Chapter 6

Magnetically dominated
MHD bow shock flows:

symmetrical
two-dimensional flow
around a cylinder

In this Chapter we present numerical simulation results of planar (v, =
B, =0) field-aligned MHD bow shock flows with top-bottom symmetry
around perfectly conducting rigid cylinders.

Fig. 6.1a shows that in the case of hydrodynamic flow (B = 0) a single
shock front is obtained with a concave-inward — towards the cylinder —
shape. This topology is also found in experiments of hydrodynamic bow
shock flows (Fig. 2.3). As long as the upstream magnetic field strength
is small and thermal or dynamic pressure effects dominate, MHD bow
shock flows have the same topology as hydrodynamic bow shock flows.
An example is shown in Fig. 6.1b. A single-front bow shock with a
concave-inward shape is obtained which is entirely of fast 1-2 MHD
shock type. It was generally believed until recently that all MHD bow
shocks and all bow shocks in space physics plasmas have this topology.

The main result presented in this dissertation is that MHD bow shock
flows exhibit an entirely different topology when the upstream magnetic
field strength is high and magnetic effects dominate over thermal and
dynamic pressure effects such that the intrinsically magnetic phenom-
ena of switch-on shocks and intermediate shocks arise. Because of the
peculiar geometrical properties of these types of shocks a complex bow
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Figure 6.1: Symmetrical bow shock flows around a cylinder (thick solid)
with standard concave-inward topology. The flow comes in from the left.
Density contours (thin solid) pile up in the bow shock. Magnetic field
lines are dotted. The thick solid horizontal line is a line of symmetry.
(a) Hydrodynamic flow: B, = 0, M = 3.46. (b) Pressure-dominated
MHD flow: B, =1, M =3.46, 8 = 0.4.

shock topology is needed to channel the flow around the obstacle in this
magnetically dominated parameter regime. An example of a bow shock
flow with this new topology is shown in Fig. 6.2. The new topology
involves several consecutive shock fronts of various MHD shock types.
It is not really a surprise that several shock transitions occur, because
MHD allows for three anisotropic linear wave modes, and the transition
from hyperbolic flow far upstream to elliptic flow in front of an obstacle
can thus in principle be made through a succession of several shocks of
different MHD shock type.

This Chapter is organized as follows. In Sec. 6.1 we explain in terms
of the geometrical properties of MHD shocks why the complex bow shock
topology of Fig. 6.2 arises when the upstream flow is magnetically domi-
nated and switch-on shocks occur. In Sec. 6.2 we give a detailed interpre-
tation and identification of discontinuities in one example of a complex
bow shock flow with the topology of Fig. 6.2. Sec. 6.3 contains a pa-
rameter study of symmetrical bow shock flows, which clearly shows that
the parameter regime in which the complex bow shock topology arises
corresponds to the magnetically dominated regime for which switch-on
shocks occur. In Sec. 6.4 we use characteristic analysis to study the com-
plex stationary wave structures present in the magnetically dominated
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Figure 6.2: Global view of a magnetically dominated MHD bow shock
flow around a cylinder (thick) with upstream parameters M, = 1.5/3
and B = 0.4. We show density contours (piling up in the shocks) and
magnetic field lines (coming in horizontally on the left). The flow comes
in from the left. The leading shock front is slightly dimpled. The upper
and lower parts of this front are of the fast type. In the central part of
the flow, a second front has separated and is trailing the leading front.
Additional discontinuities can be seen in the central interaction region.

bow shock flows and to identify steady compound shocks. In Sec. 6.5 we
discuss the stability of the symmetrical bow shock flow solutions against
non-symmetrical perturbations. We conclude briefly in Sec. 6.6.

The results presented in this Chapter have been reported in [150,
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149, 151, 152].

6.1 Topology of magnetically dominated
bow shock flows

In this Section we discuss the topology of symmetrical field-aligned MHD
bow shock flows with magnetically dominated upstream parameters for
which switch-on shocks occur. We make extensive use of the properties
of MHD shocks which were discussed in Sec. 3.3.2. The discussion is
placed in a planar (v, = B, = 0) 2D context, but most conclusions are
equally valid for the 3D case, as is discussed in the next Chapter. Part
of our reasoning is similar to the reasoning presented in [147].

6.1.1 The switch-on regime

Switch-on shocks (Fig. 3.8d) can only occur when in the upstream flow
B?>p (6.1)

and
_y-1
Y(1-8)+1

with v, the velocity along the magnetic field. When the magnetic field
strength is small and thermal and dynamical pressure effects dominate,
switch-on shocks and intermediate shocks do not occur (e.g. Fig. 3.11).
For stronger magnetic fields, however, the intrinsically magnetic phe-
nomena of switch-on shocks and intermediate shocks arise (e.g. Fig. 3.9).
Equivalent conditions for the occurrence of switch-on shocks are that the
upstream plasma 3 < 2/v and

pv2 > B? > pv? (6.2)

y(1-p8)+1

1< My, < .
v—1

(6.3)

The parameter regime for which magnetic effects dominate and switch-
on shocks occur is represented in the 8 — M 4, plane in Fig. 6.3. Because
there is a fixed relationship between My, and M, which only involves
B and v, viz. MZ/M3, = ¢4,/c® = 23/v, we can also represent the
switch-on parameter domain in the 8 — M, plane, as is done in Fig.
6.3b. Remember from Sec. 3.1.3 that only two non-dimensional num-
bers are required to parametrize the scales of a given stationary ideal
MHD problem, for instance either M, and 3, or M4, and (3.
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Figure 6.3: Parameter domain for which states are magnetically domi-
nated and switch-on shocks occur. For v = 5/3, switch-on shocks are
possible for upstream values of § and M, (a) and 8 and M, (b) which
are located in the shaded regions. In Sec. 6.3, numerically obtained bow
shock flows are presented for inflow quantities with fixed 8 = 0.4 and
M 4, varying from 1.1 to 1.9 (the diamonds on the vertical line in (a)),
and with fixed M4, = 1.5 and (8 varying from 0.1 to 0.9 (the triangles
on the horizontal line).

6.1.2 Shock configurations at perpendicular points

We discuss now what the occurrence of switch-on shocks in magnetically
dominated regimes implies for the topology of bow shocks. Two general
considerations are important guidelines in our discussion. First, when
the upstream flow is magnetically dominated and intermediate shocks
can exist, the shock transition from a superfast upstream state of type
1 to a subfast downstream state at the leading front of a bow shock
is not necessarily a 1-2 fast shock, but can as well be a 1-3 or a 1-
4 intermediate shock. Second, downstream of a leading 1-2 fast shock
secondary shocks of slow or intermediate type can in principle be formed,
because the downstream state 2 is super-Alfvénic and superslow.

In order to understand the topology of magnetically dominated bow
shock flows, it is useful to consider points on shock fronts where the
magnetic field is perpendicular to the shock front. We call such points
perpendicular points. In Fig. 6.4a we investigate if a shock front which
contains a perpendicular point B, can entirely be of the 1-2 fast shock
type. When the upstream flow is magnetically dominated (switch-on
shocks occur), the 1-2 shock at a perpendicular point has to be a 1-2=3
switch-on shock. Suppose that the switch-on shock at perpendicular
point B in Fig. 6.4a deflects the magnetic field upwards. The shock
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Figure 6.4: Two proposed topologies for a shock front with a switch-on
shock at perpendicular point B for the case of a magnetically dominated
upstream flow. Thick lines are shock fronts, thin lines are magnetic
field lines, and shock normals are dashed. Point B is a perpendicular
point, where the magnetic field is normal to the shock front. The shock
at point B is a switch-on shock, which deflects the magnetic field with
downstream angle 6. (a) The shock front cannot entirely be of the 1-2
fast type. (b) A complex shock topology is necessary to channel the
flow. Shock segment AB is of 1-2 fast type, BD is 1-3 intermediate, DE
is 1-2 fast, and DG is 2—4 intermediate, evolving into 2=3-4 switch-off
and 3—4 slow along the front.

segment above point B can entirely be of 1-2 type. Indeed, a fast 1-2
shock deflects the magnetic field away from the normal (Fig. 3.8a), which
means upward for this shock segment. If we move downward along this
segment towards point B, then the deflection of the magnetic field con-
tinuously evolves into a 1-2=3 switch-on shock with upward deflection
at point B. The shock segment below point B, however, cannot be of fast
1-2 type, because the magnetic field would be deflected away from the
shock normal and thus downward. A 1-2 shock segment can thus not
continuously be linked from below to the switch-on shock with upward
deflection at point B. The topology of Fig. 6.4a, with a shock entirely
of 1-2 type, is thus not possible at a perpendicular point. The question
thus arises which shock configurations are possible at a perpendicular
point.

Fig. 6.5 shows several allowed shock configurations at a perpendic-
ular point with a superfast upstream state of type 1. In the first row
(Fig. 6.5a—d) we show the possibilities for the case that the shock at the
perpendicular point is a switch-on shock with upward deflection of the
magnetic field. Fig. 6.5a shows that a upper segment of 1-2 fast type
can be linked continuously to a lower segment of 1-3 intermediate type
in the perpendicular point. Indeed, the 1-2=3 switch-on shock with



150 Chapter 6. Symmetrical two-dimensional flow around a cylinder

(d) -,

Figure 6.5: Allowed MHD shock configurations near perpendicular
points with magnetically dominated superfast upstream state (switch-
on shocks can occur). Magnetic field lines are thin solid, shocks are
thick and shock normals are dashed.

upward deflection is a limit of both the 1-2 fast shock and the 1-3 inter-
mediate shock (see also Fig. 3.9). Fig. 6.5b—d shows other possibilities
for the case of a switch-on shock at a perpendicular point.

In the second row of Fig. 6.5 we show the possibilities for the case that
the shock at the perpendicular point is a 1-4 hydrodynamic shock (Fig.
3.8f) which does not deflect the magnetic field. The 1-4 hydrodynamic
shock is a limit of 1-4 shocks which deflect the magnetic field (see Fig.
3.9), so only 1-4 shock segments can be linked continuously to the 1-4
hydrodynamic shock.

All the configurations of Fig. 6.5 are thus possible near perpendicular
points. However, the curved 1-3 and 1-4 intermediate shock segments
in Fig. 6.5 can only have a limited extent, because intermediate shocks
can only exist for a limited angle between the magnetic field and the
shock normal. For the parameter values of Fig. 3.9, for instance, this
maximum angle is 16°.

6.1.3 Topology of symmetrical bow shock flows

How can we use the pieces presented in Fig. 6.5 to solve the puzzle of
symmetrical bow shock topology in the switch-on regime? Fig. 6.6 pro-
poses two possible topologies for the field-aligned flow around a cylinder.
The flow comes in horizontally from the left. The horizontal line through
the center of the cylinder is called the stagnation streamline, because the
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Figure 6.6: Two proposed symmetrical bow shock topologies for a uni-
form magnetically dominated flow coming in from the left and obstructed
by a conducting cylinder. Magnetic field lines have arrows and shock
normals are shown as dashed lines. The horizontal field line terminat-
ing on the cylinder is the stagnation streamline. (a) Concave-inward (to
the cylinder) shape. The whole shock front (thick line) is of the fast
1-2 type. (b) Dimpled shape proposed by Steinolfson and Hundhausen
[147]. Starting from above, the front is first of the fast 1-2 type. At the
nose, a 1-2=3 switch-on shock refracts the horizontal incoming magnetic
field upward with a finite angle 6. Under the nose the shock front is first
of the 1-3 intermediate type, and is then linked to a 1-4 intermediate
shock part.

fluid velocity vanishes on this line at the cylinder. The specification of
this flow problem is symmetrical relative to the stagnation streamline.
Consequently we expect a flow solution with top-bottom symmetry, and
we discuss the topology of such a symmetrical flow here.

On the stagnation line the magnetic field cannot be deflected due to
symmetry. This observation immediately rules out the topology of Fig.
6.6a with a single shock front entirely of 1-2 type for magnetically dom-
inated upstream flows. Indeed, a 1-2 shock necessarily has to become a
switch-on shock at a perpendicular point, and this is not allowed due to
symmetry. This explains why magnetically dominated MHD bow shock
flows cannot have the topology of pressure-dominated bow shock flows
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(Fig. 6.1) with a single concave-inward shock front of fast 1-2 type! In
contrast, for pressure-dominated upstream parameters switch-on shocks
do not occur and the angle 6 in Fig. 6.6a vanishes at the perpendicular
point, such that the bow shock can entirely be of 1-2 fast type.

At the line of symmetry the magnetic field cannot be deflected, so the
shock configuration can only be the configuration of either Fig. 6.5e or
f. The 14 intermediate shock segments can only have a limited extent,
however, because for increasing angle between the magnetic field and
the shock normal, the 1-4 shock first becomes a 1-3=4 shock and then
ceases to exist (Fig. 3.9). Steinolfson and Hundhausen [147] proposed
the topology of Fig. 6.6b in the context of their analysis of propagat-
ing shocks induced by fast solar Coronal Mass Ejections (CMEs). This
topology contains the configuration of Fig. 6.5f near the stagnation line.
The configuration of Fig. 6.5a is then linked to the 1-4 shock at the
point where the 1-4 shock becomes a 1-3=4 shock (Fig. 3.9). In this
configuration the shock front adopts a shape with a concave-outward
dimple in the central part of the front. The proposed dimple topology
contains three perpendicular points, two at the two nose points and one
central perpendicular point on the stagnation line. Approaching the top
perpendicular point from above, the shock front is first fast 1-2, and be-
comes 1-2=3 switch-on at the perpendicular point. Going further down,
this 1-2=3 shock can continuously evolve into a 1-3 intermediate shock
segment. For increasing angle between the magnetic field and the shock
normal, the shock type evolves to 1-3=4. Beyond this point the shock
becomes 1-4 and concave-outward. At the central perpendicular point
the shock becomes a 1-4 hydrodynamic shock.

This proposed solution contains two quite revolutionary ideas: first,
the shock front contains a concave-outward part, and second, it is com-
posed of segments of various MHD shock types, which can be linked
together in a continuous way. Time-dependent 2D MHD simulations
[147, 146] partially confirmed this picture (a dimpled shock front was
obtained), and dimpled fronts were also observed in coronagraph images
of fast moving CMEs [147, 146, 68].

However, Steinolfson and Hundhausen’s time-dependent 2D simula-
tion results for a uniform upstream field did not fully confirm the hy-
pothetical shock geometry of Fig. 6.6b. In their numerical results they
found several features for which they could not provide a clear interpre-
tation, including traces of slow shocks, an unusual ‘tube’ configuration
near the symmetry line, and a possible singular point where four shock
branches would interact [147].

In our simulation results of stationary bow shock flows with mag-
netically dominated upstream parameters (Fig. 6.2) we do not find the
topology of Fig. 6.6b, although we recover some of its constituting el-
ements. We do find a topology with three perpendicular points. The
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Figure 6.7: Sketch of the complex multiple-front bow shock topology.
In the leading front, shock AB is a 1—2 fast shock, BCD is 1—3 inter-
mediate, DE is 1—2 fast, and EF is 1—4 hydrodynamic. The second
front DGHI is 2—4 intermediate (2=3—4 slow switch-off or 3-4 slow
at places). EG is a 1=2—3=4 intermediate shock which is sonic both
upstream and downstream. EH is a tangential discontinuity, and tan-
gential discontinuities also stretch out from points D, G, and H, along
the streamlines towards infinity. At perpendicular point B the shock
is a 1-2=3 switch-on shock, at points D and E the shock is of 1-3=4
intermediate type, and at perpendicular point F the shock is 1-4 hydro-
dynamic. The topology near the perpendicular point B is the topology
of Fig. 6.4b.

topology of the numerically obtained flow pattern (top half) is sketched
in Fig. 6.7. Throughout this Chapter we refer to the lettering labels of
this Figure for the identification of shock parts. Above the top perpen-
dicular point the shock is indeed of fast 1-2 type, and below this point
the shock is of 1-3 type, like in Fig. 6.6b. At the point where the 1-3
shock ceases to exist, however, the shock front splits up into two con-
secutive shock fronts. This is sketched in Fig. 6.4b. The leading shock
segment, DE is of the 1-2 fast type, and analysis of the simulation result
of Fig. 6.2 learns that the secondary shock segment DG is 2—4 inter-
mediate, evolving into 2=3-4 switch-off and 3-4 slow along the front.
The combination of the fast and the intermediate shock can deflect the
magnetic field such that field lines merge continuously downstream of
the so-called A-point D where the three shock segments meet.

Near the stagnation line in Fig. 6.2 we find the configuration of Fig.
6.5e. At the point where the 1-4 shock ceases to exist, it splits up into a
fast 1-2 shock followed by a 1=2-3=4 intermediate shock. This cannot
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be seen very clearly in Fig. 6.2, but shock segments are clearly identified
in the next Section. In general it seems that the leading shock front splits
into two consecutive fronts at 1-3=4 points beyond which intermediate
shocks can no longer exist.

In this Chapter we present simulations of the 2D steady state MHD
bow shock problem with magnetically dominated upstream flow (switch-
on shocks occur). In contrast to the time-dependent flows considered by
Steinolfson and Hundhausen [147], our bow shock solutions are station-
ary in time, which allows for higher grid resolution and greatly facilitates
a clear interpretation. The topology we obtain in our simulation results
contains some elements of the topology proposed in Fig. 6.6b, but the
resulting bow shock flow is quite more complicated than could be antic-
ipated from the important earlier work of Steinolfson and Hundhausen
[147]. The leading shock front is followed by a second shock front, and
other discontinuities can be identified between the two fronts. Our so-
lution reveals and explains much richer and more complex physics not
anticipated in the work of Steinolfson and Hundhausen [147]. Clearly
an additional level of complexity is present: not only do shocks of sev-
eral different types form in the leading front, but multiple shock fronts
are necessary to channel the magnetically dominated flow around the
obstacle. It is conceivable that our results on shock topology in sta-
tionary magnetically dominated flows can also be important for shock
propagation in time-dependent flows in this parameter regime.

6.2 Detailed interpretation and identifica-
tion of discontinuities in a magnetically
dominated bow shock flow

In this Section we analyze in detail the flow of a planar (v, = B, = 0)
superfast MHD fluid around a perfectly conducting rigid cylinder for
magnetically dominated upstream parameters (switch-on shocks occur).
The angle between the magnetic field and the velocity field cannot be
varied because the flow is necessarily field-aligned, so the problem of
stationary 2D MHD flow around a perfectly conducting cylinder has
only two free parameters which parametrize the scales, for instance (3
and M4 or 3 and M. The analogous hydrodynamic problem has only
one free parameter, for instance M.

For the incoming flow we choose § = 0.4, which implies a criti-
cal Alfvénic Mach number My crit = 1.732 (Eq. 6.3). We choose the
Alfvénic Mach number of the incoming flow M4, = 1.5, such that the
upstream flow is magnetically dominated and allows for switch-on shocks
(see also Fig. 6.3a). The x axis being horizontal, we can choose p = 1
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and B, = 1 (implying that the Alfvén speed c4, = 1). The pressure and
velocity can then be determined from 8 and M 4., yielding p = 0.2 and
v, = 1.5 (such that the acoustic Mach number M, = 1.5v/3). Finally,
we take By = 0 and vy, = 0. As the resulting stationary ideal MHD flow
is scale invariant, we can freely choose the radius of the cylinder. We
take r = 0.125 and the cylinder is placed at the origin of the coordinate
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Figure 6.8: (a) Detail of the simulation grid (80 x 80) with density
contours. The thick solid lines represent simulation domain boundaries
with ideal wall symmetry. (b) Convergence of the simulation to a steady
state. The logarithm of the root mean square of the density residual is
shown as a function of the number of iterations.

The numerically computed stationary solution of Fig. 6.2 is obtained
through time relaxation starting from a uniform initial condition, which
is taken to be the above described uniform inflow. We look for a station-
ary solution, and the steady flow necessarily has to be field-aligned. The
complete setup of this problem — initial condition, boundary conditions
and the MHD equations — satisfies top-bottom symmetry relative to the
stagnation line. We thus expect a stationary solution which satisfies this
top-bottom symmetry as well. In our numerical simulations we explicitly
impose this symmetry by performing the calculations only in the upper
left quadrant bounded from below by the stagnation streamline, and
by specifying symmetry boundary conditions on this lower boundary.
These boundary conditions are the same as for a perfectly conducting
wall. The simulated bow shock flow in the upper quadrant can thus
also be thought of as a 2D model flow over a perfectly conducting plate

(the stagnation line) with a semi-circular bump or corner. In the case
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of the full flow around the cylinder, the question of the stability of the
symmetrical solution against non-symmetrical perturbations turns out
to be important, as is discussed in Sec. 6.5.

We simulate the flow in the upper left quadrant, on a 120 x 120
stretched elliptic polar-like structured grid, extending to x = —0.35 on
the z axis, and to y = 1.4 on the y axis. Part of the simulation grid
is shown in Fig. 6.8a. The grid resolution is increased near interesting
features of the flow by accumulating or clustering grid points. This grid
accumulation is done in a dimension by dimension way. In the i direction,
the grid is clustered near the perpendicular point on the leading shock
front, and near the stagnation point. In the j direction, the grid is
clustered near the stagnation line. We use ghost cells to specify the
boundary conditions (Sec. 4.2.6). On the left, we impose the uniform
superfast incoming flow. The cylinder wall is an ideally conducting rigid
wall. The lower border of the simulation domain satisfies ideal wall
symmetry as mentioned above. The right outflow condition is superfast,
so there we extrapolate all quantities to the ghost cells. The flow evolves
in time until a converged steady state bow shock solution is obtained,
and Fig. 6.8b shows the convergence of the density residual.

For our present simulations, we use the second order scheme with
Lax—Friedrichs numerical flux function (Sec. 4.2.5). In Chap. 9 we report
on our experience with other numerical flux functions for this bow shock
problem. We use Powell’s source term technique to keep the V - B=0
constraint satisfied (Sec. 4.4), and in Chap. 9 we show that a projection
scheme leads to essentially the same results.

We now show how the types of all MHD discontinuities arising in the
flow of Fig. 6.2 can be clearly determined.

In Fig. 6.9 we show a detailed section of the computed flow in the half
plane above the stagnation streamline. D-E is a fast shock with By ;
almost vanishing upstream, so it is almost a fast switch-on shock. E-F
is a 14 intermediate shock. It is probably slightly concave-inward at lo-
cations on the front away from point F, like in Fig. 6.5e, and thus unlike
the concave-outward 1-4 central part in Steinolfson and Hundhausen’s
proposed solution (Fig. 6.6b). At the resolution of our simulations, how-
ever, no definite conclusions can be made about this orientation.

At point F, the shock is definitely of the hydrodynamic 1-4 type.
E-G is an intermediate shock, because it clearly contains the dashed
M4 =1 contour (showing that the flow goes from super-Alfvénic to sub-
Alfvénic upon passing through the shock), and because the field lines are
flipped over the normal. Bear in mind that the Alfvénic Mach number
M 4 does not depend on the direction for the case of field-aligned flow.
Below it is shown that shock E-G is a 1=2-3=4 intermediate shock.

D-G-H-I is an intermediate shock with an upstream Alfvénic Mach
number (slightly) greater than one, and with magnetic field lines that
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Figure 6.9: Detail of the solution in the half plane above the stagnation
streamline. We show Alfvénic Mach number contours (piling up in the
shocks) and magnetic field lines (coming in horizontally on the left). The
dashed line is a contour where the Alfvénic Mach number exactly equals
one. This information together with the refraction of the field lines serves
to identify the shocks as fast, hydrodynamic, and intermediate (see the
text).

are flipped over the normal. At various places along the shock front,
the upstream intermediate Mach number approaches one and the down-
stream magnetic field becomes normal to the front, meaning that the
shock becomes 2=3—4 slow switch-off and even 3—4 slow at places.

E-H is a tangential discontinuity. Other tangential discontinuities
are stretching out from points D, G, and H along the streamlines to
infinity.

E—F is very reminiscent of a Mach stem as it occurs in Hydrodynamic
shock reflection [169]. A priori the point E could lie on the stagnation
streamline, in which case this point would be a singular point on this
streamline where four shock branches interact. In such a situation, the
stagnation streamline would not be a shock normal. In such a hypo-
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thetical singular point, the V - B = 0 constraint could be satisfied if the
jump in B, in the y direction is exactly the same (with opposite sign)
as the jump in B, in the x direction. A solution with such a singular
point is found for simulation on a grid with low spatial resolution. With
sufficient resolution however, the shock part E-F appears, reducing the
singularity to three branches interacting in point E. An interaction point
where four branches meet, seems thus to be avoided. This may be a more
general feature of MHD shock interaction.
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Figure 6.10: Detail of the solution close to the ‘nose’. We show Alfvénic
Mach number contours and magnetic field lines. The dashed line is a
contour where the Alfvénic Mach number exactly equals one. This in-
formation together with the refraction of the field lines serves to identify
the shocks as fast and intermediate (see the text).

In Fig. 6.10 we show a detail of the region close to the ‘nose’ point
B. The refraction of the field lines (away from the shock normal) above
point B shows that this part of the shock is a fast shock. The shock
at point B is a 1-2=3 fast switch-on shock, because the tangential field
component is switched on, and because the downstream Alfvénic Mach
number equals one. B—-C-D is an intermediate shock, because it clearly
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contains the dashed M4 = 1 contour, and because the field lines are
flipped over the normal. Shock B-C-D is of the 1-3 type, which can be
merged continuously with the fast 1-2=3 switch-on shock in point B.
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Figure 6.11: Plots of the variables along the stagnation streamline. From
left to right, the uniform incoming flow first jumps in the hydrodynamic
shock, followed by a slow rarefaction, which brings the flow back to
uniform. Close to the cylinder we pass the intermediate shock. The
flow is then brought to the stagnation point in a continuous diverging
compression. The variation of 0B, /0y in (d) (thin line, axis on the
right) shows that the flow is effectively 2D at various locations on the
stagnation line.

In Fig. 6.11 we show plots of the variables along the stagnation
streamline. The simulation results presented in this plot were obtained
using a projection method, because the Powell approach computes slightly
inaccurate values near the stagnation point (see Chap. 9). The first fea-
ture we encounter when we go from left to right, is a discontinuity which
corresponds to the hydrodynamic shock at point F. The RH relations
for the shock on the stagnation streamline are simple and can be solved
easily [114], resulting in downstream quantities p = 1.64, p = 2.77,
vy = 0.542, and s = 0.300. The jumps of the density, pressure, velocity,
and entropy in Fig. 6.11 agree well with the jumps calculated from the
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RH relations. The fast, Alfvénic and slow Mach number all jump from
above one to under one, indicating a 1-4 intermediate shock. The mag-
netic field does not show a jump, consistent with a purely hydrodynamic
shock.

Going further to the right, we see that we pass through a rarefac-
tion to reach a constant state. This slow rarefaction converges the flow
slightly towards the stagnation streamline. Although the flow near the
stagnation line may appear to be close to a 1D flow in Fig. 6.9, the flow
is in fact 2D at various places along the stagnation line. In Fig. 6.11d we
plot 0B, /0y (thin line), indicating that the flow is 2D in this rarefaction
region. The density decreases in the main direction of the converging
flow on the stagnation line, because the velocity (v;) is increasing and
V - (p¥) = 0. B, is not significantly influenced by the increasing v,
because the field is aligned to the flow. However, B, increases along
the flow because of the 2D effect of converging flow in the y direction
perpendicular to the stagnation line. This flow component causes the
field lines to converge towards the stagnation line, as can be seen in Fig.
6.11d: OB, /dz balances B, /dy such that V - B = 0.

Going further to the right, we pass a region where the flow is uniform.
The flow becomes 2D again as we approach the stagnation point at the
cylinder, as can be seen in Fig. 6.11d. This is no surprise, because in
general every stationary stagnation point flow is necessarily 2D due to
the requirement of mass conservation (V-(p#/) = 0). Indeed, a stagnation
point can clearly not be reached by means of a stationary 1D flow (neither
a shock nor a continuous flow), because a 1D flow can not bring pv, down
from a finite value to a value of zero at the stagnation point.

As an illustrative example of a stationary 2D stagnation point flow,
we show in Fig. 6.12 how a stagnation point is reached in a traditional
pressure-dominated single-front MHD bow shock flow, which is obtained
by choosing the inflow velocity outside of the switch-on region (Eq. 6.3):
p=1,p=02 v, =2,v, =0, B, =1, and By = 0 at the inflow,
resulting in inflow Mach numbers M4, = 2 and M, = 2+/3 (8 = 0.4).
The stagnation point is reached in a continuous (constant-entropy) 2D
compressive diverging flow region behind the shock front.

In our simulation, the 2D stagnation point flow is complicated by the
presence of intermediate shock D—-G-H-I. Fig. 6.2 shows that point I lies
very close to the cylinder. In this small region between point I and the
cylinder we expect the 2D stagnation point flow. Because this region is
extremely small compared to the dimensions of the other features in our
simulation, we could not avoid a comparatively low numerical resolution
in this region. Moreover, the curvature of the intermediate shock front
at point I is very large and may even be singular, which makes the post-
shock flow 2D and complicates the interpretation of the shock as a 1D
shock.
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Figure 6.12: Simulation of a pressure-dominated MHD flow with a single-
front bow shock (inflow Mach numbers M4, = 2 and M, = 2+/3, and
B = 0.4). (a) Flow near the cylinder. (b) Stagnation line variables.
Behind the shock, the flow variables are brought to their stagnation
point values in a continuous compressive diverging flow. B, is dashed,
v, dotted, s dash—dotted, and p full.

All these complications make the interpretation of the simulation
results near the cylinder quite difficult. However, we can propose the
following possible interpretation for the variation of the flow variables
near the cylinder in Fig. 6.11.

The location of the small jump in entropy in Fig. 6.11e close to the
cylinder can reasonably be identified with the point I of Fig. 6.9, where
the intermediate shock D-G—H-I intersects the stagnation line. This
entropy jump is located at a finite distance from the cylinder, which
means that there is a small but finite standoff distance between the shock
and the cylinder. In the small constant-entropy region between point I
and the cylinder, we can expect a continuous 2D stagnation point flow
analogous to the flow in Fig. 6.12. The variation of p, v,, and B, close
to the cylinder in Fig. 6.11 appears to be consistent with the continuous
variation of these quantities in the stagnation point flow of Fig. 6.12.

Although not conclusively proven, this interpretation of the flow near
the cylinder in Fig. 6.11 as a weak shock followed by a 2D compressive
diverging stagnation point flow is physically reasonable since it is con-
sistent with the simulation data and since it establishes a clear analogy
with less complicated stagnation point flows. It will be interesting to
see if future simulations with more powerful numerical techniques will
confirm all the details of this interpretation of the highly complicated
stagnation point flow.

In Fig. 6.13 we show plots of some variables along several instruc-
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Figure 6.13: Alfvénic Mach number (a,d,g,j), pressure (b,e,hk), and
magnetic field (c,f,i,]) along various cuts through the simulation domain.
(a-c) Cut along the lower dotted line cutting the leading front in Fig. 6.9.
(The lower axis shows the distance to the center of the cylinder.) We pass
the fast shock, and then the intermediate shock followed by a rarefaction.
(d-f) Cut along the upper dotted line cutting the leading front in Fig.
6.9. We pass the fast shock, and then the intermediate shock. (g-i)
Cut along the lower dotted line cutting the leading front in Fig. 6.10.
We cross the intermediate shock. (j-1) Cut along the upper dotted line
cutting the leading front in Fig. 6.10. We cross the intermediate shock.

tive 1D cuts. Figs. 6.13a-c show a cut along the lower dotted line cut-
ting the leading front in Fig. 6.9 under an angle of # = 13.82 degrees.
First we cross the fast shock. Then the intermediate shock brings the
Alfvénic Mach number from above one to under one. Figs. 6.13d-f show
a cut along the upper dotted line cutting the leading front in Fig. 6.9
(@ = 29.25). Again we cross the fast shock first. Then we cross the
intermediate shock, with the upstream Alfvénic Mach number close to
one. Figs. 6.13g-i show a cut along the lower dotted line cutting the
leading front in Fig. 6.10 (§ = 47.66). We cross only one shock, which
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is of the intermediate type, because it brings the Alfvénic Mach number
from above one to under one. Figs. 6.13j-1 show a cut along the upper
dotted line cutting the leading front in Fig. 6.10 (# = 53.40). We cross
the same intermediate shock.
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Figure 6.14: Cut along the vertical dotted line in Fig. 6.9. We first cross
the tangential discontinuity, with a jump in pressure but not in total
pressure. Then we pass the intermediate shock.

In Fig. 6.14 we show plots of some variables along the vertical dotted
line in Fig. 6.9. Where the pressure jumps for the first time, we pass
through the tangential discontinuity (a little more smeared out than the
shocks), as is proved by the continuity of the total pressure here. The
next jump is the intermediate shock, with an upstream Alfvénic Mach
number close to one. (This profile is a little smeared out because we
cross it at a large angle).

It is interesting to look for the presence of 1=2-3 and 2-3=4 sonic
intermediate shocks in our 2D simulation results, as they are a manifes-
tation of the non-convex nature of the MHD equations, as was explained
in Sec. 3.3.5. Bear in mind that we call a shock ‘sonic’ whenever the
normal plasma speed equals any of the MHD wave speeds on the up-
stream or the downstream side. We look for shocks with a conspicuous
rarefaction attached, as seen in compound shocks of the time-dependent
non-convex MHD system, and investigate if the shock is sonic where the
rarefaction is attached.

Let us first consider the 1-4 hydrodynamic intermediate shock on the
stagnation streamline. It is followed by a slow rarefaction (Fig. 6.11), but
Fig. 6.11f-h shows clearly that the flow is not sonic where the rarefaction
is attached to the shock. This shock is thus not of the sonic type, and in
this example the rarefaction is a 2D effect, as noted before. It serves to
bring the Alfvénic Mach number from its downstream value lower than
one to a value close to one, necessary for the shock at point I.

Intermediate shock C-D (Fig. 6.13h-i) is followed by a rarefaction, in
contrast to intermediate shock B-C (Fig. 6.13k-1; the different behavior
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of the post-shock magnetic field is striking). Shock D-G-H-T seems to
be followed by a rarefaction as well (Figs. 6.13e-f, 6.14d). For all of
these structures, the flow is, however, not sonic where the rarefaction is
attached to the shock.

(a) pressure
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Figure 6.15: Cut along the solid line normal to the intermediate shock
E-G in Fig. 6.9. The intermediate shock is preceded and followed by
rarefaction regions. The normal fast Mach number equals one where the
upstream (left) rarefaction is attached to the shock. The normal slow
Mach number equals one where the downstream rarefaction is attached
to the shock. The intermediate shock is thus a 1=2-3=4 shock.

Finally intermediate shock E-G remains to be investigated. This
shock is followed by a distinct rarefaction and preceded by another
(weak) rarefaction (Fig. 6.13b-c and Fig. 6.15a). A detailed analysis
of the speeds along the solid line normal to shock E-G in Fig. 6.9 shows
that the intermediate shock is a 1=2-3=4 shock, as the downstream nor-
mal slow Mach number and the upstream normal fast Mach number are
both equal to one (Fig. 6.15b-c). The flow is thus sonic on both sides
of the shock. This is a clear manifestation of the non-convexity of the
MHD equations in a steady state 2D flow.

It has been shown recently by Myong and Roe [109, 110] that this
type of 1=2-3=4 shock can be present in the analytical solution of planar
zt Riemann problems, embedded in a double zt compound wave. The
stationary 2D rarefaction—shock-rarefaction structure of our zy simula-
tion result could be more closely related to this double zt compound
wave, if the steady state rarefactions preceding and following the sonic
shock are simple waves, and not merely 2D effects similar to the rar-
efaction following the hydrodynamic shock on the stagnation line. To
investigate this, it is interesting to compare the characteristic structure of
this 2D stationary structure in the zy plane to the characteristic struc-
ture of the double compound wave in the zt plane, which has simple
wave rarefactions. This is investigated in Sec. 6.4 using the character-
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istic properties of the steady state MHD equations. There it is shown
that shock E-G is a genuine stationary double compound shock, mathe-
matically completely analogous to the time-dependent double compound
shock analyzed by Myong and Roe.

6.3 Parameter study of symmetrical bow
shock flows

In this Section we report on a detailed parameter study of symmetrical
field-aligned bow shock flows around a cylinder. We study how the shape
and topology of the bow shock solution which was presented in the pre-
vious Section for one particular set of parameter values in the switch-on
domain, changes when parameters are varied within the switch-on do-
main and when parameters are taken outside the switch-on domain. We
present numerical simulation results for the values of the parameters 3
and M 4, which are indicated by the triangles and diamonds in Fig. 6.3a.

Fig. 6.16 shows global views of the bow shock solutions for a fixed
B = 0.4 with My, varying from 1.1 to 1.9. We take c4, = 1 in
the inflow, such that M4, = wv,. It follows from Eq. 6.3 that the
critical Alfvénic Mach number under which switch-on shocks can ex-
ist is M4, = 1.732. For inflow speeds much faster than the Alfvén
speed (ca, = 1), the upstream flow is pressure-dominated (no switch-on
shocks). For pressure-dominated upstream parameters the bow shock
has the traditional single-front topology that is also encountered in hy-
drodynamic bow shocks. When the inflow speed drops below 1.732,
however, the flow becomes magnetically dominated (switch-on shocks
occur). A concave-outward dimple forms in the leading shock front and
a second shock front appears. This change in shape and topology of the
bow shock flow thus happens exactly when the inflow speed becomes
lower than the critical speed under which switch-on shocks are possible.

Fig. 6.17 shows a detailed representation of the flow near the stag-
nation streamline for the bow shock solutions with varying inflow speed
of Fig. 6.16. For inflow velocities below the critical switch-on value for
the inflow speed (M4, < 1.732), the leading shock front has a dimpled
shape. The dimpling becomes much more pronounced as the inflow ve-
locity decreases. Below the critical inflow speed, a second shock front
appears which trails the leading shock front, and additional disconti-
nuities are present between the two shock fronts. All the shocks and
discontinuities present in the topology sketch of Fig. 6.7 seem to be
present in all the flows. Inspection of the way in which the field lines are
refracted when they pass the shocks, reveals that the shocks in all the
flows are of the same type as the shocks in the model flow of Fig. 6.2
which was discussed in detail in Sec. 6.2, and this conclusion is confirmed
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Figure 6.16: Stationary bow shock solutions for fixed § = 0.4 and for
varying inflow speeds (80 x 80 grids, « € [-0.35,0], y € [—2,2]). Density
contours pile up in shocks, and streamlines come in horizontally from
the left. For inflow speeds much faster than the Alfvén speed (ca, =
1), the upstream plasma is pressure-dominated (no switch-on shocks),
and the bow shock has the traditional single-front topology that is also
encountered in hydrodynamic bow shocks. When the inflow speed drops
below 1.732 however, the inflow becomes magnetically dominated, which
means that switch-on shocks occur. For these magnetically dominated
inflows a concave-outward dimple forms in the leading shock front and

a second shock front appears.

by detailed analysis of upstream and downstream Mach numbers, along
the lines of the detailed analysis in the previous Section. For smaller
inflow velocities, the central interaction region becomes smaller and the
leading shocks become weaker while the trailing shock becomes stronger.
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Figure 6.17: Detailed representation of the flow near the stagnation
streamline for the bow shock solutions with varying inflow speed and
fixed 8 = 0.4 (80 x 80 grids). Density contours pile up in shocks, and
streamlines come in horizontally from the left. When the upstream flow
is magnetically dominated, the leading shock front dimples and a second
shock front appears. Additional discontinuities can be seen between the
two shock fronts.

As a consequence, the shock E-G of Fig. 6.7 can not be identified for
the flow with v, = 1.1 with the resolution of Fig. 6.17. More detailed
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simulations and plots (not shown) do, however, show that shock E-G is
present also for the flow with v, = 1.1. For inflow velocity v, = 1.7,
close to the critical velocity of v, = 1.732, the secondary shock fronts
become weak and shock E-G can hardly be identified with the resolu-
tion of Fig. 6.17. For v, = 1.8 the secondary (stationary) waves are
still present, but they have not steepened into shocks any more. The
secondary waves have disappeared almost completely for v, = 1.9, and
the simple single-front bow shock topology of Fig. 6.6a is recovered. We
can thus conclude that for all the flows with magnetically dominated
upstream parameters (1 < My, < 1.732), the topology of Fig. 6.7 is
a universal feature. The shapes, sizes and shock strengths of the shock
parts present in the topology of Fig. 6.7, vary when M 4, is varied within
the switch-on region.

The dimple effect is more pronounced for smaller inflow Alfvénic
Mach number M4,. This can be explained by the fact that when for
magnetically dominated upstream flows v, is increased towards vepi,
the maximum angle between the upstream magnetic field and the shock
normal for which intermediate shocks can occur decreases. This means
that for faster upstream flows, point D in Fig. 6.7, where the shock is of
1-3=4 type and beyond which the shock front splits up, lies closer to the
perpendicular nose point B. The 1-3 intermediate shock segment which
forms part of the dimple, is thus shorter and less deep for higher v,. For
instance, Figs. 3.9 and 3.10 show that for v, = 1.2 the angle between
the horizontal and the 1-3 shock front at point D is approximately 16°,
whereas for v, = 1.5 this angle is only 3°. This expected behavior is
indeed observed in Figs. 6.16 and 6.17.

Above we discussed how the flow manages to go around the obstruct-
ing cylinder by adjusting the bow shock shape and topology to the inflow
Alfvénic Mach number. Hereby the plasma § value was fixed to 0.4. Be-
low we fix the inflow Alfvénic Mach number and verify how the flow
modifies the geometrical structure of the bow shock when the value of
the plasma [ is varied.

In Fig. 6.18 we show global views of the bow shock solutions for a
fixed M4, = 1.5 and (8 varying from 0.1 to 0.9. It follows from Eq.
6.3 that the critical plasma (3 under which switch-on shocks can exist is
B = 0.7. For plasma g values larger than the critical value of g = 0.7,
the upstream flow is pressure-dominated and the bow shock has the tra-
ditional single-front topology that is also encountered in hydrodynamic
bow shocks. When the plasma 8 drops below 0.7, however, the inflow
becomes magnetically dominated. A concave-outward dimple forms in
the leading shock front and a second shock front appears. This second
shock front thus appears precisely when the plasma (3 becomes lower
than the critical plasma § under which switch-on shocks are possible.

Fig. 6.19 shows a detailed representation of the flow near the stag-
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Figure 6.18: Stationary bow shock solutions for fixed M4, = 1.5 and
for varying plasma (3 (80 x 80 grids, x € [-0.35,0], y € [—1.4,1.4]).
Density contours pile up in shocks, and streamlines come in horizon-
tally from the left. For plasma (3 values larger than the critical value
of B = 0.7 the upstream flow is pressure-dominated, and the bow shock
has the traditional single-front topology that is also encountered in hy-
drodynamic bow shocks. When the plasma (3 drops below 0.7 however,
the upstream flow becomes magnetically dominated (switch-on shocks
occur). A concave-outward dimple forms in the leading shock front and
a second shock front appears.

nation streamline for the bow shock solutions with varying plasma £ of
Fig. 6.18. We find again that the topology of Fig. 6.7 is universal for
flows with plasma 3 values below the critical switch-on value (8 < 0.7).
The dimpling becomes more pronounced as the plasma [ is decreased.
For smaller plasma [ values, the central interaction region in front of
the cylinder becomes smaller. As a consequence, the shock E-G of
Fig. 6.7 can not be identified for the flow with 8 = 0.1 with the res-
olution of Fig. 6.19. More detailed plots (not shown) do, however, show
that shock E-G is present also for the flow with 8 = 0.1. For plasma
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Figure 6.19: Detailed representation of the flow near the stagnation
streamline for the bow shock solutions with varying plasma ( and for
fixed M 4, = 1.5 (80 x 80 grids). Density contours pile up in shocks, and
streamlines come in horizontally from the left. Under the critical switch-
on value for the plasma 3, the leading shock front dimples and a second
shock front appears. Additional discontinuities can be seen between the
two shock fronts.

B = 0.7, which is the critical value, the secondary (stationary) wave has
only nearly steepened into a shock. Shock E-G can not be identified
for this critical value of the parameters. For § = 0.8 the secondary
waves are still present, but they have not steepened into shocks any
more. The secondary waves are even weaker for 5 = 0.9, and the simple
single-front bow shock topology of Fig. 6.6a is recovered. We can thus
conclude that for all the flows with magnetically dominated upstream
states (8 < 0.7), the topology of Fig. 6.7 is recovered. The shapes, sizes
and shock strengths of the shock parts present in the topology of Fig. 6.7,
vary when f is varied in the switch-on regime. The dimple effect is more
pronounced for smaller 3.

As a remark, we can say that in the parameter regime under con-
sideration, the stand-off distance of the bow shocks on the stagnation
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line [114] does not seem to be influenced by changing M4, while keep-
ing B constant (Fig. 6.17), whereas the stand-off distance increases for
increasing 3 while M4, is kept constant (Fig. 6.19). This is consistent
with observations of planetary bow shocks [114].

The main conclusion from the parameter study described in this Sec-
tion is that there are two basic topologies for symmetrical 2D MHD
bow shock flows. When the magnetic field is strong enough for the
intrinsically magnetic effect of switch-on shocks to occur, we call the
upstream flow magnetically dominated. When the magnetic field is too
weak for switch-on shocks to occur, we call the upstream flow pressure-
dominated. For pressure-dominated upstream flows a single-front topol-
ogy is obtained which is the same as the well-known topology of hydro-
dynamic bow shock flows. We call this topology the pressure-dominated
MHD bow shock topology, and we say that the MHD bow shock flow
is pressure-dominated. For magnetically dominated upstream flows, we
find the complex bow shock topology sketched in Fig. 6.7. We call this
topology the magnetically dominated MHD bow shock topology, and we
say that the MHD bow shock flow is magnetically dominated. The bifur-
cation between the two basic topologies occurs precisely on the border
between the pressure-dominated and magnetically dominated parameter
regimes as defined in terms of the occurrence of switch-on shocks. The
complexity of the magnetically dominated MHD bow shock topology is
due to intrinsically magnetic effects. The magnetically dominated MHD
bow shock topology was previously unknown.

The existence of two basic MHD bow shock topologies proven in this
Section is an a posteriori justification for the terminology of magneti-
cally dominated versus pressure-dominated upstream states, bow shock
flows and bow shock flow topologies which we have been using since the
Introductory Chapter. In the next Chapter we show, although less exten-
sively than for the 2D case, that the 3D flow of a superfast MHD plasma
over a sphere also exhibits two basic bow shock topologies, with a clear
bifurcation again arising precisely on the border between the pressure-
dominated and magnetically dominated parameter regimes. The termi-
nology we use to refer to these two basic bow shock flow topologies is
thus universally valid for MHD bow shock flows in 2D and in 3D.

6.4 Characteristic analysis and steady com-
pound shocks

In the present Section we further investigate the complicated magnet-
ically dominated bow shock flow discussed in Sec. 6.2 using the char-
acteristic properties of the steady MHD equations in two space dimen-
sions (in the zy plane). The theory of MHD characteristics described



172 Chapter 6. Symmetrical two-dimensional flow around a cylinder

in Sec. 3.2 is used extensively. A geometric view of this steady flow is
presented in terms of transition lines, cusping of characteristics, limit-
ing lines, and elliptic and hyperbolic regions in the flow. This analysis
yields a clear insight into a complicated nonlinear MHD flow with in-
teracting shocks, and the consistency of the interpretation in terms of
characteristics further validates the numerical results discussed above.
In the recent literature, characteristic analysis of steady MHD flows has
been applied to the study of astrophysical flows [62, 131, 163, 19] and
stationary symmetric and transonic flows [93, 53]. In these papers an-
alytical solutions of the steady MHD equations in two dimensions (2D)
are obtained under various assumptions of self-similarity. The presence
of shocks and the absence of any self-similarity assumption in the bow
shock flows to be analyzed in this Section are new elements not treated
in earlier characteristic analysis of MHD flows [62, 131, 163, 19, 93, 53].

In Sec. 6.2, the planar magnetically dominated bow shock solution
was shown to contain an intermediate shock which is preceded and fol-
lowed by steady rarefactions with the particular property that the normal
plasma velocity is equal to a normal characteristic speed at the points
where the rarefactions are attached to the shock (Fig. 6.15). This is
one of the basic properties of an x¢ compound shock [90, 12] (see Sec.
3.3.5). However, the correspondence between zt compound shocks (with
an attached simple wave rarefaction which is continuously expanding in
time), and steady wave structures in two space dimensions (zy), is not
immediately clear and does not follow trivially from the respective gov-
erning equations, although a general conceptual analogy can be expected
between wave structures in the zt and the xy planes, such as demon-
strated for compressible fluid dynamics [160]. Such a correspondence has
also been worked out analytically for simple MHD waves in the zt and
the zy planes [85]. In the present Section we explore the correspondence
between complex wave patterns in the xt and the zy planes using charac-
teristic properties of the steady MHD equations in two space dimensions

(zy)-

The characteristic analysis of the magnetically dominated multiple-
front MHD bow shock flow is quite complicated, so it is useful to gain
some insight from more simple configurations first. We start out with the
simple case of a traditional hydrodynamic bow shock flow, followed by a
discussion of the characteristic analysis of a pressure-dominated single-
front planar MHD bow shock flow, before we proceed with the case
of the magnetically dominated multiple-front planar MHD bow shock
flow. We relate the results of the analysis of this flow to recent findings
on stationary symmetric flows [53] and on zt MHD compound shocks
[12, 110].
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6.4.1 Hydrodynamic bow shock
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Figure 6.20: Bow shock flow for the hydrodynamic case (v = 2, B, =

0).

Fig. 6.20 shows the simulation result of a hydrodynamic bow shock
with v, = 2 and B, = 0 for the incoming flow. We take p = 1 and
p = 0.2 for the inflow of all the bow shock flows presented in Sec. 6.4.
The shock is clearly seen where the density contours (thin solid lines) are
piling up. The streamlines (dotted) are double characteristics, and s and
hs are the corresponding Riemann Invariants along these characteristics.
The thick solid lines are the two families of hydrodynamic characteristics
(Mach lines [20]) making equal angles ¢ with the streamlines. The thick
dashed transition line is the M = 1 contour, separating the subsonic
elliptic region close to the cylinder from the rest of the flow, which is
supersonic and thus hyperbolic. The Mach lines are perpendicular to the
streamlines at the transition line, corresponding to case (b) of Fig. 3.5.
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Limiting characteristics [20, 53] (or limiting lines) are the convex hulls of
characteristics which appear when characteristics of one family start to
pile up and develop those convex hulls. Limiting characteristics can not
exist in real flows, unless they are perpendicular to the streamlines. They
are generally avoided through the appearance of shocks [20, 53], because
at the location of the limiting characteristic the solution would be multi-
valued. In the bow shock flow of Fig. 6.20 it is indeed seen that limiting
lines are not present, but that shocks bring the flow from the upstream
supersonic state to a downstream elliptic (close to the stagnation point)
or hyperbolic (further away from the stagnation point) state [53].

6.4.2 Pressure-dominated MHD bow shock

In Fig. 3.6 we have shown the simulation result of a pressure-dominated
fast MHD bow shock with v, = 2 and B, = 1 for the incoming flow.
The inflow plasma (3 is low, but these inflow parameters do not allow for
switch-on shocks, so that we get a simple traditional single-front MHD
bow shock. The characteristic structure of this flow, which was discussed
in Sec. 3.2, is very similar to the structure of the hydrodynamic flow. The
angle 1 is a little larger, such that the bow shock and the characteristics
are opened up a little compared to the hydrodynamic case. The influence
of the magnetic field on this angle is clear: the angle is always larger than
the corresponding hydrodynamic angle (B, = 0), as

M? + M35 -1
M2M?3

1

7 (6.4)

sin2 Q/JMHD = Z sin2 'QZJHD =

for supersonic flow (M? > 1). The comments regarding limiting char-

acteristics that were given in the hydrodynamic case, also apply to this
fast MHD bow shock flow.

6.4.3 Magnetically dominated MHD bow shock

Fig. 6.21 shows the simulation result of a magnetically dominated MHD
bow shock flow with v, = 1.5 and B, = 1 for the incoming flow. This
is the flow discussed in Sec. 6.2. The angle 7 in the upstream part
is larger than in the single-front case of Sec. 6.4.2. The bow shock is
opened up even more and a ‘dimple’ appears in the shock front near the
stagnation streamline, where the front is now curved convex outward
from the cylinder. A second shock front is seen to have separated from
the leading shock front. Additional discontinuities can be seen between
these two shock fronts.

These complex shock interaction phenomena lead to a flow which is
quite a bit more complicated in terms of characteristic analysis. The
dotted lines again indicate the streamlines, and the thick solid lines
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Figure 6.21: Magnetically dominated MHD bow shock flow (v, =
1.5, B, = 1). Density contours (thin solid lines) pile up in the shocks.
The streamlines (which are also magnetic field lines) are dotted. The
thick solid lines are two families of fast characteristics making equal an-
gles with the streamlines. Several elliptic and hyperbolic regions are
present.

indicate the two families of characteristics which are of the slow or fast
type depending on the location in the flow. Several separate elliptic
regions can be seen.

Fig. 6.22 presents an analysis of the hyperbolicity of the flow. The
thick solid line is the 8* = 1 contour. The M = 1 contour (thick dashed),
the M4 = 1 contour (thick dotted), and the M;ysp = 1 contour (thick
dash-dotted), are the transition lines between elliptic an hyperbolic re-
gions. We can label the regions according to the classification of Fig.
3.4. The incoming flow is hyperbolic of the type Hf2. Downstream of
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Figure 6.22: Elliptic and hyperbolic regions in the bow shock flow. Den-
sity contours (thin solid lines) pile up in the shocks. The * =1 contour
(thick solid), the M = 1 contour (thick dashed), the My = 1 contour
(thick dotted), and the M¢ysp = 1 contour (thick dash-dotted) separate
the different regions.

the leading and the second shock fronts, and starting from above, the
flow is first hyperbolic of the type Hf2, and becoming hyperbolic of the
type Hfl as the 8* =1 contour is crossed. Crossing the M = 1 contour
brings us into an elliptic region of type Efsl, followed by a hyperbolic
region of type Hsl when the M4 = 1 contour is crossed. In Fig. 6.21
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Figure 6.23: Elliptic and hyperbolic regions in the bow shock flow near
the stagnation streamline. Density contours (thin solid lines) pile up
in the shocks. The 3* = 1 contour (thick solid), the M = 1 contour
(thick dashed), the M4 = 1 contour (thick dotted), and the Meysp = 1
contour (thick dash-dotted) separate the different regions. Region a is
Hsl, region b is Efsl, and region c is Efs2.

we see that the characteristics are perpendicular to the streamlines at
these transition lines. Further down, we reach the elliptic region of type
Ecl as the Mc,s, = 1 contour is crossed. At this transition line, the
characteristics show the expected cusping behavior of Fig. 3.5¢c, as can
be seen in Fig. 6.21.

In Fig. 6.23 we show a more detailed plot of the interaction region
near the stagnation streamline. The incoming flow is Hf2, and it remains
Hf2 through the fast shock DE. Shock EG brings the flow into a Hsl
region (region a), as we cross the 8* =1, M =1, and M4 = 1 contours
simultaneously. From region a, crossing the M4 = 1 contour leads us to
a Efsl region (region b), and crossing the 8* = 1 and M = 1 contours
leads to a Efs2 region (region c). Near the stagnation streamline at the
bottom, shock EF brings the flow into a Hsl region, as the §* = 1,
M =1, and M4 = 1 contours are crossed simultaneously. Enclosed
between regions c, b, and the Hsl region at the bottom, we find a Hf2
region.

As could be expected, we do not encounter limiting lines in this flow,
but instead we find shocks. Shock transitions exist between two hyper-
bolic regions (for example, from Hf2 to Hf2 through shock DE, and from
Hf2 to Hsl through shocks EG, EF, and BD), between a hyperbolic and
an elliptic region (for example, from Hf2 to Efs1 above point B (M4 =1
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downstream of point B), and from Hf2 to Ecl through shock DG), and
apparently also between elliptic regions of different types (from region b
(Efsl) to Ecl through shock GH), although we have to remain careful
with our conclusions as the numerical resolution is not very high in this
small region. This last type of shock transition from elliptic to ellip-
tic may be surprising at first sight, but a similar theoretical result has
recently been reported, based on explicit solutions for stationary sym-
metric self-similar MHD flows, stating that this type of shock transition
is possible [53]. We can conclude that the flow configuration, charac-
teristic analysis, and types of shock transitions of our interacting bow
shock solution are illustrations and 2D extensions of many of the re-
cent theoretical results obtained from analysis of stationary symmetric
self-similar MHD flows [53].

We now investigate if we can identify steady compound shocks in the
complex bow shock flow. A steady compound shock should have the fol-
lowing properties, based on carrying over the geometry of characteristics
from the zt case to the xzy case. First, the flow should be hyperbolic on
the two sides of the shock. Second, the shock should have a rarefaction
attached to it which is a simple wave with one family of characteristics
consisting of straight lines. Third, the xy characteristics should be par-
allel to the shock in the xy plane, such that the flow is sonic in the xy
plane where the shock is attached to the rarefaction. We now analyze
several wave structures in the simulated bow shock flow to see if they
fulfill these criteria.
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Figure 6.24: Two families of characteristics (thick solid) near the shock
EF. The thin lines are density contours. The characteristics enter the
shock, so this is not a compound shock.

We start with the leading shock at the stagnation streamline. Fig.
6.11a suggests that this could be a steady compound shock. Fig. 6.23



6.4 Characteristic analysis and steady compound shocks

179

confirms that the flow is hyperbolic on both sides of the shock, but the
behavior of the two characteristic families in Fig. 6.24 shows that this is
not a steady compound shock as we have defined above. Neither of the
characteristics is parallel to the shock where the rarefaction is attached
to the shock, and the two families are not straight but interact in the
rarefaction which is thus not a simple wave. This conclusion is consistent
with the discussion in Sec. 6.2, where it was shown that this rarefaction
is of a different physical origin, being a 2D effect associated with the
converging flow behind the shock. The plasma speed equals neither of
the wave speeds where the rarefactions are attached to the shock, as was
shown in Fig. 6.11f-h.

Fig. 6.24 also reveals another interesting phenomenon. As the pres-
sure in the rarefaction in Fig. 6.11b drops when going to the right, the
characteristics in 6.24 straighten and form one coinciding limiting charac-
teristic where the pressure reaches a constant state after the rarefaction
(at approximately z = —0.185). This limiting characteristic is allowed
because the streamlines are perpendicular to it. This limiting line is a
locus of weak discontinuity, where the pressure is continuous, but the
slope of the pressure has a discontinuity. This weak discontinuity con-
nects the rarefaction region with the uniform flow region behind it, and
Fig. 6.11h shows that the flow is indeed sonic at the location of this
weak discontinuity. The rarefaction region bordering the uniform region
is, however, not a simple wave region, such that this special configura-
tion with a limiting characteristic seems to be an exception to the rule
that a uniform region in a stationary 2D flow can only be bordered by a
simple wave region [20].

We now turn our attention to intermediate shock EG. Fig. 6.15 sug-
gests that this could be a steady compound shock with an embedded
1=2—3=4 intermediate shock. The behavior of the two characteristic
families shown in Fig. 6.25, shows that the flow is hyperbolic on both
sides of the shock. The second family of characteristics (Fig. 6.25b) is
parallel to the shock on the right, and goes into the shock on the left.
The characteristics of this family are straight on the right of the shock,
indicating a simple centered slow rarefaction wave with the characteris-
tics apparently converging in point G. The first family of characteristics
(Fig. 6.25a) is parallel to the shock on the left, and goes into the shock on
the right. The characteristics of this family are straight on the left of the
shock. The intermediate shock is thus preceded and followed by simple
rarefaction waves which are sonic at the point where they are attached
to the shock. This rarefaction-shock-rarefaction structure has thus all
the defining properties of a compound shock. This compound shock is
sonic on the two sides, so we can call this newly identified steady wave
structure a double steady compound shock (Fig. 6.26b). The analogous
xt structure has been predicted theoretically recently in the context of xt
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Figure 6.25: Two families of characteristics (thick solid) near the inter-
mediate shock EG. The thin lines are density contours. On each side of
the shock, the characteristics of one family are straight lines and become
parallel to the shock, so this is a double compound shock.

(a) (b)

Figure 6.26: (a) Sketch of the recently theoretically predicted double xt
compound shock. The shock (thick) is preceded and followed by rarefac-
tions (thin dotted), which are attached to the shock with characteristics
parallel to the shock. (b) Sketch of the topology of the characteristics
near the double xy compound shock which is present in our simula-
tion results. The shock (thick) is preceded and followed by simple wave
rarefaction regions, which are attached to the shock with straight char-
acteristics parallel to the shock.

compound shocks [110] (Fig. 6.26a). It has not been identified yet in zt
simulations, but it is noteworthy that we encounter the analogous steady
xy structure in our 2D simulation results. This new steady structure is a
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manifestation of the non-convex nature of the MHD equations, just like
the sonic intermediate shocks embedded in 2t time-dependent compound
shocks are a manifestation of this property. We have thus established
by explicit example a remarkably complete analogy between the char-
acteristic structure of time-dependent compound waves in the zt plane
and the characteristic structure of steady compound waves in the xy
plane. Following Myong and Roe [110], we argue that this steady com-
pound shock occurs as a substitute for a 2—3 intermediate shock which
is undercompressive and inadmissible in the planar case (see Chap. 9).

We suggest the following physical relationship between the two kinds
of compound shocks, those of time-dependent flows in the xt plane and
those of steady flows in the zy plane. If an initial plane compound shock
taken in the time-dependent sense and moving in zyt space with a sonic
fast rarefaction (which is expanding in time) attached to it, were to slow
down and become steady, then such a structure could conceivably retain
the property that the now steady rarefaction is sonic (v; = ¢y ) at the
point where it is attached to the shock. This is precisely the defining
property of a fast characteristic in steady xy space (see Sec. 3.2), which
means that all the points at the locus where the rarefaction is attached
to the shock with a sonic speed, lie on a steady xy characteristic parallel
to the shock, thus explaining that the steady xy characteristic is parallel
to the shock where the rarefaction is attached to it. This observation
clarifies a natural relationship between zt and xy compound shocks,
which could possibly be further explored by explicit numerical simulation
of the above proposed scenario. It also explains why the flow in terms of
xt wave speeds is sonic where the rarefactions are attached to the shocks
in steady compound shocks, as can be seen in Fig. 6.15bc.

6.5 Symmetry and stability

In this Section we investigate the global stability against perturbations of
the symmetrical magnetically dominated bow shock solutions discussed
in the previous sections.

All the simulation results shown in this Chapter up till now were
calculated on a grid restricted to the upper left quadrant with the top-
bottom symmetry explicitly imposed. As mentioned before, this flow
in the upper quadrant can be interpreted physically as the flow over a
perfectly conducting plate with a semi-circular bump or corner. The
numerical results seemed to indicate that the obtained flow topology
is stable against perturbations, and in this Section we give some more
elements to support this.

The full problem of a flow around a cylinder should in theory have
the same symmetrical solution, because the initial condition and the
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Figure 6.27: LF flow solution and convergence for the symmetrical bow
shock problem on a randomly perturbed grid (80 x 80). The grid shown
in (a) is a grid of cell centers.

boundary conditions are symmetrical, and the MHD equations should
conserve this symmetry. However, the stationary solution and its topol-
ogy may be globally unstable against non-symmetrical perturbations.
Such an instability might be triggered by explicit non-symmetrical per-
turbations, but also by non-symmetrical grids or a numerical code which
is not perfectly symmetrical.

Fig. 6.27 shows that we obtain the complex bow shock topology for a
flow restricted to the upper quadrant when we perturb the corner points
of the finite volume cells in a random way, and that the solution con-
verges to a perfect steady state. The corner points which lie on the
boundary of the simulation domain were not perturbed. Fig. 6.28, how-
ever, shows that the full problem of the magnetically dominated flow
around a cylinder in the switch-on regime without imposed symmetry
leads to a very a-symmetrical unsteady flow when the grid is randomly
perturbed. This is an indication that the symmetrical solution is unsta-
ble against non-symmetrical perturbations, although it is not a proof.

Another indication is given by the following observations. We con-
sider the flow around a cylinder and also simulate the flow behind the
cylinder. Fig. 6.29 shows the bow shock flows for inflow parameters
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Figure 6.28: LF flow solution (120 x 240 grid) and convergence for the
magnetically dominated bow shock problem on a randomly perturbed
full grid without explicitly imposed symmetry.

p=1p=0.2and v, = 1.5, simulated on the whole domain. The flow
in the wake of the cylinder is subfast, so we use the characteristic bound-
ary conditions described in Sec. 4.2.6 for the outer boundary. Fig. 6.29a
shows the hydrodynamic case (B, = 0), and Fig. 6.29b shows the case of
a pressure-dominated MHD bow shock (B, = 0.5). The two flows show
the traditional pressure-dominated concave-inward bow shock shape and
topology. We have investigated the stability of these flows against non-
symmetrical perturbations by adding a small uniform upward or down-
ward vertical velocity v, = £0.01 to the initial condition or by restarting
the simulation from the stationary solutions of Fig. 6.30 perturbed by
such a vertical velocity. In all these cases the flow returned to the sta-
tionary solutions of Fig. 6.29, which indicates that these traditional bow
shock topologies are stable against non-symmetrical perturbations.

Fig. 6.30 shows the bow shock flows for magnetically dominated in-
flow parameters p = 1, p = 0.2, v, = 1.5 and B, = 1, such that
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Figure 6.29: Bow shock flows around a cylinder. (a) Hydrodynamic flow:
M, = 2.6 and B, = 0. (b) Pressure-dominated MHD flow: M, = 2.6,

M, = 3 and B, = 0.5
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Figure 6.30: Magnetically dominated MHD bow shock flow. (a) Sym-
metrical solution on a domain restricted to the upper half plane. (b)
Non-symmetrical solution obtained when starting from an initial con-
dition perturbed with a small downward velocity. (c) Non-symmetrical
solution obtained when starting from an initial condition perturbed with
a small upward velocity.

My, = 1.5. Fig. 6.30a shows the flow simulated in the upper half plane
(400 x 400 grid), with the symmetry on the stagnation line explicitly
imposed. In front of the cylinder we obtain the same stationary magnet-
ically dominated flow topology that was described earlier. Simulation
after perturbation of the initial condition or the stationary flow as de-
scribed above, leads invariably back to the same stationary solution of
Fig. 6.30a. Figs. 6.30b and c, however, show a completely different be-
havior for simulations on the full domain (100 x 200 grids). Perturbation
of the initial condition with a small uniform upward (c) or downward (b)
vertical velocity v, = £0.01, results in a flow topology which is entirely
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different from the symmetrical result. This is a strong indication that
the symmetrical solution is unstable against non-symmetrical perturba-
tions. The resulting non-symmetrical flow is intermittent. The leading
shock front is again dimpled, and the leading shock front is followed by
a secondary shock front. The V-shaped secondary feature of Fig. 6.2 is,
however, completely absent in this non-symmetrical flow result.
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Figure 6.31: (a) Non-symmetrical magnetically dominated bow shock
flow. (c—d) Cuts along a line perpendicular to the secondary shock front.

In Fig. 6.31 we determine the MHD shock type of the secondary shock
front for a simulation on a 400 x 800 grid. Figs. 6.31c—d show cuts along
a line perpendicular to this secondary shock. This shows that the shock
is an intermediate shock of the 2—4 type, close to a 2=3-4 slow switch-
off shock. This shock is thus of the same type as shock D-G-H-I in the
topology of the symmetrical solution sketched in Fig. 6.7. In the next
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Chapter we break the symmetry by introducing a small angle between
the magnetic field and the velocity for the flow over a sphere. We obtain
solutions which are topologically similar to the solutions of Figs. 6.28,
6.30 and 6.31.

We have to admit that in most cases we did not obtain the symmet-
rical solution when we performed our simulations of the non-perturbed
problem on the full grid (the left half plane or the full plane) without the
symmetry explicitly imposed at the stagnation line. This is because our
code and the grid used are not perfectly symmetrical. It is extremely
difficult to make a numerical code perfectly symmetrical, and the best
way to make sure that simulation results are symmetrical, is to impose
the symmetry explicitly, as we have done for our simulations on the
restricted domain of the upper left quadrant.

What does this conclusion on instability imply for the symmetrical
magnetically dominated bow shock topology presented and discussed in
the previous Sections? The symmetrical solution is likely to be a meta-
stable solution in the case of the full flow around a cylinder. Meta-stable
solutions are not necessarily unphysical and can arise in physical sys-
tems under special conditions — the reader may recall the case of an
undercooled fluid for instance —, but it is not likely to find the topol-
ogy of Fig. 6.7 with a V-shaped secondary front in real stationary bow
shock flows around obstacles, because small perturbations are probably
sufficient to change this topology into the topology of Fig. 6.31a.

The symmetrical solution and the detailed discussion remain relevant
for several reasons, however. First, we have shown that the symmetri-
cal solution obtained by simulation in the upper left quadrant with the
symmetry explicitly imposed is stable against perturbations as long as
the symmetry remains strongly imposed. This flow thus constitutes an
example of a stable 2D MHD flow in which various types of intermediate
and compound shocks are present, and this rich structure and topology
makes this flow certainly interesting in its own right. The physical inter-
pretation as a flow over a perfectly conducting plate with a semi-circular
bump or corner does not immediately seem to have realistic applica-
tions, but our solutions are excellent explicit examples to illustrate sim-
ilar topologies and transitions between hyperbolic and elliptic regions
involving shocks that may possibly be found in related configurations
with astrophysical relevance. Second, the non-symmetrical topology of
Figs. 6.30b and c still is typified by two conspicuous morphological prop-
erties, namely a concave-outward dimple in the leading shock front and
a secondary shock front following the leading front. These important
newly discovered properties remain intact from the symmetrical solu-
tion. Moreover, in the next Chapter we show that the V-shaped struc-
ture from the symmetrical topology can still arise in non-symmetrical
configurations as a time-dependent transient structure (as in Fig. 6.28).
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The detailed study performed in Secs. 6.2 and 6.4 of the shock types and
waves present in the symmetrical solution turns out to be very helpful in
the analysis of these time-dependent flows for the non-symmetrical case.

The reader may wonder why we do not study the stability of the sym-
metrical solution by perturbing the boundary conditions together with
the initial condition. Indeed, it seems natural to introduce a-symmetry
by introducing a small angle between the velocity and magnetic field
in the boundary conditions of the stationary problem. In a 2D flow,
however, we cannot do this because for a stationary solution in 2D the
flow necessarily has to be field-aligned when ideal walls are present in
the problem. Equivalently, and more physically, we can say that the
magnetic flux would pile up in front of the cylinder in the case of non-
field-aligned 2D flow, because field lines cannot break in ideal MHD.
The non-field-aligned 2D ideal MHD problem would thus not lead to a
steady state, since the field lines cannot be advected across the cylinder.
In the case of field-aligned flow, the magnetic flux is split into two equal
parts which can flow around the cylinder on the left and the right sides.
In the case of 3D flow over a perfectly conducting sphere, however, we
can introduce an angle between the velocity and magnetic fields. A non-
symmetrical stationary flow then results, because the field lines can slip
over the top and the bottom of the sphere in 3D space. This is studied
in the next Chapter. There we also perform a simulation for the special
case of field-aligned flow over a sphere, and we obtain a symmetrical flow
configuration with a topology similar to the topology sketched in Fig.
6.7. We can study the stability of this symmetrical solution by intro-
ducing a small angle between the fields. In fact this way to study the
stability of the symmetrical flow is more rigorous and well-defined than
the approach to stability study of the 2D flow given in this Section.

6.6 Conclusion

Let us summarize the physical lessons we have learned in this Chap-
ter. There are two basic topologies for symmetrical 2D MHD bow shock
flows. For pressure-dominated upstream flows a single-front topology
is obtained which is the same as the well-known topology of hydrody-
namic bow shock flows. For magnetically dominated upstream flows, the
intrinsically magnetic phenomena of switch-on shocks and intermediate
shocks cause the bow shock flow to assume a complex topology which
was previously unknown. This magnetically dominated flow topology
involves not only shock fronts composed of segments of different MHD
shock types, but also a multitude of interacting fronts. The manner in
which these shock types arise on a front or the presence of multiple fronts
all relate to the dynamics of information transfer by the MHD charac-
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teristic waves to guide the superfast flow around the obstacle. Put in
these general terms, the numerical work presented in this Chapter has
broadened our physical thinking on bow shock flows in MHD, in partic-
ular, and on hyperbolic systems with multiple characteristic waves, in
general.



