Chapter 5

MHD model flows with
shocks: characteristic
analysis and grid
convergence study

In this Chapter we present five model flows of increasing complexity be-
longing to the class of stationary 2D planar field-aligned MHD flows.
The purpose of this Chapter is two-fold. First, we analyze the physical
properties of these five flows using characteristic theory. This illustrates
the characteristic theory derived in Chap. 3 and how this theory can
be used to interpret MHD flows. Second, we derive grid convergence
criteria for flows belonging to this class from characteristic theory, and
grid convergence is demonstrated for the numerical simulation of the
five model flows with our numerical MHD code using the Lax-Friedrichs
scheme. It is investigated, by formal grid convergence studies of mag-
netic flux conservation and other flow quantities, whether the Powell
source term approach to control the V - B constraint leads to correct
results for this class of flows. This grid convergence study is important
because it constitutes the validation of the numerical technique used in
this dissertation. In the Appendix a model flow is presented which is not
field-aligned, and it is discussed how grid convergence can be studied for
this flow.

The main content of this Chapter will appear in [148].
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5.1 Introduction

We present five field-aligned model flows, with increasing complexity in
terms of wave features present in the flow: a fully smooth radial outflow,
an expanding tube flow with a weak discontinuity, a wedge flow with a
plane fast shock, a bow shock flow with a curved fast shock, and a noz-
zle flow with reflecting fast shocks. These model flows describe various
nonlinear wave phenomena in their most basic form. The corresponding
Euler flows have been described and used many times, but in the numer-
ical MHD literature these basic flows have not received much attention
yet. We show that this set of model problems is well suited to test grid
convergence of MHD codes, and to study in detail how the behavior of
numerical schemes changes when increasingly complex wave structures
are present in the flow. Characteristic analysis reveals basic invariants
of the flow, and these invariants can be used to test grid convergence
as they lead to analytical solutions for some combinations of the flow
variables if the incoming flow is uniform. Characteristic analysis also
provides a clear insight into the physical properties of the model flows
and into the stationary wave features present in the flows.

Although these five model problems exhibit quite a variety of flow
features, they all belong to the sub-class of stationary planar 2D field-
aligned MHD flows. Stationary flow has important applications [159,
55, 56, 150, 93, 53, 100] and any stationary 2D problem where ideal wall
boundary conditions are present automatically leads to a solution where
the magnetic field is aligned to the velocity field in the whole simulation
domain. Hence the class of stationary field-aligned flow is an important
class of MHD flows. One could even argue that 2D stationary flow prob-
lems in a finite domain with the magnetic field not aligned to the plasma
flow are rare [61, 93, 53]. It is hard to define the boundary conditions
consistently in that case. However, it is important to test MHD codes
also for non-field-aligned flow. Therefore we include one model problem
for which the magnetic field is not aligned to the plasma flow. This
model flow is constructed in a special way; the fields are actually aligned
in a rotating frame, but not in the rest frame. The analysis of this model
problem is substantially different from the analysis of the field-aligned
problems, so we prefer to present and analyze this non-field-aligned flow
problem in an Appendix, while the grid convergence results for this flow
are integrated in the discussion in the main text.

Although most model problems presented in the MHD literature only
allow for qualitative comparison and cannot be used for formal accuracy
testing, a very limited number of (mostly 1D) test problems have been
described which allow for some degree of formal accuracy testing. Stone
et al. [157, 158] present 1D model problems including stellar wind flows
and obtain grid convergence which is satisfactory for most cases. Ryu et
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al. [129] show that the numerical dissipation of their scheme vanishes in
second order as a function of grid resolution. Vanden Abeele and Decon-
inck [1] show how the conservation of magnetic flux in a flux tube can be
used as a measure of improved accuracy as a function of grid resolution.
Barth [7] obtains ‘optimal’ grid convergence for the V - B constraint in a
continuous Prandtl-Meyer flow with an added magnetic field. The most
interesting approach to grid convergence studies of MHD codes to date
can probably be found in Linde’s PhD thesis [99]. This author describes
briefly a wedge flow and a stellar wind flow, and obtains satisfactory
grid convergence. Although we have made use of some of the ideas pre-
sented in the above cited articles, the variety of problems presented in
this Chapter, and especially the firm grounding of convergence study on
the rigorous and complete characteristic analysis of the model flows, are
new in the grid convergence study of MHD codes.

The numerical enforcement of the V - B constraint is an important
and much debated problem for numerical MHD codes. In Chap. 4 a new
approach to control V - B presented by Powell [118] has been described.
In this Chapter we employ the Powell source term technique and we
investigate by formal grid convergence studies of magnetic flux conser-
vation and other flow quantities, if this approach is valid, at least for the
class of stationary flow problems that we consider. Linde [99] and Barth
[7] carry out a similar study and confirm the validity of the Powell source
term approach, but their investigation is less complete and systematic
than ours, and is carried out on adaptively refined Cartesian grids [99]
or on unstructured grids [7], and not on the body-fitted structured grids
used in our numerical approach.

In the next Section we present the five field-aligned model flows and
their analysis in terms of stationary characteristics. In Sec. 5.3 we dis-
cuss grid convergence criteria. Sec. 5.4 contains the results of the grid
convergence study of the five field-aligned model flows and one non-field-
aligned model flow, which is presented and analyzed in the Appendix.

5.2 Characteristic analysis of model flows

5.2.1 Cylindrical expansion flow

The first model flow (Fig. 5.1) is a stationary cylindrical expansion flow in
the domain (r € [1,2], 8 € [0°,30°]) with planar symmetry (0/0z = 0).
All the figures shown in this Section represent simulation results ob-
tained with our numerical MHD code using a second order Lax-Friedrichs
scheme. In Fig. 5.1, a uniform superfast inflow with radial magnetic field
is imposed at the r = 1 boundary, with p =1, p=1,v, =3 and B, = 1.
The sonic and Alfvénic inflow Mach numbers are thus M = 3\/?:/ V5
and M4 = 3. The plasma is allowed to flow out freely at r = 2. For
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Figure 5.1: The cylindrical expansion flow (70 x 70 grid). Density con-
tours (thin solid) and streamlines (thin dotted) are shown. The stream-
lines are also magnetic field lines. The thick solid lines represent simu-
lation domain boundaries with ideal wall symmetry. The flow is hyper-
bolic in the whole simulation domain. Two families of fast characteristics
(thick solid) make equal angles with the streamlines. The flow is smooth
in the whole simulation domain.

r > 1, a stationary completely smooth radial expansion profile with vari-
ables only changing as a function of r results. This flow is thus strictly
speaking a 1D flow.

In Fig. 5.1 and the subsequent figures, density contours are shown
as thin solid lines, and streamlines as thin dotted lines. The streamlines
are also magnetic field lines. The streamlines are threefold-degenerate
characteristics with s, hs and p/a as associated RIs. The thick solid
lines represent simulation domain boundaries with ideal wall symmetry.
Two families of fast characteristics (thick solid) make equal angles with
the streamlines in hyperbolic regions.

As the inflow in Fig. 5.1 is uniform and every streamline thus carries
the same values for the Rls s, hs and p/a, those Rls are global invariants
over the whole flow domain. V-B = 0 and B,(1) = 1 imply that B,.(r) =
1/r. The four state variables p, p, B, and v, can thus be determined as
a function of r from B,(r) = 1/r and the three global invariants, which
establishes the exact analytical solution of this flow problem. The flow
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is hyperbolic Hf1 (Fig. 3.4) everywhere, so the two (generalized) Mach
characteristics exist. This flow is smooth everywhere, and this is the
property which distinguishes it from the model flows to be presented
next, which contain increasingly complex (weakly) discontinuous flow
features. This flow is related to the stellar outflow problems discussed
in [131, 157, 158, 99, 82]. By giving the flow a rotational component
at the inflow boundary, we obtain a non-field-aligned model problem
describing radial outflow from a rotating object [131, 82]. This rotating
outflow problem is described and analyzed in the Appendix.

5.2.2 Expanding tube flow
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Figure 5.2: The expanding tube flow (75 x 125 grid). The flow is hy-
perbolic in the whole simulation domain. A weak discontinuity detaches
from the lower wall where the tube starts to expand. This weak disconti-
nuity is a fast characteristic, and is followed by a simple wave rarefaction
region. One family of characteristics consists of straight lines in the sim-
ple wave region. The simple wave is not centered.
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In Fig. 5.2 we show a stationary expanding tube flow in the domain
(x € [0,1], y € [yo(z),1]), with yo(z) = 0 for x € [0,0.3] and yo(x) =
—1+cos(m/4* (x —0.3)) for z € [0.3,1]. A uniform superfast horizontal
inflow with horizontal magnetic field is imposed at the z = 0 boundary,
with p =1, p =1, v, = 8 and B, = 4. The sonic and Alfvénic inflow
Mach numbers are thus M = 8\/3/\/5 and M4 = 2. The plasma is
allowed to flow out freely at x = 1, where the flow remains superfast.
At y = yo(z) and y = 1 we impose ideal wall symmetry conditions. A
stationary expanding flow results, as shown by the density contours of
Fig. 5.2.

The flow is hyperbolic Hf2 (Fig. 3.4) in the whole simulation do-
main, such that two families of fast characteristics exist. As long as the
lower wall is straight, the flow is uniform. When the wall starts to curve
(z = 0.3), this acts as a (wave-like) perturbation, which can only propa-
gate downstream along the characteristics. This means that the flow is
non-uniform only below the upward fast characteristic which originates
from the lower boundary at (z = 0.3) with an angle of # = 31.276°, as
can be calculated from Eq. (3.68). This fast characteristic thus sepa-
rates a uniform flow region from a perturbed region, and is thus neces-
sarily a weak discontinuity [20, 21]. At a weak discontinuity, the spatial
derivative of the flow variables in a direction perpendicular to the weak
discontinuity characteristic, is discontinuous. However, the flow vari-
ables themselves are continuous, and the entropy is thus also conserved
on streamlines across weak discontinuities. A weak discontinuity thus
detaches from the lower wall where the tube starts to expand.

This weak discontinuity is followed by a simple wave [20, 21, 151]
rarefaction region. This rarefaction is called a (stationary) simple wave
because it carries a variation in only one MHD wave family. It is a
property of simple waves that one family of characteristics consists of
straight lines, and that the flow variables are constant along these char-
acteristics, which makes the characteristics parallel to the contour lines
of flow variables, e. g. the density, as can be seen in Fig. 5.2. In the
present flow, these straight line characteristics do not converge in one
point, so this simple wave is not centered. Centered simple waves exist
in rarefaction flows around sharp corners, like the well-known Prandtl-
Meyer flow [7]. Such a sharp corner is a geometrical singularity in the
boundary and this can complicate grid convergence studies, as is ex-
plained in the next Section. For this reason, we have chosen to present
model flows with smooth boundaries in this Chapter. A simple wave,
also if it is non-centered, can be described mathematically as a function
of only one spatial parameter, so strictly speaking this flow is 1D. As the
inflow is uniform, every streamline throughout the whole domain carries
the same values for RIs hs and p/a, and also for s as the flow does not
contain strong discontinuities. These RIs are thus global invariants over
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the whole flow domain.

This flow contains a weak discontinuity, and this is the property
which distinguishes it from the fully smooth model flow discussed in
Sec. 5.2.1.

5.2.3 Wedge flow

Figure 5.3: The wedge flow (100 x 200 grid). The flow is hyperbolic in
the whole simulation domain. A plane fast MHD shock is formed where
characteristics start to intersect near the lower wall. This discontinuity
stretches out upwards in a straight line.

In Fig. 5.3 we show a stationary wedge flow in the domain (z € [0, 1],
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y € [yo(z),1.5]). The lower simulation domain boundary has the form
of a wedge with angle 8 = 30°.

A uniform superfast horizontal inflow with horizontal magnetic field
is imposed at the x = 0 boundary, with p=1,p=1,v, =8 and B, = 4.
The sonic and Alfvénic inflow Mach numbers are thus M = 8\/3/ V5
and Ma = 2. At y = yo(z) and y = 1 we impose ideal wall symmetry
conditions. The wedge geometry causes the formation of a fast MHD
shock, as shown by the accumulation of density contours in a solid line.
At the shock, the magnetic field lines are refracted away from the shock
normal in going from upstream to downstream, which shows that this is
a fast MHD shock. The plasma is allowed to flow out freely at z = 1,
where the (normal) flow is superfast.

As the inflow is uniform, every streamline throughout the whole do-
main carries the same values for hs and p/a, but not for s since the flow
does contain a strong discontinuity where the entropy increases discon-
tinuously. Only the RlIs hy and p/a are thus global invariants over the
whole flow domain. The flow is hyperbolic Hf2 (Fig. 3.4) everywhere, so
the two (generalized) Mach characteristics exist.

We have to remark that the two straight ‘legs’ of the wedge could
be connected at x = 0.3, but that we have again chosen for a smooth
boundary with the wedge corner smoothed out by a circular profile. The
lower boundary is described by yo(z) = 0 for z € [0,0.2] and yo(z) =
tan(30°) = (z — 0.3) for & € [0.3 + 0.1 % cos(30°),1]. A segment of a
circle with center point (0.2,0.1 % (1 + cos(30°))/sin(30°)) and radius
r = 0.1 x (1 4+ cos(30°))/sin(30°), which is tangent to the two ‘legs’
of the wedge, then replaces the corner singularity of the wedge with
a smooth profile. Close to the lower boundary our wedge flow with
smooth boundaries is thus slightly different from a wedge flow with a
sharp corner, and one can see a small compressional wave region with
converging characteristics in the corner region on Fig. 5.3 [160], but
above the point where those characteristics converge and the shock is
formed, this flow is identical to the wedge flow with a sharp corner.

The wedge flow described in this Section contains a plane strong
discontinuity, and this is the property which distinguishes it from the
flows discussed earlier. MHD wedge flows have also been discussed in
[99].

5.2.4 Bow shock flow

In Fig. 5.4 we show a stationary bow shock flow in the domain (r €
[ro(#),0.125], 8 € [90°,180°]), with r¢(8) = 0.75 — 0.45 (6 — 90)/90. The
bow shock is formed by the obstruction of a uniform incoming flow by
a rigid perfectly conducting circular cylinder with r = 0.125. A uniform
superfast horizontal inflow with horizontal magnetic field is imposed at
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Figure 5.4: The bow shock flow (80 x 80 grid). A fast MHD bow shock
is formed in front of the cylindrical obstacle. The flow is hyperbolic in
front of this bow shock, and also behind the shock front sufficiently far
upward from the horizontal z-axis. The region behind the shock front
and close to the horizontal x-axis, is an elliptic region, in which real fast
characteristics do not exist. This elliptic region is separated from the
upward hyperbolic region by the M =1 contour (dashed).

the r = rg boundary with p = 1, p = 0.2, v, = 2, and B, = 0.1.
The sonic and Alfvénic inflow Mach numbers are thus M = 2v/3 and
My = 20. At y = 0 and r = 0.125 we impose ideal wall symmetry
conditions. The plasma is allowed to flow out freely at = 0, where the
(normal) flow is superfast. A curved fast MHD bow shock is formed,
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as shown by the accumulation of density contours. At the shock, the
magnetic field lines are refracted away from the shock normal in going
from upstream to downstream, which shows that this is a fast MHD
shock.

As the inflow is uniform, every streamline throughout the whole do-
main carries the same values for hs; and p/a, but not for s as the flow
does contain a strong discontinuity. Ounly the RIs hy and p/« are thus
global invariants over the whole flow domain. The flow is hyperbolic
Hf1 (Fig. 3.4) in the upstream region and in the part of the downstream
region above the dashed line (the v?> = ¢ or M = 1 contour). In these
hyperbolic regions the two (generalized) Mach characteristics exist. The
downstream region below the M = 1 contour is of elliptic type Efs1, and
real characteristics do not exist in this region.

The bow shock flow described in this Section contains a curved strong
discontinuity and an elliptic region, and these properties distinguish it
from the flows discussed earlier. MHD bow shock flows have been dis-
cussed before in [1, 150, 161, 7, 151]. In Chap. 6 we describe the char-
acteristic analysis of a complex MHD bow shock flow which contains
interacting fast and intermediate shocks and tangential discontinuities,
and several alternating regions of the different hyperbolic and elliptic
types of Fig. 3.4.

5.2.5 Nozzle flow
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Figure 5.5: The nozzle flow (480 x 160 grid). The flow is hyperbolic
in the whole simulation domain. A fast MHD shock is formed where
characteristics start to intersect. This shock is reflected by the lower
wall, by the upper wall, and again by the lower wall, before it leaves
the simulation domain. Throughout these reflections, the shock front
remains nearly plane and the shock remains of the fast type.
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In Fig. 5.5 we show a stationary nozzle flow in the domain (z € [0, 3],
y € [0,y1(x)]), with g1 (z) = 1 — 0.3 xsin®(7/3 * z). A uniform superfast
horizontal inflow with horizontal magnetic field is imposed at the x =0
boundary with p = 1, p = 1, v, = 3.5, and B, = 2. The sonic and
Alfvénic inflow Mach numbers are thus M = 3.5v/3/v/5 and M4 = 1.75.
At y = 0 and y = y; we impose ideal wall symmetry conditions. The
plasma is allowed to flow out freely at = 3, where the (normal) flow
is superfast. A fast MHD shock is formed near the upper wall because
of the curvature of this wall, as shown by the accumulation of density
contours. At the shock, the magnetic field lines are refracted away from
the shock normal in going from upstream to downstream, which shows
that this is a fast MHD shock. This shock reflects several times from the
rigid ideal walls y = 0 and y = y;(z).

As the inflow is uniform, every streamline throughout the whole do-
main carries the same values for hy and p/a, but not for s as the flow
does contain strong discontinuities. Only the RIs hy; and p/a are thus
global invariants over the whole flow domain. The flow is hyperbolic Hf2
(Fig. 3.4) everywhere, and two (generalized) Mach characteristics exist.

The nozzle flow described in this Section contains strong discontinu-
ities which are reflected by ideal walls, which distinguishes it from the
flows discussed earlier. MHD nozzle flows have been discussed before in

[1].

5.3 Grid convergence criteria

In this Section we define grid convergence criteria for stationary model
flows, but first we discuss what kind of convergence order we can expect
for model flows simulated with the numerical techniques discussed in
Chap. 4.

Formal grid convergence

The basic idea of grid convergence is that for smooth flow (see below),
some measure of the error of the simulation result should decrease as
a function of the resolution with an order which is the formal order of
accuracy of the scheme. Formal Taylor series expansion of the numerical
schemes presented in Chap. 4 would show that for a stationary solution

E=|U-TU||=c(1/n), (5.1)

with U the exact solution, U the numerical solution, E the error in
some norm, ¢ a constant, n the number of cells in a certain direction —
where it is understood that the resolution is changed proportionally in
all directions —, and p the order of the method (1 or 2 for the schemes
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discussed in Chap. 4). On logarithmic axes this would lead to grid
convergence curves which are straight lines with slope 1 or 2

log(E) =log(c) — p log(n). (5.2)

All state variable quantities are expected to be calculated with the
accuracy of the scheme. It is important to remark here, however, that
the V - B quantity (‘magnetic flux production per unit volume’) with
discretization given by Eq. 4.30, is a sum of derivatives of the magnetic
field state variables, and can thus be expected to converge more slowly
than the state variables, in the worst case with one order less [33, 7].
Probably for this reason, Linde [99] proposes to measure magnetic flux
conservation in a different way. The following alternative quantity

o S iy B ik Al
n N,
Ek:l k

is a measure of magnetic flux conservation (‘flux production per unit
length’) which should converge at least with the same order as the state
variables. We investigate how these two measures of flux conservation
behave for the numerical simulation of our five model flows.

The actually observed convergence order for a numerical simulation
can be lower than the formal order of accuracy of the scheme because of
several reasons. We discuss in short five possible reasons of convergence
degradation. The first two reasons are related to the analytical properties
of fluid flows, viz. to the regularity of flows. The latter three reasons for
convergence degradation are more related to the details of the numerical
scheme.

First, when the analytical solution to a flow contains (weak) discon-
tinuities, then the derivatives in the above mentioned Taylor expansion
do not exist everywhere, which means that the convergence order result
derived using the Taylor expansion is not valid. In general it can be ex-
pected that the convergence order for a numerical scheme is lower for a
solution containing discontinuities. Leveque [90] gives an example where
the convergence order of an approximation degrades by 0.5 for a solution
containing a discontinuity.

Second, near geometrically singular points on boundaries, the ana-
lytical solution to the flow problem is generally not smooth, with similar
consequences of convergence order degradation [135]. These effects can
be reduced by choosing smooth boundaries, as we have done for all our
model flows, but even then the finite grid resolution leads to singular
corners at curved boundaries. The effects of these singularities can be
reduced by a careful geometrical refinement of the grid near the bound-
ary [135]. Barth [7] reports improved grid convergence if interpolation
at the boundary interfaces is done with higher order polynomials than

; (5.3)
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inside the domain (so-called iso-parametric boundaries), in the context
of finite element methods which allow for more flexibility than our finite
volume schemes.

Third, the choice of numerical flux function seems to be important for
the errors induced at boundaries. For instance, it is well-known that the
Roe scheme can lead to the problem of wall-heating at perfect wall bound-
aries [91]. It seems that our choice of the Lax-Friedrichs flux function
in general performs better in such situations, and our grid convergence
results seem generally to be satisfactory. We have thus not adopted the
strategy to exclude physical cells close to the boundaries from our er-
ror norm calculations [157, 158], because we think that this process is
somewhat artificial and arbitrary, and because we want to prove grid
convergence of our numerical scheme with the boundary treatment in-
cluded. We have to admit, however, that the errors are often large not
only at discontinuities, but also at the boundaries.

Fourth, near discontinuities our second order scheme switches to first
order accuracy due to the action of the nonlinear limiter. In error norms
calculated over the whole simulation domain, these local first order errors
dominate the second order errors in smooth parts of the flow, resulting
in convergence degradation to first order.

Fifth, simulations on highly distorted grids, with angles in cells sub-
stantially deviating from 90° or with cells highly elongated, may show
degraded convergence rates [164].

Practical grid convergence criteria

For the model flows we propose in this Chapter, the analytical solution
is generally not known. How can we carry out grid convergence studies
then? We do not engage in the use of ‘self-convergence’ criteria [157, 158],
because they do not easily lead to rigorous conclusions.

But even when the analytical solution is not known, we can formulate
grid convergence criteria. In general we can distinguish three classes of
grid convergence criteria.

The first class of criteria follows directly from the divergence nature
of the steady conservation law (Eq. 3.12 with vanishing time derivative)
and the V - B constraint. These laws basically state that the divergence
of a flux vanishes. This leads to grid convergence criteria in two ways.

First, over the whole physical domain, the integrated form of the
divergence law shows that the line integral of the normal flux through
the circumference of the physical domain has to vanish. For instance,
in a steady flow the net flux of density (the momentum) through the
boundaries has to vanish, and numerically this net flux has to converge
to zero as a function of resolution. This, however, merely checks global
conservation and only gives a very global measure of accuracy as internal
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errors can cancel out. This grid convergence measure is not further
exploited in this Chapter.

Second, when the flux vectors are aligned with a boundary at two
opposing boundaries of the simulation domain, and the boundaries thus
form fluzx tubes, then the flux through any line connecting the two bound-
aries has to be the same. This can be tested along lines consisting of
cell interfaces. We use this observation extensively to verify if the mag-
netic and momentum fluxes through sections of flux tubes are constant
along the flux tube. This leads to a more local measure of accuracy.
Suppose for instance that the boundaries below j = 1 and above j = n;
are perfect walls, then we can calculate the (magnetic or momentum)
flux ®; ./, through every line formed by interfaces between cells with
equal coordinates ¢ and ¢ + 1, using the reconstructed U; and U, in the
average (U; +U,)/2 at every interface, and with ¢ running from 0 to n;.
Then an L1 error measure can be defined as
EBm _ Zﬁ;g" abs(q)i+1/2 — ®theor)
@ n; +1

(5.4)

with ®peor being the known theoretical value of the flux, and Eq]f and
EF the magnetic and momentum flux error measure respectively. Flux
conservation criteria like this have been used before to investigate the
accuracy of MHD simulations as a function of resolution [157, 158, 1, 99].

The second class of grid convergence criteria follows from the rigor-
ously defined characteristic properties of the class of flows under consid-
eration, and leads to measures of true local grid convergence in every cell
of the simulated flow. There can be up to four global invariants for sta-
tionary planar field-aligned flow, as follows from characteristic analysis.
The angle 6 between the magnetic and the velocity fields has to vanish
everywhere. In the case of uniform inflow, Riemann invariants p/a and
hs are global invariants. If the flow is additionally smooth, then Rie-
mann invariant s is a fourth global invariant. An L1 error measure for
these invariants I can be defined as

Ei,j abs(Tm — Itheor) Qi j
Zi,j Qi,j

with Iipeor being the known theoretical value of the invariant. Note
that we actually calculate the difference between the cell-averaged nu-
merically calculated values of the invariant and the cell-average of the
theoretical value of the invariant (which, of course, is the invariant it-
self). Global grid convergence criteria based on characteristic invariants
have to our knowledge not been used before to investigate the accuracy
of 2D MHD simulation results as a function of resolution. The s and
hs quantities keep their invariant properties in stationary Euler flow, so

E; = (5.5)
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this type of grid convergence study can also be carried out for that case,
as is well-known. Finally, we should mention that V - B should vanish in
theory for every MHD flow, so this can easily be tested using the same
expression to calculate the error.

The third class of grid convergence criteria follows from the RH jump
relations. If sufficient information is available in terms of imposed up-
stream flow conditions and geometrical constraints, then the remaining
unknown values can be calculated from Eq. 3.75 with high accuracy, and
in some cases analytical solutions can be found. These values can then be
compared with the values resulting from full 2D numerical simulations
of the flow, and grid convergence can be investigated.

In practice, we measure the simulation error using the above given
expressions E as a function of the number of grid cells in a certain
direction n, and determine the numerical convergence order by a least-
squares fit of the log E-logn curve with generally four data points.

5.4 Grid convergence study of model flows

In this Section we discuss numerical simulation aspects of the model
flows presented in Sec. 5.2 and the non-field-aligned flow presented in
the Appendix, and we present grid convergence results obtained with
the criteria discussed in Sec. 5.3.

5.4.1 Numerical simulation aspects

The steady state simulation results shown in Figs. 5.1-5.5 were obtained
via time-accurate relaxation starting from uniform initial states. Fig. 5.6
shows the convergence of the logarithm of the density residual R(m) (Eq.
4.49) towards a steady state in function of the number of time steps. We
can observe that the steady state convergence of our numerical scheme
is extremely well behaved. For all simulations we obtain convergence up
to machine accuracy both using the first order scheme (solid) and the
second order scheme (dash-dotted). The number of time steps needed to
obtain convergence is mostly similar for the first and the second order
schemes. We used the same CFL number for the first and the second
order scheme. The computational cost per time step is, however, about
three times higher for the second order scheme. The number of time
steps is much higher for the bow shock flow than for the other flows,
because of the low velocities in the elliptic region near the stagnation
point.

Fig. 5.7 shows the simulation grids used for the numerical results
presented in this Chapter. The grids are nearly uniform and the grid cells
are mostly quite regular, except perhaps for some strongly deformed cells
in the bow shock grid. For the cylindrical expansion problem and the
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Figure 5.6: Convergence of the logarithm of the density residual towards
a steady state, as a function of the number of time steps. First order
(solid) and second order (dash-dotted) numerical schemes.

rotating outflow problem the grid convergence has been studied making
use of simulations on 40 x 40, 50 x 50, 60 x 60 and 70 x 70 grids. The
expanding tube problem has been simulated on 30 x 50, 45 x 75, 60 x 100
and 75 x 125 grids, and the wedge problem on 40 x 80, 60 x 120, 80 x 160
and 100 x 200 grids. Grid convergence for the bow shock flow has been
studied making use of simulations on 20 x 20, 40 x 40, 60 x 60 and 80 x 80
grids, and the nozzle simulations were performed on 48 x 16, 72 x 24,
96 x 32 and 120 x 40 grids.

5.4.2 Grid convergence results for flux conservation

The cylindrical expansion flow, the expanding tube flow, the wedge flow
and the nozzle flow all have opposed simulation domain boundaries which
are ideal walls and thus define a flux tube. We can study grid convergence
of the magnetic and momentum flux through these flux tubes. The
rotating outflow problem described in the Appendix has the property of
radial conservation of magnetic and momentum flux. Fig. 5.8 shows the
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Figure 5.7: Finite volume simulation grids. Successive conformal refine-
ments of these grids have been used for grid convergence study.

grid convergence behavior of the fluxes for these five test cases.

The first row of the figure shows the normalized magnetic flux through
vertical or radial sections as a function of the vertical or radial coordi-
nate. Every panel contains eight curves, four for the first order scheme
(dotted) for increasing grid resolution, and four for the second order
scheme (dashed). We see that in all cases the normalized magnetic flux
approaches the value of unity nicely, and that the flux conservation is
much more accurate for the second order results than for the first order
results.

The second row of the figure shows the normalized momentum flux
through the vertical or radial sections. Every panel again contains eight
curves, four for the first order scheme (dash-dotted) for increasing grid
resolution, and four for the second order scheme (dash-dot-dot-dotted).
We again see that in all cases the normalized momentum flux approaches
the value of unity nicely, and that the flux conservation is much more
accurate for the second order results than for the first order results.

The shape of the momentum flux curves is generally similar to the
shape of the magnetic flux curves, and this is no surprise for field-aligned
flow. Only for the non-field-aligned rotating outflow (Fig. 5.8¢) are the
curves markedly different in shape.

The third row shows the ten logarithm of the L1 norm of the errors
of the magnetic and momentum flux curves, as a function of the grid
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Figure 5.8: Grid convergence behavior of the magnetic and momentum
flux conservation for five test cases. The first row shows the normalized
magnetic flux through vertical or radial sections as a function of the
vertical or radial coordinate for four different grid resolutions, both for
the first order scheme (dotted) and the second order scheme (dashed).
The second row shows the normalized momentum flux profiles for the
first order scheme (dash-dotted) and the second order scheme (dash-dot-
dot-dotted). The third row shows the ten logarithm of the L1 norm of
the errors of the magnetic flux (triangles, first order dotted and second
order dashed) and momentum flux (asterisks, first order dash-dotted and
second order dash-dot-dot-dotted), as a function of the grid resolution
(ten logarithm of n, the number of grid cells in the i direction).

resolution (ten logarithm of n, the number of grid cells in the 7 direction).
The magnetic flux conservation for the first order scheme is indicated by
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a dotted line with triangles, and by a dashed line with triangles for the
second order scheme. The momentum flux conservation for the first
order scheme is indicated by a dash-dotted line with asterisks, and by a
dash-dot-dot-dotted line with asterisks for the second order scheme. We
observe that in all cases the convergence curves follow a straight line,
which indicates convergence with a well-defined order. The fitted slope
coefficients for these lines are presented in Table 5.1.

The cylindrical expansion flow and the expanding tube flow are both
smooth flows. The fluxes both converge with the expected slope close to
-1 for the first order scheme, and close to -2 for the second order scheme.
The wedge flow contains a strong discontinuity, and due to the action
of the nonlinear limiter, the second order scheme converges only with a
slope close to -1, like the first order scheme. The second order results
are more accurate, however. The nozzle flow contains shocks as well,
and also shows first order convergence both for the first and the second
order scheme. The rotating outflow problem is smooth, and shows the
expected second order convergence for the second order scheme. For the
first order scheme, the momentum flux converges with an order which
is lower than first order, but, remarkably, the magnetic flux converges
with slope -2.3.

The main conclusions to be drawn from this grid convergence study
for magnetic and momentum flux conservation, is that the experimen-
tally obtained grid convergence orders are very close to the theoretically
expected orders. The numerical schemes seem thus to behave extremely
well. The excellent conservation of magnetic flux indicates strongly that
the Powell source term approach to control V - B produces valid results.

5.4.3 Grid convergence results for global invariants

Table 5.1 contains the fitted slopes of the grid convergence curves for
the global invariants entropy s, stagnation enthalpy hs, p/a and 6. The
entropy s is not a global invariant when shocks are present. In the case
of the rotating outflow, the invariants are entropy s, Bernoulli function
h, angular momentum L and electric field E,, as discussed in the Ap-
pendix. Note that no error slope has been given for the grid convergence
of the angle 6 between the magnetic and velocity field for the case of the
cylindrical expansion. In the initial condition the fields are aligned per-
fectly up to the machine error induced by a rotation, and this property is
conserved throughout the time relaxation as the flow is perfectly radial.
These rotational machine errors are very small — much smaller than the
errors in the other global RIs — and do of course not depend on resolu-
tion, such that for this case grid convergence of 6 is not relevant. The
first order scheme produces grid convergence orders which are generally
close to the theoretically expected slope of -1. For some model problems
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Table 5.1: Grid convergence order of several invariant quantities for the
model flows discussed in this Chapter. The fitted slope of the ten loga-
rithm of the L1 norm of the error as a function of the ten logarithm of the
number of grid cells in the ¢ direction, is shown. For the values marked
with an asterisk, the rotating outflow grid convergence is measured using
slightly different invariant quantities than for the other flows. The re-
sults show that the presence of discontinuities (in the wedge, bow shock,
and nozzle flows) consistently degrades the convergence for the second
order numerical scheme to first order due to the action of the nonlinear
limiter. Analytical singularities or numerical inaccuracies at boundaries
and grid distortion may further degrade the convergence. Such addi-
tional convergence degradation can be observed for the values that are
italicized. Overall, a satisfactorily consistent grid convergence behavior
is obtained.

| || expans. | tube | wedge | shock | nozzle | outflow |

1st order
dp -0.98 -1.05 -1.04 -1.08 -2.30
d,, -0.93 -1.04 -1.08 -1.01 -0.72
S -0.93 -0.87 -0.81
hs -0.82 -1.04 -1.15 -0.86 -0.91 -0.58*
pla -0.87 -0.99 -0.97 -0.72 -0.70 -0.82*
0 -0.99 -1.06 -0.60 -0.78 -0.84*
vV-B -0.98 -0.92 -0.79 -0.59 -0.90 -1.33
F -1.98 -1.92 -1.79 -1.55 -1.90 -2.36
2nd order
dp -2.06 -1.90 -1.03 -1.04 -2.10
d,, -2.06 -1.86 -1.02 -1.07 -1.85
s -1.96 -1.74 -1.28
hs -1.91 -1.10 | -1.01 -0.90 -0.87 -1.92*
pla -2.07 -1.44 -0.82 -1.07 -0.97 -1.71*
0 -1.78 -0.99 -0.85 -1.01 -1.89*
vV-B -1.96 -1.38 -0.22 -0.55 -0.42 -1.79
F -2.95 -2.39 -1.22 -1.53 -1.43 -2.83

and for some invariants, the convergence order is smaller than 1. In
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this case the slopes are shown in italics, where we have (arbitrarily) put
the limit of expected behavior at 80% of the theoretical values. Conver-
gence degradation seems to be most severe for the bow shock and nozzle
flows, and detailed study of the simulation results shows that this can
mainly be attributed to the interaction of the shocks with the bound-
aries. Overall, however, the results are quite consistent with the order
of the scheme. For the smooth flow problems, the second order scheme
produces grid convergence orders which are generally close to the the-
oretically expected slope of -2, except for the values in italics. For the
expanding tube flow, careful study shows again that convergence degra-
dation can be attributed to inaccuracies at the (not perfectly smooth)
boundary. The model problems with shocks show consistent first order
convergence behavior, again due to the limiter.

Table 5.1 also shows grid convergence slopes for V - B and Linde’s
quantity F. For the first order scheme, we see that V - B converges
with an order not too far from the expected convergence order for state
variables, although it is a quantity obtainable from the magnetic field
through derivation. The reason may be that the numerical scheme treats
V.-B /p as a passive scalar [118]. Linde’s quantity F' indeed converges
one order faster than V - B. The second order scheme produces satisfac-
tory grid convergence behavior for the V - B-related quantities as well,
except for the wedge, the bow shock and the nozzle. Again the conver-
gence degradation there can be traced back to errors at (not perfectly
smooth) boundaries and shock-boundary interactions. Our results on
V-B convergence for a broad set of model problems confirm the results
reported by Linde [99] and Barth [7] for smaller sets of model problems.

To conclude this section about the grid convergence study for global
invariants, we can say that the experimentally obtained grid convergence
behavior is satisfactorily consistent with the theoretically expected be-
havior. Some convergence degradation can be observed at (not perfectly
smooth) boundaries and shock-boundary interactions, but this is not un-
expected, given the discussion on convergence degradation in Sec. 5.3.
The fluxes discussed in the previous Section, which can be considered
as one-time-integrated quantities, seem to be less sensitive to boundary
effects. The results discussed in this Section thus confirm again the va-

lidity of the numerical approach and the source term technique to control
V- B.

5.4.4 Grid convergence results for Rankine-Hugoniot
relations

For the wedge flow, the inflow quantities and the wedge angle com-
pletely determine the angle and the downstream quantities of the fast
MHD shock. The algebraic equations of the MHD RH relations 3.75
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Figure 5.9: The wedge flow. Grid convergence of the Rankine-Hugoniot
relations. Ten logarithm of the relative errors of the downstream density
and velocity at (z = 0.96,y = 0.87), as a function of the grid resolu-
tion. The density (first order scheme, dotted, triangles, and second or-
der scheme, dashed, triangles) does converge, but not with a well-defined
order. The velocity converges with a = —0.79 (first order scheme, dash-
dotted, asterisks), and with a = —0.80 (second order scheme, dash-dot-
dot-dotted, asterisks).

can be solved numerically up to a very high accuracy, using for instance
standard iterative methods provided in software for symbolical calcula-
tions. Following such a procedure, we have obtained the (nearly) exact
downstream density and velocity field magnitude to be p = 2.00060295
and v = 7.04956575. In Fig. 5.9 we investigate grid convergence of the
Rankine-Hugoniot relations. The ten logarithm of the relative errors of
the downstream density and velocity at (z = 0.96,y = 0.87) is shown,
as a function of the grid resolution. First of all we can say that our
numerical scheme calculates a solution which closely matches the RH
relations. The errors are 1% and lower. The velocity seems to converge
linearly with a slope close to the theoretically predicted one, but the
density seems to behave more erratically. Fig. 5.10a indicates a reason
for this. MUSCL finite volume schemes have the well-known defect that
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they produce grid-related entropy oscillations in a direction parallel to
a shock, and these entropy errors are advected downstream along the
streamlines. This generates small ripples in the downstream solution
which should be uniform. The value of the downstream density, for in-
stance, thus depends of the location and on the grid resolution, and this
degrades pointwise convergence. The entropy oscillations are quite small
with the Lax-Friedrichs scheme, and would be much larger when using
the Roe scheme. Due to the inherent defect of finite volume schemes, we
can not prove proper grid convergence of the RH relations, but we can
see that the RH relations are generally well satisfied, and that the ten-
dency is that they are better satisfied on finer grids. It will be interesting
to see [22] if new MHD schemes based on multi-dimensional approaches
will reduce or eliminate the downstream entropy contamination typical
for finite volume approaches.

(a) s and streamlines (b) div(B)
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Figure 5.10: The wedge flow. (a) Entropy contours (15 contours be-
tween s = 2.43 and s = 2.45, thin) and streamlines (thick) in a small
region which contains the shock. Small errors in the entropy generated
at the shock are convected away downstream parallel to the streamlines,
generating small ripples in the downstream region which should be uni-
form. (b) Divergence of the B field in a small region containing the shock
(z € [0.6,0.8], y € [0.55,0.75]). V-B is strongly non-zero in a small layer
around the shock. Negative and positive V - B peaks cancel each other
out, such that on a slightly more global scale, magnetic monopoles are
not present. V- B reaches values from —3.36 to 6.76 in the region shown.

It is interesting here to investigate more closely what happens with
the V - B constraint at a strong discontinuity. Fig. 5.10b shows the
divergence of the B field in a small region containing the shock (z €
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[0.6,0.8], y € [0.55,0.75]). V - B is strongly non-zero in a small layer
around the shock. V - B reaches values from —3.36 to 6.76 in the region
shown. Actually, an upper bound for V - B can be given by V - B =
|AB|/Az, with |AB| the jump in the magnitude of the magnetic field
vector across the shock, and Az a 1D measure of grid spacing. As in
the MUSCL schemes discussed above, a stationary shock is generally
captured with a constant number of intermediate cells which does not
depend on the resolution, and as |AB]| is independent of the resolution,
this means that V - B peaks near shocks grow without bounds as 1 /Ax
as a function of the grid resolution. Since second order schemes produce
sharper shocks, the V - B peaks are larger when using a second order
scheme than when using a first order scheme, and our simulation results
clearly confirm that (not shown). The Roe scheme, which produces
sharper shocks than the Lax-Friedrichs scheme, also produces larger V-B
peaks at shocks. The Powell source term approach takes into account
these V - B peaks consistently and the source term precisely neutralizes
the dynamical effect of the V - B peaks. It is important to note that
the exact location and magnitude of the V - B peaks changes when a
different discretization is chosen for V- B , and even in numerical schemes
which guarantee V - B to vamsh with machine precision in a certain
dlscretlzatlon it is clear that V- B peaks are present as soon as one looks
at V- B in a different discretization. V - B peaks are an unavoidable
consequence of our attempt to represent discontinuities on grids with
a finite spatial resolution. All this seems to be quite worrisome, given
the fact that magnetic monopoles do not exist in nature, but in practice
correct results seem to be produced by numerical schemes on discrete
grids. How is this possible? As noted by Linde [99], discretization of
V - B near shocks has a ‘telescoping’ property, which can be described as
follows. Negative and positive V - B peaks cancel each other out, such
that on a slightly more global scale, magnetic monopoles are not present.
This alternation of positive and negative V - B peaks can be seen clearly
on Fig. 5.10. This is not a proof that the Powell approach produces
valid results. A convincing proof of the validity of Powell’s source term
approach is given by the results of our grid convergence studies. Table 5.1
shows that the measure of flux conservation F' converges faster than the
state variables, and thus faster than predicted. Fig. 5.9 shows that the
numerical solution satisfies the MHD RH relations up to high precision.
Most convincingly, Fig. 5.8 shows clearly that the magnetic flux through
flux tubes which may contain fast shocks is conserved and that flux
conservation converges with the theoretically predicted order.

For the bow shock flow, we can investigate grid convergence of the
solution at the stagnation point. On the stagnation streamline, the RH
relations lead to an analytical solution for the state variables downstream
of the shock, and using the conservation of s and hg on the stagnation
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Figure 5.11: The bow shock flow. Grid convergence of the stagnation
point values. Ten logarithm of the relative errors of the stagnation point
density and pressure, as a function of the grid resolution. The density

converges with a = —0.70 (first order scheme, dotted, triangles), and
with a = —1.01 (second order scheme, dashed, triangles). The pressure
converges with a = —0.82 (first order scheme, dash-dotted, asterisks),

and with a = —0.52 (second order scheme, dash-dot-dot-dotted, aster-
isks).

streamline, the exact analytical solution of the stagnation point quan-
tities in terms of the upstream flow quantities can be obtained [114].
For the inflow values of our bow shock model problem pgstq, = 3.61528
and pstqg = 3.61528. Fig. 5.11 shows grid convergence of the stagnation
point values. Although the grid convergence orders are not all close to
the theoretical value of one, there is a clear trend of grid convergence to
the correct values, and this is a remarkable result, given the well-known
problems of many finite volume schemes with ‘wall-heating’ at perfect
walls [91].
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5.5 Conclusion

In this Chapter we have studied the grid convergence behavior of our nu-
merical code for six model flows. We did not always obtain grid conver-
gence orders completely consistent with theoretical expectations. Such
degradation of convergence can mostly be attributed to analytical singu-
larities or numerical inaccuracies at boundaries, to complex behavior at
discontinuities, and to the distortion of the grid. However, in general we
did obtain satisfactory grid convergence for most properties. The conser-
vation of magnetic and momentum flux in flux tubes behaved especially
well (see Table 5.1). All these results give us strong indications that we
have calculated the physically correct solution to the flow problems, and
that we could improve the accuracy by refining the grid. It is important
to establish such formal accuracy tests for MHD simulations, and this is
certainly not trivial given the lack of analytical solutions for 2D MHD
problems. More advanced schemes and boundary treatment may lead to
more completely consistent grid convergence results.

We have investigated by formal grid convergence studies of magnetic
flux conservation and other flow quantities, whether the Powell source
term approach to control the V - B constraint leads to correct results
for this class of flows. Our grid convergence results show clearly that
this method leads to correct solutions for the transonic problems we
considered, although it remains difficult to grasp all the subtle details
of how this correct result is obtained. It may also be, that for some
problems, for which the conservation of magnetic flux up to very high
accuracy is crucial, the source term technique would turn out to be
insufficient.

Although the model problems presented in this Chapter exhibit quite
a variety of flow features, they all belong to the sub-class of stationary
planar 2D MHD flows. Stationary flow has important applications, and
in this Chapter we have taken a first important step to prove grid con-
vergence for model problems belonging to this important sub-class of
flows. It would certainly be useful to develop more general test problems
allowing for grid convergence studies, which, for instance, would also in-
vestigate the accuracy of time integration. Self-similar MHD flows are
probably good candidates for this. Fully 3D test problems should be
considered as well. In 3D, when the magnetic field is not aligned to the
flow, many of the invariants used in this Chapter to prove grid conver-
gence, cease to be invariant (Chap. 3), so it is to be expected that it will
be more difficult to formulate 3D MHD model flow problems which allow
for grid convergence study. For the time being, however, we can reassure
ourselves by realizing that many 3D algorithms are straight extensions
of their 2D counterparts, so it can be expected that the 3D algorithms
perform similarly to the 2D algorithms in terms of accuracy.
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Appendix: Radial outflow from a rotating
cylindrical object
In this Appendix we describe and analyze a model problem describing

radial outflow from a rotating cylindrical object. The grid convergence
study for this problem is integrated in the discussion in Sec. 5.4.

Figure 5.12: The rotating outflow problem (70 x 70 grid). Density con-
tours (thin solid), streamlines (dashed) and magnetic field lines (dotted)
are shown. The magnetic and velocity fields are not aligned. The flow
is smooth in the whole simulation domain.

We start from the cylindrical expansion flow described in Sec. 5.2.1.
We take the same inflow conditions and keep v = 5/3, but add a rota-
tional velocity component vy = 1 in the anti-clockwise direction. The
magnetic field remains radial at the boundary r = 1. We extend the
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simulation domain up to r = 6 and 8 = 360°. The resulting smooth
stationary flow is shown in Fig. 5.12. The magnetic field lines (dotted)
are clearly not aligned with the streamlines (dashed). If we transform
to a coordinate frame rotating rigidly around the origin with angular
velocity 2 = —1, the velocity becomes radial, and thus parallel to the
magnetic field (which is not changed by the coordinate transformation).
It can be proved that in this rotating frame the magnetic field and the
velocity field are aligned everywhere, if they are aligned at the boundary
and if the flow is stationary. This is again just a consequence of the
MHD frozen-in condition. In the rest frame, however, the flow is not
field-aligned, as can be seen in Fig. 5.12. This flow can thus be inter-
preted as a field-aligned radial outflow from a rotating object, and is
related to flows studied in the context of stellar winds [131, 82].

We want to study the grid convergence behavior of this non-field-
aligned flow, but cannot directly use the characteristic invariants derived
for field-aligned flow. Fortunately, related invariants can be found for
this effectively 1D rotating flow [131, 82], as is briefly reviewed next.

The rotating outflow is completely specified when the six constants
S, fm, B, 1, 74 and h are chosen in

_ b

s = —
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fB = B,r
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poy
1

1 v p 1
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Here s is the entropy, f,, and fp are the radial momentum flux and
magnetic flux, () is the angular speed of the rotating object, r4 is the
Alfvén radius and h is the Bernoulli constant. E, is the electrical field in
the z direction, and L is the angular momentum density. The invariants
defined in Eq. (5.6) are used to study grid convergence for the rotating
outflow problem in Sec. 5.4.

Following Sakurai [131], we derive the Bernoulli function H(r, p)

_ f72n 1 5o (ra/r—r/ra ? Y y—1 L2o
H(T)p)_2p2r2+2rAQ l_pf%/f?n +’y—18p QQT
(5.7)

For given constants s, f,,, fg, @ and r4 we can implicitly describe
the orbits p(r) as level curves of the Bernoulli function H(r,p) = h for
varying h. Fig. 5.13 shows these orbits (dotted) for the values of s, fn,
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Figure 5.13: Critical point analysis for the rotating outflow problem.
The dotted lines are solution orbits. The thick solid line is the orbit
corresponding to the flow shown in Fig. 5.12. The thin solid line is the
fast/slow critical curve, and the dashed line is the ‘throat’ curve. There
is one finite critical point (of O-type) where these two curves intersect.
The outer radius of the simulation domain has to be chosen smaller than
approximately r = 30 to obtain a continuous stationary solution. Indeed,
at the point where the orbit and the fast/slow line cross, the flow becomes
subfast. The continuous orbit becomes multi-valued, which means that
there is no continuous solution, but a (non-stationary) shock would be
formed.

fB, Q and r4 corresponding to the simulation shown in Fig. 5.12. The
thick solid orbit corresponds to the value of the Bernoulli constant h
of the simulation. Two other curves of interest are the fast/slow Mach
curve defined by 0H/0p = 0 (thin solid) and the throat curve defined by
OH/0r = 0 (dashed). Orbits are vertical where they cross the fast/slow
Mach curve, and horizontal where they cross the throat curve. The
fast/slow Mach curve and the throat curve cross in an O-type critical
point. This critical point analysis is instructive because it shows that
the outer radius of the simulation domain has to be chosen smaller than
approximately r = 30 to obtain a continuous stationary solution. Indeed,
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at the point where the orbit and the fast/slow line cross, the flow becomes
subfast. The continuous orbit becomes multi-valued, which means that
there is no continuous solution, but a (non-stationary) shock would be
formed. The model problem of Fig. 5.12 does thus not constitute an
example of a smooth outflow in an infinite domain. In an appropriately
chosen finite domain, however, this problem describes a valid MHD flow
with well-defined boundary conditions (the flow remains superfast at the
outer boundary), and is thus perfectly suitable for the purpose of testing
a numerical MHD code through grid convergence study.

To conclude, we can remark that this non-field-aligned model prob-
lem is really a very special case. It could be constructed from the cylin-
drical expansion flow by rotation because the cylindrical expansion prob-
lem has the peculiar property that the flow, the boundary shapes and
the boundary conditions themselves are all rotationally invariant. We
anticipate that it is very difficult to find stationary 2D non-field-aligned
model problems without such special symmetries.



