Chapter 4

A finite volume i1deal
MHD code

Numerical simulations of MHD flows with shocks have been performed
for many decades, but most of the time rather primitive numerical tech-
niques like Lax-Wendroff [90] or Flux Corrected Transport [28] were
used. Numerical codes typically either were excessively diffusive or pro-
duced spurious oscillations near discontinuities. In the mean time robust
and accurate shock-capturing numerical techniques of the so-called high-
resolution type have been developed for Computational Fluid Dynamics
(CFD) simulations. Only since a decade or so, these new numerical
methods have been introduced in MHD codes [12, 157, 158, 183, 23,
24, 128, 129, 1, 118, 127, 162, 6, 7, 99, 36, 26, 111]. The MHD system
has certain peculiar properties which impeded the straight translation
of the CFD techniques, but it seems that the main obstacles have been
removed in recent work by Roe and Balsara (1996) [127], who provided a
well-behaved eigensystem decomposition of the MHD Jacobian, and by
Powell (1995) [118], who provided a consistent and efficient way to deal
numerically with the V - B = 0 constraint via a source term (the right
hand side term proportional to V - Bin Eq. 2.6).

In this Chapter we report on our development of the PAR-MA (PAR-
allel MAgnetohydrodynamics) code, which is a massively parallel shock
capturing MHD code. Using the proven CFD concepts present in the
von Karman institute multi-block solver [106], and incorporating the
essential contributions of Roe and Powell [1], a new robust and accu-
rate high-resolution MHD flow solver was developed. After a general
introduction which illustrates some of the basic concepts of numerical
simulation of flow problems with shocks, we give a brief but complete
description of the MHD flow solver we have developed. This is the nu-
merical code used for the simulations presented in this dissertation.

1 UpPpwina discretization o1 conservation laws 11 one space
dimension

91

Numerical techniques similar to the one described in this Chapter
are currently being used in several application codes [118, 162, 124, 117].
Not much can be found in the literature on rigorous validation of this
approach, however. We have carried out our MHD code development to
the point of its validation by a set of careful grid convergence studies
making use of characteristic theory. These studies are reported in Chap.
5 which should be read as a complement to Chap. 4.

4.1 Upwind discretization of conservation
laws in one space dimension

fiikllz fi:—kl/Z
| |
i-1 | i | i+l X

Figure 4.1: The z-axis is divided into cells of equal length Ax for the
numerical computation of the value u} in every cell which approximates
the solution u(x,t) at discrete position x = x; and time t = t,,.

In this Section we introduce some of the basic concepts used in the
design of numerical schemes for equations which allow for discontinuous
solutions. A good introduction to this subject can be found in [90]. It is
beyond the scope of this Section to give a rigorous and complete account
of this subject, but we want to give an intuitive introduction for the
reader who is unfamiliar with this kind of numerical techniques, and at
the same time we may remind the more knowledgeable reader of some
of the basic concepts. The reader will note a general conceptual analogy
between the discussion in this Section and the discussion of waves and
characteristics in hyperbolic systems presented in Sec. 3.2.1. Most of
the discussion in the present Section is situated in the context of finite
difference numerical discretizations. By the end of the Section, we make
the link to finite volume discretizations.

4.1.1 Scalar conservation laws

A scalar conservation law is described by

ou N Of(u)

ot or

=0, (4.1)

Chapter 4. A finite volume 1deal M HD code

in terms of scalar v and flux function f(u). The linear scalar conservation
law or linear advection equation is given by

ou ou

E + (I% = 0, (42)

with linear flux function f(u) = awu for some constant a. Let us assume
for the moment that a > 0, such that advection proceeds from left to
right. The left direction is thus called the upwind direction. Obtaining
solutions of this equation on a computer requires discretization of the
equation. We divide both the x and ¢ axes in equal intervals and look
for values u] which approximate the solution u(z,t) at discrete position
x =z; =i Az and time t = ¢, = n At (Fig. 4.1).

A natural way to discretize Eq. 4.2 is to approximate the temporal
and spatial derivatives by finite differences in the following way
ug n a“zn+1 — Uiy
At 2Ax

n+l
u;

=0, (4.3)

The temporal derivative has been taken forward in time, such that a
value at time ¢t = t,41 can be calculated from values at time t = t,,
leading to an explicit numerical scheme. In the rest of this Section we
only consider explicit time integration. The central spatial discretization
in Eq. 4.3 is an approximation of the derivative which is accurate up
to second order in Az. Stability analysis shows, however, that this
central discretization results in a numerical scheme which is numerically
unstable.

Alternatively, we can use the following upwind discretization for the
spatial derivative

n+1 n n n
i — Uy U; — U;~ ¢
=0. 44
At ta Ax 0 (4.4)

u

The derivative is now approximated by a finite difference chosen on the
upwind side of point . Stability analysis shows that this discretization
is numerically stable under the condition that

A
At < 75” (4.5)

which is called the Courant-Friedrichs-Lewy (CFL) condition. This spa-
tial discretization is, however, accurate only to first order in Az.

More generally, if the sign of a is not specified in advance, then the
upwind discretization can be written as

utt -y b —ul o _ul —ul

i i + L—
A e Az ¢ Az 0 (46)

4.1 Upwind discretization of conservation laws

with the definitions: a* = maz(0,a) and a= = min(0, a).
This upwind discretization can be written in conservative form

n

U; i firrl/Q B fin—*1/2
At Ax

n+l
u;

=0, (4.7)

with the numerical fluz function f™* (Fig. 4.1) given by

n n
P = atup b amufyy = T g, gy (48)
The conservative form of the equations reflects on the discrete level the
conservation law form of the PDE, and guarantees discrete conserva-
tion: Y, ul™ = 3. ul. This property turns out to be crucial for the
numerical simulation of problems with discontinuities. Indeed, the Laz-
Wendroff theorem guarantees that a conservative numerical scheme con-
verges to a weak solution of the conservation law, if it converges. This is
an important property, because non-conservative numerical schemes can
for instance converge to solutions with shocks which propagate at wrong
speeds.

The upwind discretization is attractive, but it is too diffusive, due to
the fact that it is only first order accurate. This can be seen by rewriting
Eq. 4.6 in the form

n+1 n n n n n
u; g I B = |la|Az uiyy — 2ui +ui
At 2Ax 2 Az?

=0, (4.9)

which can be interpreted to be a second order accurate discretization of
the linear advection-diffusion equation

Ou Ou 0%u
— taz— =

ot “ox ~ o2 (4.10)

with diffusion coefficient 1,,um = |a|Az/2. This numerical diffusion van-
ishes in first order in Az, and thus makes Eq. 4.9 a first order accurate
discretization of the linear advection equation 4.2. If one solves the ideal
conservation law Eq. 4.1 numerically, one naturally wants to minimize
the amount of numerical diffusion in the discretization. However, a cer-
tain amount of numerical diffusion is necessary to obtain a stable scheme:
the second order accurate central discretization, which does not intro-
duce any numerical dissipation, is numerically unstable. This allows us
to interpret the expression for the numerical flux function in Eq. 4.8 as
the sum of a term corresponding to a central second order accurate dis-
cretization without numerical diffusion, and a term proportional to |a]
which represents numerical diffusion.

It is also interesting to remark that the discretization Eq. 4.9 of the
scalar advection-diffusion equation 4.10 is only numerically stable under

Chapter 4. A finite volume 1deal M HD code

the condition ,
ar< 80 (4.11)
anum
The upwind scheme thus introduces the maximal numerical diffusion
Nnum = |a|Az/2 which is dissipatively stable under the constraint of the
CFL condition, in the sense that adding more (numerical) dissipation
would make the dissipative time step limitation more stringent than the
CFL condition.

Spurious oscillations are another point of concern. They do not arise
for numerical schemes which have the property of positivity [7]. We
discretize the spatial derivative of Eq. 4.1 on a three—point stencil and
obtain as a general form

8ui
ot

= Ci—1 Uj—1 + Cj Ui + Cigp1 Ujg1- (412)
Because of consistency with the differential equation, it holds that ¢;—; +

¢; + ci+1 = 0, so we can rearrange Eq. 4.12 to

8ui
ot

=Cj—1 (Ui—l — Uz) + Ccit1 (Ui+1 — U,i). (413)

It is clear that a local extremum — for instance a local maximum with
u; > u;—1 and u; > w41 — will be damped out when the coefficients
c;—1 and ¢;y1 are both positive. A spatial discretization is called posi-
tive when the coefficients of the points in the stencil — except ¢; — are
positive. It can be seen from Eq. 4.6 that the upwind scheme is positive,
such that spurious oscillations cannot be formed at discontinuities. Pos-
itive numerical schemes are related to total variation diminishing (TVD)
schemes [90]. The positivity concept carries over automatically to multi-
ple space dimensions, while the TVD concept is only well-defined in one
space dimension.

The upwind scheme can be made more accurate by reducing the
numerical diffusion such that 7,4, = (Aa:)2, which would mean that the
scheme is second order accurate. This can be done through the technique
of linear reconstruction, as explained in Sec. 4.2. However, Godunov’s
theorem states that a second order scheme which is linear, cannot be
positive. To conserve the property of positivity, one has to consider
nonlinear schemes which are second order away from discontinuities,
but which through the action of a nonlinear limiter automatically add
more dissipation 7y, &~ Az at discontinuities.

The upwind scheme can be generalized to nonlinear scalar conserva-
tion laws by defining the numerical flux function in analogy with Eq. 4.8

as
) flui) + Fwi) 1.,
ier/z = - D) - 5|fﬁ1/2|(“?+1 —ug), (4.14)

4.1 Upwind discretization of conservation laws

where f/™* _ is some approximation for the derivative of the flux at
i+1/2

the location = = z;,,/,. For instance, one can make the simple choice
511/2 = f'((uj 4+ uj,,)/2), but other choices with advantageous prop-
erties are possible.

4.1.2 Systems of conservation laws
A hyperbolic system of conservation laws

oU JF(U)

ot + Oz
can be discretized in a way analogous to the scalar case. In case of a linear
system with F(U) = A-U and A = RAL the eigenvector decomposition
of A, we can decouple the equations and apply the upwind discretization
technique to every decoupled equation separately, which leads to the
numerical flux function

AU 4AUT 1o
it1/2 = % - §|A|(Ui+1 -U7), (4.16)

=0, (4.15)

where |A| = R|A|L. This adds the numerical dissipation nnum AR
Az/2 to (decoupled) equation k.

For a nonlinear system, we have to specify an approximation for
Al = Fﬁl/w which is the Jacobian OF /OU of the flux at the location
T = x;y1/2- For instance, one can again make the simple choice A},)2 =
A((U} + U}, ,)/2). The numerical flux function then reads

ns FUY,)+FU?) 1 .. n n
i+1/2 — L D) - §|A?+1/2|(Ui+1 - Uy, (4.17)

with |A”*1/2| = Rit1/2 |Ali1/2 Lit1/2- This expression is closely related
to the Roe flux function [127]. The CFL time step limitation now be-
comes

Az

At< — =2 (4.18)
maxj, l(|)\z+1/2|)

with maxy, ,(|/\l+1/2|) the largest wave speed in the system. This sug-
gests, however, that we could simplify the numerical scheme c0n51derably
by applying the largest numerical diffusion 7,y i+1/2 = maxk(|/\ +1/2|)
Az /2 uniformly to all the equations at location x = x;;;/,. This still
guarantees numerical stability and positivity of the discretization, al-
though it adds some excessive dissipation to some of the characteristic
waves. The numerical flux function simplifies to

. F(UL,) +F(UP) 1
me = SLs QmaX,»(uz+1 2)(UR —UP). (4.19)

Chapter 4. A finite volume 1deal M HD code

The resulting numerical scheme is much simpler because no eigenvector
decomposition is necessary, and it also turns out to be much more robust.
It is called the (local) Laxz-Friedrichs scheme.

s &

|
I
|
I
|
|
|
u; :

Ur

Figure 4.2: Riemann problem for a scalar equation. In this example the
solution is a shock which connects u; with u, and propagates with speed
s.

We can now make the link to finite volume discretizations [90]. To
this end we first have to introduce the concept of a Riemann problem
[90]. For simplicity we discuss the scalar case. As is shown in Fig. 4.2, a
Riemann problem is an initial value problem for which the initial state
is a discontinuous jump between two constant states. We have shown
in Sec. 3.3.5 that the exact solution of a scalar Riemann problem is a
shock (propagating with shock speed s, see Fig. 4.2) or a rarefaction
— or possibly a compound shock for non-convex flux functions. For a
k x k system, the solution to the Riemann problem generally consists
of k shocks and/or rarefactions which propagate at different speeds. An
important property of Riemann problem solutions is that they are self-
similar in the variable x/t, such that the state u*(¢) at the z-location
of the initial discontinuity between u; and u,, is constant in time. In a
linear system, there are only shocks and no rarefactions, and below we
consider linearized Riemann problems.

We divide the 2 and ¢ axes in finite volume cells with constant lengths
Az and At. We integrate Eq. 4.1 over a finite volume cell (Fig. 4.3) and
obtain

(@t —ap) Ax + (F(ulfy) — F(uly) At =0, (4.20)

where the overbar denotes a spatial average, the double overbar is a
temporal average and “ﬁ1/2 is the exact solution at © = x;; /5. The
cell average u; is stored in the center of cell 7. Eq. 4.20 is exact and
can be interpreted as an evolution equation for the cell averages, which

change when there is a net flux through the cell interfaces. We can

4.1 Upwind discretization of conservation laws

t
1_1-"+l
1
n+lH-
= * :."
fuiy,) f(u1+1/2
uj'
n O >
i-1 i i+l

Figure 4.3: Finite volume integration.

now approximate u(z,t) by evolving the cell averages in time using Eq.

4.20 with a certain approximation f* i1/ for the flux f(u +1/2) fox A is
again called the numerical fluz function. At a given time t = t,,, we have
thus to consider the evolution of a piecewise-constant profile, which in
fact is equivalent to the solution of many Riemann problems at every cell
interface. The solutions u* of these Riemann problems at the interfaces
are constant in time, so we can drop the double overbar in Eq. 4.20. We
can solve these Riemann problems approximately, and can for instance

choose the linearized approximate Riemann solver f;*, /2 defined by
) fluiy) +fwi) 1.,
it1/2 = Hf - §|le$1/2|(), (4.21)

where we have been inspired by the flux function used in our upwind
finite difference scheme Eq. 4.14.

The reader can note the equivalence between conservative finite dif-
ference schemes (point values are updated using finite difference approx-
imations of derivatives) and finite volume schemes (cell averages are
updated using differences of fluxes through cell interfaces). For the first
order schemes considered in this Section the two approaches are com-
pletely equivalent. For instance, the CFL condition can be interpreted as
the condition that waves from neighboring Riemann problems do not in-
terfere. Upwind discretization is equivalent to solving Riemann problems
to determine the numerical finite volume flux. Higher order discretiza-
tion of derivatives, however, is not automatically equivalent to higher
order discretization of fluxes through interfaces.

Chapter 4. A finite volume 1deal M HD code

4.2 Spatial discretization: finite volume
schemes

In this Section we describe the spatial discretization approach adopted
in our code, which leads to schemes which are first and second order ac-
curate in space (for smooth flow). Here we only describe discretization
of the ideal equations. It is not too difficult to discretize the dissipative
terms as well [106], and the 2D numerical code used for the simulations
presented in this dissertation actually is capable of performing dissipa-
tive simulations [155], but this aspect of the code is not described here.
For simplicity, we start with an equi-distant spatial discretization in 1D
(grid size Az), and subsequently discuss 2D, 3D and 2D axi-symmetrical
discretizations. The ideal MHD equations 3.12 can be written in the fol-
lowing abstract conservation law form

68—? +V-F(U) = sPov, (4.22)

with U the vector of state variables which are conserved quantities, F
the flux vector, and S¥°% the Powell source term (which equals zero on

the PDE level because it is proportional to V - é)

4.2.1 One—dimensional space
In every cell (i) we define the cell average of the state variable U as
_ Tit1/2
U, = / U(z,t)dz | [Axz. (4.23)
Ti—1/2

This cell average is stored in the center of cell (i) — leading to a cell-
centered approach. We obtain the following time evolution equation for
this average after integration of Eq. 4.22 in space over the finite volume
cell with label ¢

oU;
ot

In 1D the Powell source term is also identically zero numerically, because
B, is a constant in 1D space. F7 41/2 is a numerical approximation for the
flux through the interface between cell (i) and cell (i + 1) (the numerical
fluz function).

There are many possible choices for the form of the numerical flux
function, corresponding to the choice of an (approximate) Riemann
solver. In Sec. 4.2.5 we discuss some possible choices and describe the
numerical flux function used for the simulations presented in this paper.

4.2 Spatial discretization: finite volume schemes

Many numerical flux functions, including the Roe and Lax-Friedrichs
flux functions, can be cast in the following form

F*(Uh Ur) = w + D(Uh Ur): (425)
with F being the 1D MHD flux function of Eq. 3.76, and U; and U,. the
state variables to the left and to the right of the interface. The third
term D(Uy;, U,) is in general proportional to U, — Uj.

Let us focus on the flux through the interface between cells i and
1+ 1. A first order accurate spatial discretization is obtained if we
take the left and the right state used to calculate the numerical flux,
to be the cell-averages to the left and the right of the interface, viz.
U, =T, and U, = ﬁi+1. In this picture, the solution is thought to be
piecewise-constant in every cell. The first two terms in the right-hand
side (RHS) of Eq. 4.25 correspond to a second-order accurate central
space discretization of the flux terms without dissipation, and would
lead to a numerically unstable scheme without the addition of dissipa-
tive terms. The third term D(U;,U,.) precisely adds this (numerical)
dissipation with a dissipation coefficient which vanishes in first order in
Azx. There are many choices for the exact form of this dissipative term,
corresponding to the choice of an (approximate) Riemann solver. This
is discussed in Sec. 4.2.5.

The scheme can be enhanced to second order spatial accuracy by
considering piecewise-linear variation in a cell. For instance, U; can be
calculated — or reconstructed — as U; = U; +1/2 (U; — U;_;), or pos-
sibly also as U; = U; + 1/2(U;41 — U;) or any convex combination
of these two. This kind of reconstruction would lead to second order
accurate schemes — the dissipation coefficient of the term D(U;, U,)
would vanish in second order —, but the solution near discontinuities
would contain spurious oscillations. To discard these spurious oscilla-
tions, a nonlinear slope limiter L can be used to determine the slope of
the linear reconstruction, with

U, = ﬁl + 1/2 L(ﬁl — ﬁi—l,ﬁi—i-l — ﬁl) (426)

Again, there are many possible choices for such a limiter [90], and we
use the minmod limiter for our simulations. The component-wise action
of the minmod function is given by

I(z,y) = sign(r) max(0, min(abs(z), sign(z)y)). (4.27)

It can easily be verified that this function selects the least steep slope
for the reconstruction if the sign of the slopes is the same, and vanishes
(leading to piecewise constant reconstruction and first order accuracy)
when the signs of the two slopes are different, which typically is the case

100

Chapter 4. A finite volume 1deal M HD code

at discontinuities. It can be proven rigorously that this limiter function
(and other similar limiter functions) effectively discards spurious oscil-
lations [90] because it ensures positivity of the scheme. In practice we
do the second order reconstruction using the primitive variables W, and
not the conservative variables U. Experience shows that this improves
the robustness and steady state convergence properties of the scheme.

4.2.2 Two—dimensional space

Figure 4.4: Finite volume grid cell with label (i, j) and its nearest neigh-
bor cells. The variables stored in the centers of a cell represent the
averages of the state variables over the cell.

Now we describe how these concepts can be extended to spatial dis-
cretization on a 2D structured body-fitted grid. We divide the computa-
tional domain in a logically rectangular structured grid of quadrilaterals
(Fig. 4.4). The solution of the flow is sought in the physical cells, with
indices in the computational domain ranging from 1 to n; for index i,
and from 1 to n; for index j. This physical domain is surrounded by two
layers of ghost cells, which allow for a simple implementation of bound-
ary conditions (see Sec. 4.2.6). The cell interfaces are not constrained
to be parallel to a Cartesian axis, which for instance allows to fit the
grid to a curved rigid body. We integrate Eq. 4.22 formally over the
finite volume cell with label (,7), and obtain the following discretized

4.2 Spatial discretization: finite volume schemes

101

equation

— 4

an i Dk - Q

S+ 10y Y By Al =8 (4.28)
k=1

for the time evolution of the average of the state variable over cell (i, j)

U, = (// U(z,y,t) dzdy) /%, (4.29)

which is stored in the center of cell (7,5). The coordinates of the cell
centers are calculated as the arithmetic average of the corner point co-
ordinates. Here), ; is the surface of cell (7,), and the summation in
Eq. 4.28 extends over the four sides or interfaces of cell (i, 7). _’z is a
numerical approximation for the flux vector through the interface k, Al
is the length of interface k, and 7y is the outside unit vector normal to

side k. gf;w is the cell average of the Powell source term in cell (4, 5).

For each interface, we can apply the above described 1D technique
to calculate the normal numerical flux F* = F* - 7. The 1D formulas
remain valid in a coordinate system aligned with the interface. For
instance, to calculate the flux between cell (i, j) and cell (i + 1,), a first
order accurate scheme is obtained by taking U; = U; j and U, = U4 ;.
Appropriate rotations of vector components have to be carried out then
to calculate F* using Eq. 4.25. A second order accurate scheme results
from taking U; = ﬁi,j +1/2 L(ﬁi,j —ﬁi,u,ﬁiﬂyj —ﬁi,j). In practice
we do the second order reconstruction using the primitive variables W,
and with vector components in the coordinate system aligned with the
interface. This alignment reduces errors of the scheme at boundaries.
This simple dimension-by-dimension approach turns out to work well,
and it can be proven that the scheme remains second order accurate if the
grid is not too much distorted [164]. In the next Chapter we present grid
convergence results which confirm this. A more sophisticated approach
would be to do reconstruction using estimates of gradients based on 2D
interpolation [7].

We use the following discretization for the source term §f;.’ “in cell

(i,7). V- B is discretized as

4
(V- B)ij =1/ Z By - ity Aly, (4.30)
k=1
with
By = (B, + B,)/2 (4.31)

the average of the (reconstructed) magnetic fields on the left and the
right of the interface. This discretization of V - B is then multiplied

102

Chapter 4. A finite volume 1deal M HD code

with the appropriate cell-averaged state variables (stored in the center
of cell (i,7)) to obtain a discretization for the source term in Eq. 4.28.
Experience has shown that it is important to use the reconstructed values
of B in the discretization of V - B for the second order scheme, because
this results in a more robust scheme.

4.2.3 Three—dimensional space

It is rather straightforward to extend the above described techniques to
spatial discretization to a 3D structured body-fitted grid. We divide
the computational domain in a logically rectangular structured grid of
hexahedrals (cells with eight corner points and six boundary interfaces).
We introduce a third index & ranging from 1 to n; in the computational
space. The physical domain is again surrounded by two layers of ghost
cells.

We integrate Eq. 4.22 formally over the hexahedral finite volume cell
with label (4, 7, k), and obtain the following discretized equation

6ﬁl ik : D = <3
8ty.77]\z +]-/Qz,],k Z Fp . np AAp = Si,;":’ (4.32)
p=1

for the time evolution of the average of the state variable over cell (i, j, k)

ﬁm,k = <///U(w,y,z,t) dr dy dz) [k, (4.33)

which is stored in the center of cell (i, j, k). Here Q; ; is the volume of
cell (4,7, k), and the summation in Eq. 4.32 extends over the six sides or
interfaces of cell (4,7, k). F; is a numerical approximation for the flux
vector through the interface p, AA,, is the surface of interface p, and 7,
is the outside unit vector normal to side p. In general the four points
defining a cell interface are not co-planar, so care has to be taken to define
the cell volumes and the interface normals and surfaces in a consistent
way. We have used a technique which subdivides the hexahedron in three
five-sided pyramids pointing at the same vertex, as described in [106].

As in the 2D case, we can apply the above described 1D technique
to calculate the normal numerical flux F* = F* - ii for each interface.
The 1D formulas remain valid in a coordinate system aligned with the
interface. The source term is discretized in a way completely analogous
to the 2D case.

4.2.4 Axial symmetry

The conservative form of the ideal MHD equations with a source term Eq.
3.12 can be written in cylindrical coordinates (z,r,6), and by assuming

4.2 Spatial discretization: finite volume schemes

105

rotational or azial symmetry around the z-axis (9/00 = 0), one obtains

o(ru) I(rF,(U)) o(rF,.(U)) P
= S9°(U ST, 4.34
o o o ©)+r (4.34)
Here U = (p, pvy, pv,, pvg, By, B, Bp, €) is the vector of conservative
variables in the cylindrical coordinate system. F,(U) and F,(U) are
MHD flux functions (as in Eq. 3.76) in the z and the r directions, for
instance

p Uy
pv2+p+ B?/2 - B?
pvzv. — B, B,

T - B:tB
F,(U) = puty e . (4.35)
B,v, — Byv,
Byv, — By

| (e+p+ B?/2)v, — B, (7~

S9¢°(U) is a geometrical source term reading

=

0
0
(pvg — Bj) + (p+ B?/2)
—(pv,vg — B By)

S9¢°(U) = 0 , (4.36)
0
’UTBQ — ’UgBT
- 0 -
and rSF°% is the Powell source term given by
Tspow — Dpow WPow (U), (437)
with 0B, O(rB,)
pPow = (A2 el 4.38
(Or + or > ’ (4:38)
and ~ _
0
B,
B,
B
wFhow(U) = o (4.39)
Ug
Ur
Vg
| B-7 |

We have derived these expressions following the technique proposed in
[13]. We discretize these equations on a 2D structured body-fitted grid.

104

Chapter 4. A finite volume 1deal M HD code

We integrate Eq. 4.34 formally over the cell with label (i,j), and af-
ter some approximations regarding the averaging of state variables and
geometrical quantities, we obtain the following discretized equation

00, —

Qi7jr§7?nter o + Z r;niddle FZ: i Al =
k=1

Q:,;(S7°°(T, ;) + D, "WFov (T, ;), (4.40)

for the time evolution of the average of the state variable over cell (i, j)

T, = (//U(:r,r,t) dz dr)/Qi,,-, (4.41)

which is stored in the center of cell (i, 7). Here Q; ; is the surface of cell
(i, 7). 1_3"2 is a numerical approximation for the flux vector through the
interface k, Aly is the length of interface k, and 7, is the outside unit
vector normal to side k. rf"}"t” is the distance between the center of cell
(7,7) and the axis of rotational symmetry, and r,@”id‘”e is the distance
between the middle point of the interface segment with label & and the

. =Pow
symmetry axis. The term D, ;- is discretized as

4

ﬁf;)w — I/QiJ Z Tlrcniddle ék . ﬁk Alk, (442)
k=1
with ~ B)
By, = (B + B,)/2 (4.43)

the average of the (reconstructed) magnetic fields on the left and the
right of the interface. The same numerical flux functions F* and the same
second order reconstruction can be used as for the case of the 1D, 2D and
3D schemes. Actually, the 2D code based on the scheme described in Sec.
4.2.2 for planar symmetry (9/0z = 0) can be used for axi-symmetrical
simulations by a simple re-definition of the geometrical quantities Q' =
reenter() and Al' = r™iddle Al and by adding the geometrical source
term.

4.2.5 Numerical flux functions

Throughout the years, many interesting MHD numerical flux functions
have been proposed that can be used in the type of finite volume dis-
cretization described above, most of them based on some kind of approx-
imate Riemann solver at the interface between two cells [12, 183, 23, 24,
128, 129, 1, 118, 127, 162, 6, 7, 99, 36, 26, 111]. Many of those flux func-
tions are designed to produce as sharp as possible shock transitions and

4.2 Spatial discretization: finite volume schemes

105

tangential discontinuities. The Roe scheme for example, which has been
very popular for hydrodynamic applications, has been extended to MHD
[127, 7]. This scheme tries to minimize the numerical dissipation by de-
composing the difference U, — U; present in D(U;, U,.) in the space of
the eigenvectors of the Jacobian and by applying the minimum amount
of numerical dissipation to every characteristic wave separately. There
remain, however, several serious problems of local numerical instability
with this scheme, including the carbuncle phenomenon, as for example
described by Quirk [121]. Probably because of these problems the Roe
scheme is not so much used in MHD simulations these days [100, 150, 82].

Several approaches have been proposed to remedy these problems.
First, different types of nonlinear flux functions are being investigated,
e. g. Linde’s HLLE-based solver for MHD [99], which is based on some
other form for the numerical dissipation, or solvers derived from kinetic
descriptions [100, 99]. These new flux functions seem to remedy some
of the problems associated with the Roe solver, but more investigation
is necessary to see if they can solve all the stability problems. Second,
it is sometimes argued that much of the problems with finite volume
schemes on structured grids are inherent to the dimension-by-dimension
approach, and that many of the pathological instabilities could be re-
moved by considering truly multi-dimensional schemes on unstructured
grids [167, 22]. Third, the failure of the Roe scheme can probably be
related to the fact that it is not entropy stable [7]. New entropy sta-
ble schemes formulated in symmetrized entropy variables are being de-
veloped [7] and it can be expected that they will lead to more stable
numerical schemes. Also in this area a lot of research is still going on.

This short discussion indicates that there are certainly many unsolved
issues regarding the choice of numerical flux functions and numerical
schemes in general.

The Lax-Friedrichs flux function
The (local) Lax-Friedrichs (LF) flux function [90, 162, 6] is given by

F (U, U,) = DO TEUD) ey oy

U, -0
2 b

5 (4.44)

with |v%| 4+ ¢f* the largest wave speed in the direction normal to the
interface, determined from the arithmetic average (U; + U,)/2 on the
interface. This is sometimes also called the Rusanov flux function. The
Lax-Friedrichs flux function applies to all characteristic waves the same
numerical dissipation, determined by the maximum wave speed, which
makes it more dissipative than the Roe scheme for instance, but much
more robust and less prone to local numerical instabilities. The Lax-
Friedrichs flux function is probably the most robust numerical flux func-

106

Chapter 4. A finite volume 1deal M HD code

tion. Because it is simple and robust, its use in applications is often ad-
vocated [162, 6, 150, 82]. Stationary shock profiles are actually captured
surprisingly well with this Lax-Friedrichs scheme [6, 162], but tangen-
tial discontinuities are smeared out. We show in the next Chapter that
we obtain satisfactory grid convergence results using this numerical flux
function. For most of the simulations to be described in this dissertation,
we use the LF flux function.

The Roe flux function

The Roe scheme has been extended to MHD, and the details of the
eigenvector decomposition can be found in [127, 7]. We have certainly
tried to use the Roe scheme for our simulations of bow shock flows, but
the Roe scheme has turned out to be not reliable enough. For instance,
the carbuncle phenomenon [121] was often encountered at the nose of
bow shocks. We illustrate this in Chap. 9.

The MHD HLLE flux function

Linde’s extension of the HLLE flux function to MHD [99] seems to be
more reliable than the Roe scheme. The carbuncle phenomenon did not
seem to show up in our 2D simulations when we used this flux function,
but we observed other instabilities which prevented convergence to a
steady state, as is illustrated in Chap. 9. In 2D we were able to choose
the resolution of the grid high enough to get good results with the LF
scheme. In 3D, however, we sometimes had to use Linde’s HLLE scheme
to obtain flow solutions with reasonable detail.

4.2.6 Boundary conditions

Most of the simulations presented in this dissertation were performed
using boundary conditions implemented with two layers of ghost cells
(e.g. [91]). This allows us to use the same algorithm to update all the cells
in the physical simulation domain, also the ones close to the boundary.
Superfast inflows and outflows and perfectly conducting walls can easily
be modeled by this technique. For subfast inflows and outflows, however,
we have used boundary conditions based on direct specification of the
numerical flux on the boundary. We discuss the boundary conditions for
the case of two spatial dimensions. The 3D case is completely analogous.

Boundary conditions using ghost cells

The following three types of boundary conditions can easily be specified
using the ghost cell approach. Let us focus on a boundary to the right
of cell (i = ny,j = j*), which is the last physical cell in the ¢ direction

4.2 Spatial discretization: finite volume schemes

107

with the second coordinate j equal to a certain j* in the computational
space.

First, at perfectly conducting walls, the magnetic and the velocity
fields have to be tangent to the wall. This is implemented by copying
the cell-averaged state of (n;,j*) into the first ghost cell (n;+1,5*), except
for the components of the magnetic and velocity fields perpendicular to
the interface between cells (n;,5*) and (n;+1,5*), which are copied with
a change in sign. For the second order scheme, the cell-averaged state
of (ns-1,5%) is copied into the second ghost cell (n;+2,5*), except again
for the components of the magnetic and velocity fields perpendicular to
the interface between cells (n;,7*) and (n;+1,5*), which are copied with
a change in sign. This procedure guarantees that the value of (U; +
U,)/2 for the normal components of the fields vanishes exactly on that
interface, also for the second order scheme with minmod reconstruction
in a coordinate system aligned with the interface.

Second, at free outflows, where the normal outward plasma velocity
is larger than the normal fast MHD wave speed and all the characteristic
information thus propagates outward of the physical domain, the state
variables of the last two physical cells are used to extrapolate linearly into
the two layers of ghost cells, for instance Uy, 42,j+ = Uy, j« +2 (Up, j» —
U, —1,5*)

Third, at free inflows, where the normal inward plasma velocity is
larger than the normal fast MHD wave speed and all the characteristic
information thus propagates into the physical domain, we impose the
value of U, = (U; + U,)/2 on the boundary interface, and use this
and the state of the last physical cell to calculate the value in the first
ghost cell. In our example, Uy, 11 j+ = 2U;, — Uy, j+. The value in the
second ghost, cell ﬁn#l,j* follows from linear extrapolation of ﬁni 4+ and
ﬁn#l,j*. For the free inflows and outflows, an even simpler but often
satisfactory approach is to use constant extrapolation of the solution.

Although these boundary conditions are based on a simple dimension-
by-dimension extrapolation, they turn out to work well, as is proven in
the next Chapter.

Flux boundary conditions

Characteristic boundary conditions [7] are implemented by directly spec-
ifying the flux as follows. At the boundary interface to the right of cell
(i = ny,j = j*), one determines the state U* which is the approximate
solution of the Riemann problem with left state the interpolated state
U, =U,, - +1/2(U,, ;+ — U,,_1,+), and right state a specified free
flow state U, = U,,. In bow shock flows, this free flow state is typically
the state far upstream of the object. U* can for instance be determined
using the Roe linearized Riemann decomposition. The numerical flux is

108 Chapter 4. A finite volume 1deal M HD code

then given by F* = F(U*). For superfast inflow and outflow, this results
in a boundary condition which is very close to the above described ghost
cell approach. For subfast flow, however, some characteristic information
flows into the physical domain, and other information flows out. It is
generally hard to translate this to specifying some of the primitive vari-
ables externally, and extrapolating the others from the physical domain,
because there is a complicated nonlinear and state-dependent relation-
ship between the characteristic variables carrying the wave information
and the primitive variables. The solution of the Riemann problem auto-
matically selects the necessary amount of information from the state in
the physical domain and the externally specified free flow state [7].

4.3 Temporal discretization: explicit Runge-
Kutta schemes

In this Section we discuss the time integration strategy used in our sim-
ulation code. We situate the discussion in the context of the 2D code,
but the 1D and 3D cases are completely analogous. An equation for
the time evolution of the cell average in cell (4,7) can be written in the
following general form

U, 1.2 7
, RYY(T 4.4
ot i,] ()v (5)

with RE}]-)’(Q) a first or second order accurate discretization of the residual
in cell (4,7), containing the spatial discretization of the divergence term
in Eq. 4.22, and the discretization of the source term. An explicit first-
order accurate time integration is obtained by simply approximating the
time derivative by a forward finite difference,

==t+At

_T17 (1) 7=t
U;; =U;; +R;;(U)At (4.46)

An explicit second-order accurate time integration is obtained by apply-
ing the following two-stage Runge-Kutta integration,

U;; =U,, +R>(U") At/2
T =T, +RY(T) Ar (4.47)

The time step At is derived from the following CFL-like time step limi-
tation [106]

Q;
At = coFr, mln[4J], (448)
i,] 22:1 max(O, (172'7]' - + Cé,i,j)) Aly,

4.4 Enforcing the V - B constraint in MHD

109

with c{l the fast MHD wave speed in the direction of 7i; calculated
with the cell-averaged state values stored in cell (i,7). The constant
corr has to be chosen smaller than one for the first order scheme, and
may be chosen slightly larger than one for the second order scheme. We
generally use corr, = 0.8 for first order calculations, and ccpr, = 1.2 for
second order simulations.

We use these general time-accurate integration methods to calculate
the stationary flow solutions to be described further on in this disser-
tation. In general, we start from a uniform initial flow condition and
we evolve the flow in time until vanishing of the residuals R shows that
a steady state has been reached. We use the following quantity based
on the density residual to measure the convergence to a steady state at
iteration m

E(m):log Chorm w (4.49)

n;n;

with n; and n; the number of cells in the ¢ and the j direction, and the
normalization constant cperm chosen in such a way that R(0) = 0. We
routinely achieve convergence of 15 orders of magnitude, which means
that the residuals are driven to machine zero. Throughout this disser-
tation we mean the base 10 logarithm when we use ‘log’ in convergence
measures and on plots.

It would be possible to obtain convergence to a steady state more
efficiently, and a whole scala of convergence acceleration methods of
varying complexity could be tried out, ranging from simple local time
stepping over implicit residual smoothing and multigrid, to fully implicit
time integration [106, 161, 83, 22]. We have, however, not attempted any
convergence acceleration technique for the simulations presented in this
dissertation.

4.4 Enforcing the V - B constraint in MHD

The numerical enforcement of the V - B constraint is an important and
much debated problem for numerical MHD codes. The V - B =0 con-
dition is an initial condition, which is exactly preserved in time by the
partial differential equations (PDEs) of MHD, but which is not always
exactly preserved after discretization of the equations. Various strategies
have been proposed to deal with the V - B constraint. We do not intend
to give a full discussion of this subtle subject here, but we find it useful
to give a brief overview of the various approaches to this problem.

The equations can be formulated in terms of a vector potential, which
automatically assures divergence free magnetic fields. This approach is

110

Chapter 4. A finite volume 1deal M HD code

not always very practical and leads to difficulties near sharp gradients
due to the presence of second order derivatives of the vector potential in
the equations (see e.g. [33, 158]). Staggered grid approaches store differ-
ent state variables on different positions of the grid, in such a way that
the discrete time evolution of the magnetic field automatically conserves
the divergence free condition (e.g. [33, 28, 158, 26]). They require, how-
ever, extra interpolations to be performed, and the interpolated magnetic
field is not necessarily divergence free. Projection scheme approaches
solve an elliptic equation in every time step and add a computed cor-
rection to the magnetic fields in order to achieve divergence free fields
[10, 183, 129, 162]. Solution of the elliptic equation may take consider-
able computing time, and spurious oscillations can be generated, also in
supersonic regions that should not be affected because they can theoret-
ically not be reached by wave perturbations in the hyperbolic system.

Recently a new approach has been presented by Powell [118]. He pro-
poses to add a source term proportional to V- B to the conservative form
of the MHD equations (Eq. 3.12). Discretization of this Galilean invari-
ant symmetrizable form of the equations with a source term [52, 118, 7]
(see Sec. 4.2.2) leads to a stable numerical scheme. The V- B constraint
is not enforced strongly and V - B can sometimes be substantially dif-
ferent from zero, but because of the presence of the source terms the
dynamical effect of the V - B errors is largely neutralized and V - B er-
rors can be shown to be advected away with the plasma flow. Although
this approach seems to work well [118, 162, 100, 99, 124, 149, 151, 7, 22]
and has several conceptual advantages over other techniques because of
its simplicity and consistency with the hyperbolic nature of the MHD
equations, not much can be found in the literature about rigorous vali-
dation of this approach, and consequently this approach is still heavily
disputed in discussions often dominated by dogmatic arguments.

In this dissertation we generally employ the Powell source term tech-
nique to control V - B. In the Sections above, we have described how
we discretize the Powell source term. We have found that this tech-
nique leads to consistent solutions, and in the next Chapter we prove
by formal grid convergence studies of magnetic flux conservation and
other flow quantities, that this approach is valid, at least for the class of
stationary flow problems that we consider. It is sometimes argued that
for some problems, for which the conservation of magnetic flux up to
very high accuracy is crucial, the source term technique could turn out
to be insufficient. We are not aware of any clear examples which would
confirm this, however.

For some flow problems, we have explicitly compared the Powell
source term technique with a projection scheme technique. In the pro-
jection scheme approach, one calculates a correction gww = -V® to
the magnetic field after every time step, such that V - (B' + gcorr) =0

4.9 lmnpilementation on massively paraliel
computers

111

or V- (V®) = V- B. Discretization of this Poisson equation leads to a
large linear system, and care has to be taken to formulate the boundary
conditions of this Poisson equation consistently with the boundary con-
ditions of the hyperbolic MHD system. We have discretized the Poisson
equation as proposed in [129, 161]. As is shown in Chap. 9, the Pow-
ell approach and the projection approach produce very similar results.
Only near a stagnation point have we found the Powell technique to be
less accurate than projection. The Powell technique is much faster and
deals with the V - B constraint in a more consistent hyperbolic way,
whereas the projection technique introduces contamination of upstream
flow regions, which in the case of our projection scheme implies upstream
oscillations due to mode decoupling. The projection scheme technique is
not easily parallelizable, because it involves the global solution of a lin-
ear system. For all these reasons we prefer to use the Powell technique
for most of our simulations.

4.5 Implementation on massively parallel
computers

Figure 4.5: Parallelization strategy to solve a flow problem in a given
physical domain (thick solid) on four processors by dividing the domain
in four sub-domains (thick dashed). The thin lines represent ghost cell
layers.

The algorithm described above has been implemented to run on mas-
sively parallel computers with distributed memory. Such computers con-

112

Chapter 4. A finite volume 1deal M HD code

sist of several processors connected by a fast network, and every proces-
sor has its own memory which can not directly be accessed by the other
processors. The processors can communicate by sending messages. It
is relatively straightforward to implement our numerical scheme with
explicit time integration on a parallel computer, for instance using the
Message Passing Interface (MPI) communication library [60]. Indeed,
the algorithm is inherently parallel because for the update of a given cell
only the values stored in its immediate neighbor cells are needed.

We illustrate our approach for the 2D case in Fig. 4.5. Suppose we
want to calculate a flow problem in a given physical domain (thick solid)
on four processors. We cover the physical domain by a logically rectan-
gular structured grid, and add two layers of ghost cells (thin solid). We
divide the domain in four equally-sized sub-domains (thick dashed) and
associate one processor to every sub-domain. We store the flow variables
of all the cells in sub-domain 0 in the memory of processor 0, and add
two layers of ghost cells (thin dashed). Only the ghost cells for proces-
sor 0 are shown on the Figure. In every time step, the internal cells
of sub-domain 0 can be updated by processor 0 with information avail-
able in the memory of processor 0. For the cells close to the boundary
(thick dashed), we use the information in the ghost cells. After every
time step, the ghost cells which correspond to physical boundaries (thin
solid), are updated using the physical boundary conditions. The ghost
cells corresponding to sub-domain boundaries, however, are updated by
exchanging messages between neighboring processors. Every processor
thus executes the same algorithm, which is very similar to the serial al-
gorithm, except for the update of the ghost cells. Only the time step At
has to be communicated globally in every iteration.

For an inherently parallel algorithm it is expected that a given prob-
lem executes two time faster on 2n processors than on n processors. We
say that the theoretical speedup is 2 in this case. In practice, however,
this theoretical speedup is rarely achieved, because for an increasing
number of processors, more and more information has to be exchanged
via messages for a given problem size, such that the communication over-
head may become significant enough to reduce the speedup. The relative
communication overhead is generally smaller for larger problems. Also,
the influence of serial bottlenecks — small portions of the program which
are not parallelized— becomes more significant for high processor num-
bers. In some cases the theoretical speedup can be exceeded, for instance
because of hardware cache effects.

It is difficult to measure the execution speed of parallel programs
in a consistent way, for instance because of variability in system load.
In Fig. 4.6 we show the speedup for the simulation of a 2D bow shock
flow with our parallel code. The theoretical speedup is given by the
solid line. The dashed line with asterisks shows the speedup curve for

4.9 Implementation on massively parallel computers

115

32
y
T
Ve
241 ST
L
S
«/(/
o s
= e
3 16 :
=3 /
Vs
8, —
y
0 | | |
0 8 16 24 32
processors

Figure 4.6: Speedup for the simulation of a 2D bow shock flow with our
parallel code on a relatively coarse grid (80 x 80, dashed with asterisks)
and on a slightly finer grid (160 x 160, dotted with triangles). The
theoretical speedup is given by the solid line.

simulation on a relatively coarse grid (80 x 80). For nppo. = 32 the
communication overhead starts to become important. For a slightly finer
grid (160 x 160, dotted with triangles), however, the theoretical speedup
is almost achieved. These curves show that our parallel code scales
satisfactorily with the number of processors used. Good parallel scaling
is an advantage of the explicit time integration strategy, and parallel
codes based on implicit time integration scale generally less favorably
[167] because matrix inversion is a global process.

