu [173] argues strongly against the use of ideal MHD
to describe real plasmas. He claims that ‘whenever a rotation of the
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magnetic field occurs, (ideal MHD) is not a good approximation to dis-
sipative MHD’. He argues that small dissipation MHD is the physically
relevant case, and that ideal MHD is not a good description of small dis-
sipation MHD. He shows that solutions to Riemann problems critically
depend on shock profiles, on the nature of the dissipation mechanism,
and on the magnitude of the dissipative parameters. Ideal MHD can
clearly not describe these aspects of small dissipation MHD flows. Wu
even seems to imply that ideal MHD is not a valid or consistent theory.
He argues that the ideal Riemann problem is not well-posed, because a
given Riemann problem can have many different solutions.

Freistuehler [45] states that the fact that intermediate shocks are
not admissible in ideal MHD while they can be admissible in dissipative
MHD, ‘shows severe limitations of ideal MHD in its role as a model
of small dissipation MHD. On the other hand, these limitations are
non-uniform themselves and they will not make ideal MHD completely
useless for physical interpretation whenever discontinuities are present.
Certainly, they do not preclude mathematical self-consistency of ideal
MHD.’ Freistuehler argues that ‘ideal MHD has a self-consistent theory
in which intermediate shocks do not occur’ [46], although he does not
prove this. The objection of Wu against ideal MHD, namely that ideal
MHD is ill-posed because Riemann problems can have multiple solu-
tions, is neutralized by arguing that of these many solutions only the
one without intermediate shocks is admissible in ideal MHD.

The picture sketched by Freistuehler seems the most attractive. Ideal
MHD is well-posed and has a self-consistent solution theory. Ideal and
dissipative MHD do approach each other for small dissipation, so ideal
MHD can describe flows with small dissipation up to a certain extent.
However, they do not uniformly approach each other. For instance,
intermediate shocks can exist in dissipative MHD, but not in ideal MHD.
Therefore detailed description of some phenomena in real (dissipative)
plasmas requires dissipative MHD with precise control of the mechanism
and magnitude of the dissipation.

On the relevance of shock-capturing numerical techniques for
non-strictly hyperbolic systems

Freistuehler’s [48] and Wu’s [173] work implies that in numerical sim-
ulations dissipation mechanisms and magnitudes have to be specified
precisely and that shock profiles have to be resolved in order to be able
to properly describe some shock phenomena in real MHD plasmas with
dissipation.

Such a numerical approach is entirely opposite to the approach gener-
ally followed for the simulation of flows with shocks described by strictly
hyperbolic systems like the HD equations. Indeed, in modern high-
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resolution shock capturing codes [90] one discretizes the ideal equations,
and one aims at minimizing the numerical dissipation in order to ap-
proach as closely as possible the dissipation in the physical system, which
is often much lower than the attainable minimum numerical dissipation.
Shock profiles are typically not resolved, but one aims at reducing the
shock width to a minimal number of computational cells. Can these
shock-capturing numerical techniques be used for the simulation of flows
with shocks described by non-strictly hyperbolic systems?

It would obviously be better to discretize the dissipative terms and
to resolve shock profiles. However, this approach requires much larger
computer resources. For some problems, like the study of the detailed
interaction of an Alfvén wave with an intermediate shock, this may be
required, but for other problems less computationally intensive methods
may suffice. When intermediate shocks do not arise — in pressure-
dominated flows with high upstream plasma g for instance —, shock-
capturing methods can safely be used. When intermediate shocks arise
shock-capturing methods may still produce relevant results in the follow-
ing sense. First of all it seems essential that the numerical dissipation
is well-behaved. This is generally required for any numerical method
and any flow problem, but seems extremely important for the stability
of intermediate shocks. The topology of flow solutions depends on the
existence of intermediate shocks, which in turn depends on the values
of the dissipative parameters. The existence of intermediate shocks is
controlled by bifurcation. For large ranges of the dissipative parame-
ters the existence properties of intermediate shocks do not change. This
means that flow solutions of a given problem come in classes with the
same topology for large ranges of the dissipative parameters. A flow so-
lution obtained by a shock-capturing code with well-behaved numerical
dissipation can thus be expected to be generic for large ranges of the dis-
sipative parameters. Such a solution is presumably physically relevant,
especially in the case of steady problems without dynamical perturba-
tions. When perturbations and small-time behavior are important in
the problem, however, the dissipation mechanism should be specified
and shock profiles should be resolved. It has to be admitted that dissi-
pation mechanisms and magnitudes are often not well known for space
plasmas or cannot be simulated because the numerical dissipation neces-
sary for stability is much larger. In such cases the use of shock-capturing
codes with a well-behaved numerical dissipation may be justified.

Vanishing viscosity limit and ideal solution for the 3D magnet-
ically dominated bow shock flows

The 3D simulations of magnetically dominated bow shock flows that
were described in Chaps. 7 and 8 were performed with a shock-capturing
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numerical code. They are solutions of the MHD equations with a certain
unspecified (numerical) dissipation. We did not observe a change in flow
solution when we varied grid sizes. We expect that the topology obtained
has some general validity for a large range of the dissipative parameters.
This should be verified by repeating the calculations for various sets
of dissipative parameters with a code which discretizes the dissipative
terms and resolves shock profiles.

It is an interesting question what the vanishing viscosity limit solution
of these magnetically dominated bow shock flows (e.g. Fig. 7.1) would
be. This could be investigated by refining the grid in simulations with
a shock-capturing code. We anticipate that in the symmetry plane (zy)
the topology would not change, because the reasoning which lead to
the topology of Fig. 7.5b and to the break-up of the 1-3 shock at a
certain critical angle is independent from the dissipation. The extent of
the secondary shock out of the xy plane could possibly depend on the
magnitude of the dissipation, but most probably it is also determined
by geometrical constraints which do not depend on dissipation. The
topology of Fig. 7.1 may thus be the topology of the vanishing viscosity
solution.

Another interesting question is what the ideal solution to this flow
problem would be. The ideal solution would presumably not contain
intermediate shocks [46]. The 1-3 shock segment in the topology of Fig.
7.5b would presumably break up in a fast 1-2 shock followed by other
waves. A 3D code without numerical dissipation would be required to
investigate this. Numerical investigation of this problem seems to be a
daunting task.

We may not exclude the following possibility, however. The conclu-
sion that intermediate shocks are inadmissible in ideal MHD was reached
based on stability study in one spatial dimension. The ideal MHD sys-
tem is strongly degenerate as is for instance clear from the fact that wave
speeds can coincide in multiple ways. It is possible that some of the de-
generacies are lifted in 2D or 3D and that intermediate shocks would
turn out to be admissible in ideal MHD in 2D and 3D. If so, then the
topology of Fig. 7.1 may be the topology of the ideal flow solution. The
reasoning leading to the topology of Fig. 7.5b is indeed convincing, and
it seems not immediately clear why it should not be valid for ideal MHD.
The geometrical properties of MHD shocks seem to require the presence
of 1-3 intermediate shocks on the leading shock front of a 3D bow shock
flow for magnetically dominated upstream parameters, and this could be
so also in the ideal MHD case. Study of shock stability beyond the 1D
approach has only briefly been touched upon in the literature [105]. The
theoretical study of shock stability in multiple dimensions has recently
been begun [184].
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9.5 Conclusion

We have shown how the planar 2D magnetically dominated bow shock
flows around cylinders that were discussed in Chap. 6 form excellent
illustrations in 2D of the theory on the admissibility of shocks in planar
MHD. The 3D magnetically dominated bow shock flows around spheres
that were discussed in Chap. 7 were shown to be excellent illustrations in
3D of the theory on the admissibility of shocks in full MHD. Intermediate
shocks had been found previously in 1D and in some 2D simulation
results, but the bow shock flows described in Chaps. 6 and 7 are the
first clear illustrations in 2D and 3D of the whole variety of intermediate
shock phenomena that can arise in MHD flows.

Some authors argue that intermediate shocks cannot be observed in
physical systems [107, 35]. Our simulation results of driven bow shock
flow problems indicate that intermediate shocks can be formed and can
persist in physically relevant flows with small dissipation. Intermediate
shocks should thus be observable in physical plasmas.



