Chapter 7

Magnetically dominated
MHD bow shock flows:
three-dimensional flow
over a sphere

In this Chapter we present numerical simulation results of 3D MHD bow
shock flows around perfectly conducting rigid spheres.

Fig. 7.1 shows a 3D visualization of a bow shock flow around a sphere
with magnetically dominated uniform upstream flow (switch-on shocks
occur). In the 3D flow magnetic field lines can slip over the sphere, so
we are not restricted to field-aligned flow like in the 2D case, but we
can consider upstream flows with an angle 8,5 between the magnetic
field and the velocity. In the flow of Fig. 7.1 the angle 8,5 = 5°. The
upstream magnetic field is aligned with the z-axis. The zy plane is
the plane going through the center of the sphere to which the upstream
magnetic field and velocity vectors are parallel. The xy plane is a plane
of top-bottom symmetry. Shaded density contours and magnetic field
lines are shown in the zy plane, and density contours are plotted in
two additional grid planes. Fig. 7.1 shows that a complex topology
involving two consecutive shock fronts is obtained for this magnetically
dominated bow shock flow. This topology is very different from the
traditional single-front topology known from hydrodynamic bow shock
flows (Fig. 2.3). The magnetically dominated flow of Fig. 7.1 shows a
slightly dimpled leading shock front and a secondary shock front which is
attached to the leading front and which extends well out of the zy plane.
The magnetic field lines are refracted strongly at the secondary shock,
which indicates that this shock is of the slow or intermediate type.
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Figure 7.1: Magnetically dominated 3D bow shock flow around a sphere
with inflow 8 = 0.4, My, = 1.49, and 6,5 = 5°. Density contours
and magnetic field lines are shown in the xy plane, which is a plane of
symmetry parallel to the upstream magnetic field and velocity vectors
and going through the center of the sphere. Density contours are also
shown in two additional planes. In the upstream flow the magnetic field
is aligned to the z-axis. The leading shock front is clearly followed by a
secondary shock front, which is attached to the leading front, and which
extends well out of the xy plane (40 x 80 x 40 grid).

The numerical simulation results to be presented in this Chapter
show that there exist two basic topologies for 3D MHD bow shock flows.
For pressure-dominated upstream flows a single-front topology is ob-
tained which is the same as the well-known topology of hydrodynamic
bow shock flows. For magnetically dominated upstream flows, for which
switch-on shocks occur, we find the complex bow shock topology of Fig.
7.1. This magnetically dominated bow shock topology was previously
unknown.
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3D MHD computations are numerically challenging and they push
computer hardware performance to its limit. Therefore the 3D simula-
tion results presented in this Chapter are less exhaustive than the 2D
results presented in the previous Chapter. The 3D simulations have a
rather low spatial resolution and only a limited set of parameter val-
ues has been investigated. Nevertheless, the simulation results reveal a
new MHD bow shock topology which arises for all simulated bow shock
flows for which the upstream flow is magnetically dominated (switch-on
shocks occur), while for pressure-dominated flows the traditional single-
front topology is obtained. It is confirmed by theoretical reasoning in
terms of the geometrical properties of intermediate and switch-on shocks
that two different 3D bow shock topologies have to exist for the mag-
netically dominated and the pressure-dominated regimes.

The present Chapter investigates the complex geometrical and topo-
logical phenomenology of 3D MHD bow shocks for magnetically dom-
inated upstream parameters, in the abstract setting of stationary bow
shock flows around perfectly conducting spheres. In the next Chapter
we investigate observational evidence for the occurrence of such complex
bow shock phenomena in space physics plasmas.

This Chapter is organized as follows. In Sec. 7.1 we present numeri-
cal simulation results which show that magnetically dominated 3D MHD
bow shock flows exhibit a complex new topology. In Sec. 7.2 the spe-
cial case of axi-symmetrical 3D bow shock flow over a sphere with the
magnetic field aligned to the flow is considered. The stability of the
symmetrical solution is discussed. In Sec. 7.3 the topology of the 3D
magnetically dominated bow shock flows is explained in terms of the
properties of MHD shocks. Sec. 7.4 treats transient wave phenomena
which occur in the time-dependent evolution towards steady bow shock
flows in 2D and 3D. We conclude briefly in Sec. 7.5.

7.1 3D bow shock flow over a sphere

7.1.1 Set-up of the simulations

In this Section we present numerical simulation results of 3D MHD bow
shock flows over a sphere. We use the configuration of the simulation in
Fig. 7.1. Fig. 7.2 shows the grid used for the 3D simulations. The 3D
simulation code employs Cartesian zyz coordinates, but for convenience
we also introduce a spherical 8¢ coordinate system in Fig. 7.2. We place
the origin O of the xyz coordinate system in the center of the sphere.
The zy plane is a horizontal plane through the center of the sphere, and
the zz plane is a vertical plane through the center of the sphere. In our
simulations a uniform flow falls in from the left in Fig. 7.2. Generally
we take the inflow magnetic field parallel to the z-axis. We align the
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(a) xy plane (¢=0°) (b) xz plane (6=0")
y z

Figure 7.2: Finite volume grid used for the 3D simulations. (a) Top
view on the horizontal xy plane through the center of the sphere, which
is aligned with the inflow velocity and magnetic field vectors. (b) Side
view on the vertical xz plane through the center of the sphere.

coordinate system such that v, = 0 and B, = 0 in the inflow. The zy
plane through the sphere center is parallel to the incoming velocity and
magnetic field vectors, and is thus a plane of symmetry. This symmetry
allows us to restrict the simulation domain to the half-space above the
zy plane. We are interested in the bow shock flow in front of the sphere,
so we further restrict the simulation domain to the quadrant bordered
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by the zy and yz planes. For a given point P in the simulation domain, r
is the distance from P to the origin O. The angle 6 is the angle between
the line PO and the zz plane. The angle ¢ is the angle between the
plane defined by point P and the y-axis, and the zy plane. Surfaces of
constant ¢ are planes which contain the y-axis.

Fig. 7.2 shows that the simulations are performed on a stretched
polar-like elliptic grid. Fig. 7.2a shows the grid in the horizontal zy
plane. The y-axis is a singular axis in the finite volume grid, because one
side plane of the finite volume hexahedrals would degenerate into a line
on the y-axis. The cell volumes would become very small, and the CFL
time step condition would become too restrictive. Therefore we limit our
simulations to a domain 6 € [-90° + «,90° — a] and ¢ € [0°,90° — a],
with a typical value of a = 9° for the constant. The simulation of Fig.
7.1 was performed on a 40 x 80 x 40 grid, with 40 computational cells in
the radial direction r, 80 cells in the angular direction 6, and 40 cells in
the angular direction ¢. The grid resolution is increased near interesting
features of the flow by accumulating or clustering grid points. This grid
accumulation is done in a dimension by dimension way.

We impose ideal wall boundary conditions at the zy plane, which
is a plane of symmetry. The ¢ = 90° — «a plane satisfies free outflow
boundary conditions, and the # = +(90° — «) surfaces are free outflow
boundaries as well. The outer boundary surface in the radial direction,
of ellipsoid shape, is a free inflow boundary. The spherical inner radial
boundary is the perfectly conducting sphere.

The problem of uniform MHD flow over a sphere has three free pa-
rameters. Two free parameters parametrize the scales (Sec. 3.1.3). We
choose the inflow plasma 8 and Alfvénic Mach number My, along the
magnetic field. The third parameter is the upstream angle 6,5 between
the magnetic field and the velocity. When this angle is non-vanishing,
the problem is intrinsically 3D. The corresponding hydrodynamic prob-
lem of flow over a sphere has only one free parameter, for instance the
Mach number M, and is essentially 2D because the solution is always
axi-symmetric. The general problem of ideal MHD flow around a sphere
has only very partially been explored in the literature. Only limited sets
of parameter values have been considered, see e.g. [174, 144].

7.1.2 Pressure-dominated 3D bow shock flows

Fig. 7.3 shows the stationary simulation result for a bow shock flow with
inflow parameters p = 1, p = 0.2, B = 1 and v = 4, obtained on a
30 x 60 x 30 grid with the second order LF scheme (Sec. 4.2.5). We
align the inflow fields with the xy plane, and the magnetic field with the
z-axis. The angle between the velocity and magnetic field is 68,5 = 5°,
such that the velocity has a small positive y-component. The plasma
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Figure 7.3: Pressure-dominated 3D bow shock flow. (a) Density contours
in the xy plane. (b) Density contours (thin solid) with streamlines (thick
solid) and magnetic field lines (thin solid) in the xy plane. The two
thick dots immediately in front of the sphere indicate the location of the
velocity and magnetic field stagnation points (30 x 60 x 30 grid).

B = 0.4, and the Alfvénic Mach number along the magnetic field lines
M4,=3.98. Fig. 6.3a shows that switch-on shocks cannot arise for these
parameters. The upstream flow is thus pressure-dominated.

Fig. 7.3a shows density contours in the zy plane. The bow shock
solution has the traditional single-front concave-inward geometry. Fig.
7.3b shows a detailed representation of the solution near the sphere.
Magnetic field lines (thin solid) come in horizontally from the left, and
the incoming streamlines (thick solid) make a small angle with the mag-
netic field lines. Downstream of the bow shock, however, this angle is
quite large at places.

It is interesting to study the location of the stagnation point in this
flow. In a field-aligned flow, there is a single point where both the veloc-
ity and magnetic field strengths vanish. When the magnetic field is not
aligned to the flow, points of vanishing magnetic field and velocity still
exist, but those two points do generally not coincide anymore, such that
there is a velocity stagnation point which is different from the magnetic
stagnation point. Indeed, in the 3D bow shock flows under consider-
ation, the streamlines and field lines which lie in the zy plane in the
upstream part of the flow remain in this plane also in the downstream
flow because of symmetry, such that the z components of the velocity
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and the magnetic field vanish everywhere in the zy plane. In the xy
plane the fluid finds its way around the sphere using the two sides (top
and bottom in Fig. 7.3b), such that there necessarily is a point on the
sphere boundary in the zy plane where the velocity vanishes. This veloc-
ity stagnation point is indicated by the lower one of the two thick dots
in Fig. 7.3b immediately in front of the sphere. A similar reasoning can
be applied to the magnetic field, resulting in the existence of a magnetic
stagnation point, which is indicated by the upper thick dot in Fig. 7.3b.
The simulation results thus show that the two stagnation points do not
coincide.

7.1.3 Magnetically dominated 3D bow shock flows
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Figure 7.4: Magnetically dominated 3D bow shock flows (switch-on
shocks occur). (a) Density contours (thin solid) with streamlines (thick
solid) and magnetic field lines (thin solid) in the xy plane for 6,5 = 5°.
This is the flow of Fig. 7.1. (b) Convergence of the density residual to-
wards a steady state. (c) Bow shock flow for 8,5 = —5° (60 x 60 x 40

grid).

We now consider bow shock flows with magnetically dominated up-
stream conditions, for which switch-on shocks occur. Fig. 7.4a shows the
stationary simulation result for a bow shock flow with inflow parameters
like for the flow of Fig. 7.3, except that we decrease the inflow velocity
to v = 1.5. The simulations were performed on a 60 x 60 x 40 grid
with the second order LF scheme. With plasma 8 = 0.4 and Alfvénic
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Mach number along the magnetic field lines M 4,=1.49, Fig. 6.3a shows
that switch-on shocks can exist, and the upstream flow is magnetically
dominated. A 3D visualization of this flow was given in Fig. 7.1.

Fig. 7.4a shows that the geometry and topology of the magnetically
dominated 3D bow shock flow is quite different from the topology of the
pressure-dominated flow in Fig. 7.3. The shock front contains a slight
dimple, and the leading front is followed by a secondary shock front. Fig.
7.4b shows that the simulation result converges to a perfect steady state.
Fig. 7.4c shows that when the sign of the angle between the velocity and
the magnetic field is changed (6,5 = —5°), the solution has the same
topology but now with the secondary shock stretching out in the bottom
part of the flow.

Figure 7.5: (a) The shock front cannot entirely be of the 1-2 fast type
in the neighborhood of a perpendicular point with a 1-2=3 switch-on
shock. (b) A complex shock topology is necessary to channel the flow.
Shock segment AB is of 1-2 fast type, BD is 1-3 intermediate, DE is 1-2
fast, and DG is 2—4 intermediate, evolving into 2=3—-4 switch-off and 3—4
slow along the front. This shock topology is obtained in the numerical
simulations of magnetically dominated 3D bow shock flows.

We now investigate the topology of the magnetically dominated flow
of Fig. 7.4c in the zy plane. Clearly only one perpendicular point is
present in the xy plane, and the shock is a 1-2=3 switch-on shock at
this point. The reasoning presented in Sec. 6.1 showed that for this case
the topology represented in Fig. 6.4b (repeated in Fig. 7.5b) is needed
to channel the flow. And indeed, inspection of the shock shapes in the
flow of Fig. 7.4c indicates that we find exactly this topology! This is
confirmed in the following paragraphs by identification of the types of
all the shock segments in the simulation result. The shock segment
above the 1-2=3 switch-on shock can be of 1-2 type, but the segment
below the switch-on shock cannot be of 1-2 type (Fig. 7.5a). Instead,
this shock segment has to be of 1-3 type. The curved 1-3 intermediate
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shock segment BD can only have a limited extent, however, because for
increasing angle between the magnetic field and the shock normal, the
1-3 shock first becomes a 1-3=4 shock and then ceases to exist (Fig.
3.9). At this point the leading shock front splits up into two consecutive
shock fronts. The leading shock segment DE is of the 1-2 fast type, and
the secondary shock segment DG is 2—4 intermediate. The combination
of the fast and the intermediate shock can deflect the magnetic field such
that field lines merge continuously downstream of the so-called A-point
D where the three shock segments meet.

In the case of 2D field-aligned flow (Fig. 6.2), symmetry imposes
extra constraints on the solution which makes that three perpendicular
points arise in a complex flow topology, with the topology of Fig. 7.5b
arising locally at several places along the leading shock front. In the
3D case, however, no extra symmetry constraints are imposed and the
topology of Fig. 7.5b applies directly to the bow shock flow in the plane
of symmetry (zy). The solutions of Fig. 7.4 are clearly far from being
axi-symmetrical. The question thus arises what is the spatial form and
extent of the secondary shock front away from the zy plane. Fig. 7.1
gives a good idea of this extent. We postpone further discussion of the
3D topology away from the zy plane to Sec. 7.3.

It is interesting to examine the shock types and the location of the
stagnation points in bow shock flows with the topology of Fig. 7.4. Fig.
7.6 shows a detailed representation of a 3D bow shock flow with inflow
parameters p = 1, p = 02, B, =1, By = 0, v, = 1.5 and vy, =
0.1. The angle 6,5 thus equals 3.8°. To obtain sufficient resolution we
performed the simulation on a 60 x 120 x 60 grid with Linde’s second
order HLLE scheme. The grid points are strongly clustered near the
sphere. The velocity and magnetic stagnation points (the lower and the
upper thick dots immediately in front of the sphere, respectively) are
clearly separated and are located far above the horizontal line through
the center of the sphere, even though the angle 6,5 is quite small in the
upstream plasma.

It is conceivable that for larger angles 6,5 these stagnation points
would shift away along the sphere even further. In that case, it would
be difficult to simulate the flow on a domain restricted to one quadrant
(the domain depicted in Fig. 7.2). For this reason we restrict ourselves
to simulations of flows with small angles 6,p in this Chapter. It seems
that the structured grid approach adopted in our code is not ideally
suited for the general problem of the flow around a sphere with arbitrary
angle between the fields. Indeed, it is topologically difficult to fully
cover a domain around a sphere by wrapping a logically rectangular
box around it [155]. Adaptive or unstructured grid techniques would
probably be more appropriate [56, 100, 167, 22]. On the other hand,
it is not necessarily a good idea to consider the whole domain around
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Figure 7.6: Detailed representation of a magnetically dominated 3D bow
shock flow. Density contours (thin solid) with streamlines (thick solid)
and magnetic field lines (thin solid) are shown in the zy plane. The two
thick dots immediately in front of the sphere indicate the location of the
velocity and magnetic field stagnation points (60 x 120 x 60 grid).

the sphere in simulations, because simulation of the wake region on the
backside of an obstacle (e.g. Fig. 6.30) requires a high spatial resolution,
which would necessitate excessive computing resources in the case of
3D problems. In the next Chapter we consider 3D MHD bow shock
flows around a perfectly conducting paraboloid surface. Wake flows are
largely avoided in this configuration, although boundary layer separation
can occur. In the next Chapter we consider large angles 6,5 for this
flow configuration with a paraboloid surface, and also for magnetically
dominated bow shock flows with large angles 6,5 we consistently obtain
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the topology of Fig. 7.5b.
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Figure 7.7: Cuts perpendicular to various shock fronts.

In Fig. 7.7 we indicate cuts perpendicular to various shock fronts
which are now used to determine shock types for the flow of Fig. 7.6.
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Figure 7.8: Cut along C1 perpendicular to the secondary shock front in
Fig. 7.7.

Fig. 7.8 shows plots of Mach numbers and entropy along the cut
C1 perpendicular to the secondary shock in Fig. 7.7. We see that the
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upstream Alfvénic Mach number is slightly larger than one, and the slow
Mach number jumps from above one to below one. This shock is thus
a 2-4 intermediate shock, which is very close to a 2=3-4 slow switch-
off shock. This shock is of the same type as shock part D—-G-H-I in the
symmetrical 2D bow shock flow (Figs. 6.7 and 6.9), and as the secondary
shock in the non-symmetrical 2D solution of Fig. 6.31.
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Figure 7.9: Cut along C2 in Fig. 7.7.

Fig. 7.9 shows plots of various quantities along the cut C2 in Fig. 7.7.
Near the sphere some kind of boundary layer seems to be present. Such a
boundary layer seems not to be present in the flow of Fig. 7.3 for pressure-
dominated parameters. It is difficult to assert if this boundary layer is
of physical nature or a numerical artefact. It may be a relevant part of
the ideal MHD flow topology, or it may be a dissipative boundary layer,
with the numerical dissipation playing the role of physical dissipation.
The plots in Fig. 7.9 show some evidence that this boundary layer may
be separated from the rest of the flow by a tangential discontinuity.
Indeed, the normal velocity and magnetic field seem to vanish where
the thermodynamic variables and the tangential fields make a jump.
The total pressure does not make a noticeable jump. It seems that
simulations with higher resolution are necessary to allow a more definite
interpretation.

Figs. 7.10-7.12 show plots of Mach numbers and entropy along the
cuts C3, C4 and C5 perpendicular to the leading shock front in Fig. 7.7.
At cut C3 the shock is of the 1-3 intermediate type, but very close to
1-3=4. At cut C4, near the ‘nose’ of the bow shock, the shock is very
close to a 1-2=3 fast switch-on shock. At cut C5, the shock is of the 1-2
fast type.

Fig. 7.13 shows that for the upstream parameter values of Fig. 7.6
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Figure 7.10: Cut along C3 through the leading shock front in Fig. 7.7.
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Figure 7.11: Cut along C4 through the leading shock front in Fig. 7.7.
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Figure 7.12: Cut along C5 through the leading shock front in Fig. 7.7.

the maximum angle between the magnetic field and the shock normal for
which the 1-3 intermediate shock can occur is approximately 3°. This
is consistent with the angle for which the leading shock front splits up
into two consecutive shock fronts in Fig. 7.7.

Fig. 7.14 shows how magnetic field lines (black) and streamlines
(blue) originating from points located slightly above the zy plane drape
around the sphere for the bow shock flow solution of Fig. 7.1. The way
in which field lines drape around obstacles is important in many space
physics bow shock flows because field line orientation influences impor-
tant physical processes like reconnection. This is discussed in the next
Chapter. It is obvious that field line draping in the new magnetically
dominated bow shock topology is quite different from field line draping
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Figure 7.13: Solutions of the RH relations for the upstream parameters of
Fig. 7.6 with 6,5 = 3.8°. These parameters are magnetically dominated.
The maximum angle between the magnetic field and the shock normal
for which intermediate shocks can occur is approximately 3°.

in the traditional pressure-dominated MHD bow shock flows, since mag-
netic field lines undergo a strong secondary refraction at the secondary
shock, as can be seen in Figs. 7.14 and 7.1.

The results presented in this Section show that there are two ba-
sic topologies for 3D MHD bow shock flows. For pressure-dominated
upstream flows a single-front topology is obtained which is the same as
the well-known topology of hydrodynamic bow shock flows. For magneti-
cally dominated upstream flows, we find the complex bow shock topology
sketched in Fig. 7.5b.

The conclusion on 3D MHD bow shock topology formulated above is
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Figure 7.14: Magnetic field lines (black) and streamlines (blue) for the
bow shock flow solution of Fig. 7.1. The field lines and streamlines
are drawn starting from points located slightly above the xy plane, and
drape around the sphere.

completely analogous to the conclusion reached for the case of symmet-
rical 2D flow (Sec. 6.3), and is a further justification for the terminology
of magnetically dominated versus pressure-dominated upstream states,
bow shock flows and bow shock flow topologies which we have been using
since the Introductory Chapter.

We have to qualify the above formulated conclusion in the following
way. Due to limited computer resources, we have not performed a com-
plete parameter study for the 3D flows as we have done for the 2D flows
(Sec. 6.3). Also, simulations were limited to small angles 6,5 because
of limitations of the numerical technique. Nevertheless, we have simu-
lated substantial numbers of flows around a sphere with both pressure-
dominated and magnetically dominated upstream conditions. In all cases
we have obtained the single-front topology for pressure-dominated up-
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stream flows, and the multiple-front topology for magnetically domi-
nated upstream flows. Combined with the theoretical reasoning leading
to the topology of Fig. 7.5b for magnetically dominated upstream condi-
tions, these results are a strong indication that the two different topolo-
gies indeed arise for the two different types of upstream conditions. In
this context we have to remark that the topology of 3D MHD bow shock
flows can be complicated further by the appearance of additional slow
and intermediate shocks in the downstream flow. These additional fea-
tures, however, are not related to the geometrical properties of switch-on
shocks at perpendicular points on the leading shock front, but instead
seem to depend more on the shape of the obstacle and the angle 6,5
and can be the result of other physical processes like boundary layer
separation. Some examples of such additional features are given in the
next Chapter (Sec. 8.2.2).

7.2 Field-aligned axially symmetrical flow
over a sphere

In the present Section the special case of axi-symmetrical 3D bow shock
flow over a sphere with the magnetic field aligned to the flow (6,5 = 0)
is considered. We present numerical simulation results for magnetically
dominated inflow parameter values 8 = 0.4 and M4, = 1.5 for which
switch-on shocks occur (Fig. 6.3a). These are the same parameters as for
the bow shock flow around a cylinder which was studied in Sec. 6.2. First
we discuss the simulation results obtained with our 2D axi-symmetrical
scheme, which was described in Sec. 4.2.4.

In Fig. 7.15b we show a global view of the stationary axi-symmetrical
bow shock solution, obtained with our second-order LF scheme on a
stretched 100 x 100 grid restricted to one quadrant. The horizontal -
axis (coinciding with the stagnation streamline) is an axis of rotational
symmetry. At the symmetry axis no boundary conditions need to be
specified because the effective length of the cell interfaces on the axis
vanishes, such that the flux through these interfaces does not contribute
to the time evolution. At the three other boundaries we impose standard
free in, free out and ideal wall conditions. The leading shock front shows
a clear dimple. The shock front is much closer to the obstacle than in
the case of the flow around a cylinder with the same inflow parameters,
which is shown in Fig. 7.15a for comparison.

In Fig. 7.15¢c we show a detailed representation of the central part of
the axi-symmetrical bow shock solution near the stagnation streamline.
This plot is to be compared to its cylinder flow equivalent shown in
Fig. 6.9 (where only the upper part of the symmetrical flow is plotted).
The flow clearly exhibits a topology which is similar to the topology of
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Figure 7.15: Symmetrical field-aligned magnetically dominated bow
shock flows with M 4 = 1.5 and 3 = 0.4. Density contours and magnetic
field lines are shown. (a) Flow around a cylinder. (b) Axi-symmetrical
flow over a sphere. (c) Detail of the axi-symmetrical flow.

the flow around a cylinder. Inspection of the way in which the field
lines are refracted when the shocks are passed, reveals that the shocks
in Fig. 7.15c are of the same type as the shocks in the cylinder flow
of Fig. 6.9 which were discussed in Sec. 6.2, and detailed analysis of
upstream and downstream Mach numbers, along the lines of the detailed
analysis in the previous Chapter, confirms this conclusion.

We can thus conclude that magnetically dominated 3D axi-sym-
metrical flows over a sphere exhibit a complex bow shock topology very
similar to the topology of a bow shock flow around a cylinder in that
parameter regime.

The axi-symmetrical 3D flow over a sphere can of course also be
simulated using our 3D simulation code, and the same result should be
obtained as with the 2D axi-symmetrical code. In fact, comparison of
the results constitutes a good test for the 3D code. Fig. 7.16 shows a
comparison of simulation results for the axi-symmetrical bow shock flow
obtained with the 3D code on a 50 x 100 x 50 grid in the zy plane (solid)
and in the zz plane (dashed), and the results obtained with the 2D axi-
symmetrical code on a 80 x 80 grid (dotted). The results are in global
agreement. The differences between the 2D and the 3D results are due
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Figure 7.16: Comparison of simulation results for the axi-symmetrical
flow obtained with the 3D code in the xy plane (solid) and in the zz
plane (dashed), and the results obtained with the 2D axi-symmetrical
code (dotted).

to the difference in grid resolution and structure.

The topology of the flow in Fig. 7.4a for 6,5 = 5° is very different
from the solution for the axi-symmetrical field-aligned case which was
shown in Figs. 7.15b and c, even though the angle 8,5 = 5° in Fig.
7.4a is quite small. We have performed simulations for even smaller
but non-vanishing angles 6,5 between the inflow velocity and magnetic
field. In all cases we find the topology of Fig. 7.4a for the stationary
solution, and not the topology of the axi-symmetrical solution of Fig.
7.15¢, which corresponds to the sketch in Fig. 6.7. This seems to be
a clear example of symmetry breaking, because introduction of a small



208

Chapter 7. T'hree-dimensional flow over a sphere

angle 6,5 between the magnetic field and the plasma flow, produces a
steady state result which is topologically different from the symmetrical
solution. The symmetrical flow is thus likely to be a meta-stable solution.
This conclusion is consistent with the results of the discussion in Sec. 6.5
about the stability of the symmetrical 2D bow shock flow. In Sec. 7.4 it
is discussed how transient waves form the link between the symmetrical
and non-symmetrical flow solutions.

7.3 3D topology of magnetically dominated
bow shock flows

As shown in Sec. 7.1.3, the reasoning leading to Fig. 7.5b explains the
topology of 3D magnetically dominated bow shock flows in the plane of
symmetry. However, the topology of the flow away from the zy plane
remains to be investigated and explained. Fig. 7.1 shows that the sec-
ondary shock has a finite extent out of the plane of symmetry. We now
investigate if this can be understood in terms of the properties of MHD
shocks. First we study the local geometry of 3D MHD shock fronts near
perpendicular points for magnetically dominated upstream parameters
(switch-on shocks occur). For simplicity we consider again the case of
a uniform upstream flow, but the upstream velocity and magnetic field
need not be aligned.

Let us first consider the possible existence of an isolated perpendic-
ular point at the nose of a fast MHD shock front with concave-inward
orientation (Figs. 7.17a and b). The shock at the perpendicular point
can either be a fast 1-2=3 switch-on shock or a 1-4 hydrodynamic shock.
Suppose that the shock is a switch-on shock, as in Fig. 7.17a. Suppose
that the magnetic field line is deflected leftward in the horizontal plane.
The shock in the horizontal plane (thick solid) then necessarily has to
be 1-2 on the left side, and a 1-3 shock segment can continuously be
connected to the perpendicular point on the right, as in the 2D case
of Fig. 6.5a. However, the shock segment in the vertical plane (thick
dashed) cannot be connected continuously to the switch-on shock at
the perpendicular point, because due to the co-planarity of MHD shocks
the refracted magnetic field has to lie in the vertical plane containing the
shock segment! This leads us to the conjecture that, for upstream param-
eters in the switch-on regime, isolated perpendicular points of switch-on
type cannot exist on concave-inward shock fronts. The same conclusion
seems to hold for concave-outward shock fronts (corresponding to the
case of Fig. 6.5b).

If the shock at the perpendicular point is a hydrodynamic shock, as
in Fig. 7.17b, then a concave-inward or concave-outward shock surface
entirely of 1-4 type can exist with the isolated perpendicular point at
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Figure 7.17: 3D bow shock geometries near perpendicular points for
magnetically dominated upstream parameters. Thin lines are magnetic
field lines. Shock fronts in the horizontal plane through the central
perpendicular point are thick solid, and shock fronts are thick dashed in
the vertical plane through the central perpendicular point which contains
the incoming magnetic field line. (a) An isolated perpendicular point of
1-2=3 switch-on type cannot exist. (b) An isolated perpendicular point
of 1-4 hydrodynamic type can exist. (c) A closed curve of perpendicular
points of switch-on type (thick dotted) forms the transition between a
1-2 shock front on the outside and a central concave-outward dimple
containing 1-3 and 1-4 shocks.

the nose (corresponding to the cases of Figs. 6.5¢ and f).

However, 1-2 fast MHD shock fronts certainly exist in 3D MHD flows
with magnetically dominated upstream parameters, so what happens
if a 1-2 front assumes a shape such that the magnetic field becomes
perpendicular to the 1-2 front at some point on the shock surface, where
the fast shock then would turn into a switch-on shock? The reasoning
described above shows that isolated perpendicular points are not possible
in this case, but it seems that continuous curves of perpendicular points
with switch-on shocks can exist on the shock front. Fig. 7.17c shows
a possible symmetrical 3D shock geometry for the case of magnetically
dominated upstream parameters. The shock front contains a concave-
outward central part or ‘dimple’. The central part of the dimple is of
1-4 type, and contains a perpendicular point of hydrodynamic type. A
closed circular curve exists on the shock front at which the shock is of 1-
2=3 switch-on type (thick dotted). Outside of this curve the shock front
is of 1-2 type, and on the inside the shock is 1-3. This shock geometry is
a direct 3D generalization of the geometry proposed by Steinolfson and
Hundhausen for 2D flows (Fig. 6.6b). The simulation of a symmetrical
field-aligned flow over a sphere represented in Fig. 7.15 shows that, like



210

Chapter 7. T'hree-dimensional flow over a sphere

in the case of 2D flow around a cylinder, the single-front topology with
a dimple which was proposed in Fig. 7.17c does not occur. Instead, the
1-3 and 14 shock segments split up into two consecutive shock fronts
at the points where the shocks become 1-3=4.
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Figure 7.18: The 3D bow shock flow of Fig. 7.1 in planes with various
values of ¢. Density contours in those planes are projected on the xy
plane.

For non-vanishing upstream angle 6,5, the flow solution becomes
highly non-symmetrical, and the flow topology changes accordingly. Fig.
7.4a shows that there is only one perpendicular point on the leading front
in the zy plane. The question thus arises what is the spatial form and
extent of the secondary shock front away from the zy plane, and how
this is related to the flow topology. Fig. 7.1 gives some indication about
the extent of the secondary shock.

Fig. 7.18 gives some more information about the precise flow topol-
ogy. The secondary shock front remains attached to the leading front
up to an angle of ¢ ~ 20°. For higher values of ¢ the secondary shock
is detached from the leading front. It is interesting to remark that the
perpendicular point (at the nose) remains approximately at the same x
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location for ¢ between 0° and approximately 20°. For ¢ increasing from
0° to approximately 20°, the perpendicular point seems to approach the
point where the secondary shock is attached to the leading front. We
propose the following possible interpretation for this behavior.

In Fig. 7.4a we see that a switch-on shock is present on the leading
shock front at the perpendicular ‘nose’ point, where the shock front
extends most into the undisturbed upstream plasma. The magnetic field
is deflected downwards at this point. The above discussion indicates
that this perpendicular point of switch-on type cannot be an isolated
perpendicular point, which implies that a line of perpendicular points
of switch-on type has to extend in two directions out of the zy plane
and perpendicular to that plane. In the topology of Fig. 7.4a, this curve
of perpendicular points on the leading shock front can clearly not be a
closed curve. It is conceivable that this curve of perpendicular points
would end when it connects to the secondary shock at some point on the
leading front above the xy plane. Fig. 7.18 seems to suggest that this
happens for an angle ¢ & 20°. For higher values of ¢ both the secondary
shock and the switch-on shock are not present anymore on the leading
shock front. Perpendicular points of switch-on type thus exist on the
leading front up to a value of ¢ =~ 20°. Beyond this value, the leading
front curves away and perpendicular points do not occur anymore. This
would explain how the secondary shock has a limited extent out of the
zy plane. This seems to be a reasonable interpretation for this aspect
of the complex bow shock flow topology, but thorough study of high
resolution simulation results is needed to confirm this interpretation.

7.4 Transient waves during the time evolu-
tion towards a steady state

The V-shaped secondary feature composed of intermediate and com-
pound shocks which is present in the axi-symmetrical flow result of Fig.
7.15c¢ is clearly not present in the stationary bow shock results of Fig. 7.4
for the case of a small angle 6,5 between the velocity and the magnetic
field. The final stationary results thus differ substantially, and we have
used the term symmetry breaking to refer to this phenomenon. The
reader may wonder why the V-shaped feature is not present in the so-
lution, even when the angle 6,5 is very small. It is interesting to look
in detail at the dynamical time evolution of the flow towards a steady
state solution. We show that transient waves provide a link between the
symmetrical and non-symmetrical magnetically dominated bow shock
topologies. Indeed, in our simulations the uniform initial conditions for
field-aligned flow and for flow with a small angle 8,5 are very close to
each other, so we can expect that the resulting flow patterns do not differ
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too much for small times. Let us examine the dynamical time evolution
of symmetrical and non-symmetrical flows towards a steady state bow
shock solution starting from a uniform initial condition.

Figure 7.19: Time evolution towards a steady state solution for the
case of 2D magnetically dominated symmetrical flow around a cylinder.
Density contours and magnetic field lines are shown (200 x 400 grid).

Fig. 7.19 shows the time evolution towards a steady state solution
for the case of 2D symmetrical flow around a cylinder, with g = 0.4
and My, =12 (p=1,p=02 B, =1, v, = 1.2 and r = 0.125).
The initially almost circular front (¢ = 0.05, first panel) deforms into a
front composed of fast and intermediate shock parts, characterized by
a concave-outward central part (the ‘dimple’) (¢ = 0.15, second panel).
We also see traces of transient secondary shocks following the leading
front. These transient features were also present in the time-dependent



7.4 Iransient waves

215

CME simulations of Steinolfson and Hundhausen [147]. The shock on
the stagnation line necessarily has to be a 14 intermediate shock. We
propose as a possible explanation for these secondary shocks that at the
point where the curving 1-4 shock becomes a 1-3=4 shock, the leading
shock front splits up into two consecutive shock fronts.

At ¢ = 0.60 (third panel), a V-shaped secondary shock front is seen
to have separated from the leading shock front. It trails the leading front
in a distinct V-shape, and the density is clearly depleted in the V-region
(p & 2) as compared to the density in the two distinct lobes downstream
of the slow shock front (p a2 3). This V-shaped structure already has the
topology of the steady symmetrical solution.

At t = 1.00 (fourth panel), the steady state is almost reached. Fig.
3.9 shows that for the parameter values of this flow the maximum angle
between the magnetic field and the shock normal for which the 1-3 in-
termediate shock can occur is approximately 16°. This is consistent with
the angle for which the leading shock front splits up into two consecutive
shock fronts in the fourth panel of Fig. 7.19.

It may be argued that this time evolution starting from a uniform
initial condition is somewhat artificial. We could propose the instanta-
neous acceleration of an object in a static uniform plasma to a constant
velocity as a physical interpretation for such time-dependent flows, and
this scenario can be approached in physical systems. We solve the time-
dependent ideal MHD equations in a time-accurate way, and all the
transient wave phenomena observed in the simulations are thus valid
dynamical MHD phenomena. These phenomena may be of real physical
interest, maybe not directly in the abstract setting of the problem we
simulate, but possibly in related real plasma flows.

Fig. 7.20 shows a detailed representation of a snapshot (¢ = 0.3)
of the evolution towards a steady state 3D bow shock flow with inflow
parameters p = 1, p = 0.2, B, = 1, By, = 0.01, v, = 1.5, v, = 0 and
r = 0.125. The angle 6,5 = —0.57°. The Alfvénic Mach number along
the magnetic field line equals 1.4999, and 5 = 0.4. To obtain sufficient
resolution we performed the simulation on a 60 x 120 x 60 grid with
Linde’s second order HLLE scheme.

The final stationary solution of this flow problem has the topology of
Fig. 7.4c, with the secondary shock front stretching out along the sphere
in the bottom part of the flow. We see that in the initial stage of the
evolution shown in Fig. 7.20 a clear V-shaped secondary shock feature is
present in the flow. Detailed analysis shows that this V-shaped feature
has the same topology as the V-shaped feature of the stationary axi-
symmetrical flow in Fig. 7.15c, although its proportions are different
and its shape is non-symmetrical. The upper triangle D-G-E of Fig.
6.7 is much larger in this non-symmetrical flow, and the corresponding
lower triangle is so small that it hardly can be identified. At this stage of
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Figure 7.20: Detailed representation of a snapshot (t = 0.3) of the evolu-
tion towards a steady state 3D magnetically dominated bow shock flow
with non-field-aligned inflow. Density contours and magnetic field lines
in the zy plane are shown (60 x 120 x 60 grid).

the flow there are three perpendicular points on the leading shock front
— the 14 point can be identified in the region plotted; the two 1-2=3
points lie above and below the plotted region. It is especially noteworthy
that the 1=2-3=4 compound shock (E-G in Fig. 6.7, clearly visible in
the upper triangle), is present in these 3D simulation results.
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Later in the time evolution the V-shaped feature slips away along the
sphere on the bottom side, and disappears completely. The remaining
secondary shock (like in Fig. 7.4c) can be identified with the shock D-G-
H-TI in the V-shaped feature (they are both of 2—4 type), and is the sole
remainder of the V-shaped feature in the stationary bow shock solution.
In the final solution there is only one perpendicular point.

When the incoming magnetic field is aligned to the flow, the V-shaped
feature is not biased to slip away on the top or the bottom side, and con-
sequently it reaches a stationary position in front of the sphere. For small
angles 6,5, however, the V-shaped feature finds a way to slip around the
sphere. This explains why the symmetrical solution with a stationary
V-shaped feature is likely to be a meta-stable solution. The important
conclusion from the analysis in this Section is that the V-shaped fea-
ture with all its constituting intermediate and compound shocks can be
present in non-field-aligned 3D bow shock flows as a transient feature.

7.5 Conclusion

The main lesson to be learned from the results described in this Chapter
is that there are two basic topologies for 3D MHD bow shock flows. For
pressure-dominated upstream flows a single-front topology is obtained
which is the same as the well-known topology of hydrodynamic bow
shock flows. For magnetically dominated upstream flows we find the
complex bow shock topology sketched in Fig. 7.5b. The complexity of
the magnetically dominated MHD bow shock topology is due to intrin-
sically magnetic effects. It was previously thought that all MHD bow
shock flows exhibit the traditional pressure-dominated topology, and the
magnetically dominated MHD bow shock topology was unknown. The
new magnetically dominated MHD bow shock topology has important
applications in space physics plasma flows, which are discussed in the
next Chapter.



