Chapter 3

Analytical properties of
the ideal MHD equations

In this chapter we discuss analytical properties of the ideal MHD equa-
tions which are useful for the interpretation and analysis of numerical
simulation results throughout this dissertation. In Sec. 3.1 we introduce
the ideal MHD equations. In Sec. 3.2 we discuss the theory of characteris-
tics applied to the ideal MHD system. In the final section we introduce
the theory of MHD discontinuities, and we discuss non-convexity and
compound shocks.

3.1 The ideal MHD equations

The ideal MHD equations can be written under several different forms,
each of which enlightens certain properties of the MHD system. First
we discuss a formulation which gives insight in the physical forces and
processes involved. Next the conservative form is discussed, which em-
phasizes the conservation law nature of the equations.

3.1.1 ‘Physical’ form of the MHD equations

In the non-relativistic limit the dynamics of a perfectly conducting one-
component fluid can be described by the ideal MHD equations. At a
given point in space and time the fluid can be described by eight state
variables (or primitive variables): the density p, pressure p, velocity vec-
tor ¥ and magnetic field vector B. These state variables are functions of
the continuous space coordinate vector # and the time ¢. A full descrip-
tion of the dynamical evolution of the conducting fluid is given by eight
equations which express the time evolution of the state variables.
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The first equation is the mass continuity equation

dp
— + V. (p¥) =0, 3.1
LV (o) (31)
which describes the conservation of mass. This equation is the same as
for the case of a neutral fluid.

Three more equations are provided by the vector momentum equation

—
—

d -
pd—: =—-Vp+ (V x B) x B, (3.2)

which is an expression of Newton’s law of motion. This equation is the
same as for the case of a neutral fluid, except for the additional Jx B
force exerted by the magnetic field on the charged fluid elements. The
current density J is given by Ampere’s law

J=V x B, (3.3)

with units chosen such that the magnetic permeability u equals 1 and
does thus not show up in the equations. The relation between the total
or convective derivative d/dt (which can be thought of as to describe the
time evolution of a quantity associated with a moving fluid element) and
the partial or local derivative 0/9¢t is given by

d 0
— = v-V). A4
-t @V) (34)
The next three equations are given by the vector induction equation
dB =
o =V x (¢ x B), (3.5)

which derives directly from one of Maxwell’s equations, namely, Fara-
day’s law of induction, and from Ohm’s law for an ideal plasma

E=—-0xB, (3.6)

with E the electric field.
The final equation describes the evolution of the pressure

0

ap

ot
where ideal gas behavior is assumed. This equation is the same as for

the case of a neutral fluid, and describes the conservation of the specific
entropy s. Indeed, we can rewrite Eq. 3.7 as

ds
i 0, (3.8)

(0-V)p++pV - -0=0, (3.7)
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with the (specific) entropy s given by

s=L2

p’Y

for an ideal gas. We call s the entropy throughout this dissertation,

although strictly speaking the thermodynamic entropy density is given

by the quantity ¢, log(s), with ¢, the specific heat at constant volume.

The adiabatic index -y is the ratio of specific heats, and is taken equal to

the mono-atomic gas value of 5/3 throughout this dissertation, because

the ion component of most space physics plasmas mainly consists of
ionized hydrogen.

This constitutes a complete system of evolution equations describing
the dynamics of a conducting fluid. However, it is an observational fact
that magnetic monopoles do not exist in nature, so the above equations
have to be supplemented with the divergence free condition

(3.9)

V-B=0. (3.10)

This condition implies that the magnetic flux is conserved in space, in the
sense that the net flux through the surface of a closed volume vanishes,
which allows for the concept of flur tubes. By taking the divergence
of the induction equation 3.5 one can see that once the divergence free
condition is imposed as an initial condition, it automatically remains
fulfilled at later times. The divergence free condition is thus in a way
compatible with the MHD equations, and can be seen as an additional
constraint to the MHD system.

3.1.2 Conservative form of the MHD equations

The MHD equations introduced above can be re-stated in explicit con-
servation law form. We introduce the specific total energy e, given by

o= —— Pt ——. (3.11)
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This form of the equations expresses the basic conservation of the con-
servative variables mass p, momentum pt, magnetic field B and specific
total energy e, and shows explicitly that the total mass, momentum,
magnetic field and energy present in any given volume can only change
when there is a net fluz through the boundaries of the volume. This
equation again has to be supplemented with the divergence free condi-
tion V- B = 0 as an initial condition.

The right hand side (RHS) term of Eq. 3.12 is proportional to V-B =
0 and is thus identically zero, but for several reasons to be explained
below it is advantageous to keep this term in the equations.

The main function of the RHS term (sometimes also called the Pow-
ell source term) is that it makes the MHD equations Galilean invariant
also when V - B # 0. A necessary property of any well-posed theory
in non-relativistic physics is that it has to be Galilean invariant. The
MHD system, for instance as described by the equations given in Sec.
3.1.1 supplemented with the V-B=0 condition, of course is Galilean in-
variant. However, without this constraint, the induction equation 3.5 of
Sec. 3.1.1 is not Galilean invariant, as can be shown as follows [34]. Mak-
ing the following Galilean transformation to a new rest frame indicated
by primed quantities

=1

v =v—-a

. BB

— !

oo OV
V=V (3.13)

the induction equation Eq. 3.5 transforms to

oB'

WzV’x(ﬁ’xﬁ’)—E[V’-ﬁ’, (3.14)

which is clearly of a different form than Eq. 3.5 (if V- B # 0). We can
restore Galilean invariance by changing the induction equation 3.5 to

8B
ot
and this is precisely the form of the induction equation in Eq. 3.12. If one
does not use the V- B = 0 condition in rewriting the equation of motion
Eq. 3.2 into conservative form, then one finds the form of Eq. 3.12 with

the extra RHS source term. Similarly, construction of the total energy
equation without making use of the V - B = 0 condition leads to the

Vx(#xB)-7V-B, (3.15)
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form with the RHS source term. We can thus summarize by saying that
the conservative form of the equations without the RHS source term is
not Galilean invariant when V- B # 0, but that the form with the source
term restores Galilean invariance.

Although V - B =0 rigorously in analytical approaches to MHD
problems, it is useful to consider the form of the equations with the
source term in the following three cases.

First, Godunov [51, 52, 7] proved in 1972 that this is the unique form
of the MHD equations which is symmetrizable. The symmetrized form
of the equations is useful for the design of numerical schemes in natural
‘entropy variables’ [7] and for the analysis of stability of shock waves
[35].

Second, we show in Sec. 3.2 that the inclusion of this RHS term
is essential for our derivation of the characteristic theory of the MHD
equations in a simple, compact, and systematic procedure using a matrix
approach. Characteristic analysis based on the symmetrizable form of
the conservative MHD equations gives insight into the basic structure of
the MHD equations as a system of Galilean invariant conservation laws
with a constraint.

Third, in some numerical schemes, the V - B = 0 constraint is only
satisfied up to a discretization error. As first shown in [118], inclusion of
the RHS term assures that these small V - B errors are consistently ac-
counted for in a numerically stable way and do not lead to accumulation
of inaccuracies. The numerical code used in this dissertation makes use
of this technique to control the V - B errors, as is described in Chapter
4.

Next to the conservation of mass, momentum, magnetic field and
energy mentioned above, there are other quantities in the ideal MHD
system which are conserved in the sense that they are frozen into the
moving plasma. As follows from Eq. 3.9, the entropy s of a moving fluid
element is a conserved scalar quantity. Also, the magnetic flux through
a surface moving with the flow is a conserved quantity associated with
the magnetic field lines which are frozen into the plasma. Indeed, we
can make use of a general expression for the convective time derivative
of the flux @ of a vector field A through a surface S which moves with
velocity @. The flux ® is defined by

@:/A’-ﬁds, (3.16)
S

with 7 the vector normal to the surface, and the total time derivative of
the flux is given by

d_q’:/(% +A@(V-A) +V x (A x @) - 7idS. (3.17)
dt g Ot
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The total time derivative of the flux ® g of the magnetic field B through
a surface moving with the plasma speed ¢/ is then given by

d® o8 - L

__E:/p—+WVJﬂ+waxmyﬁ%. (3.18)
dt s Ot

Using the Galilean invariant form of the induction equation Eq. 3.15 it

follows that the magnetic flux ®p through a surface moving with the

plasma is conserved in time

ddp

T 0, (3.19)
also if V- B # 0. It is interesting to remark that the conserved variables
p, pU, B and e remain conserved quantities in dissipative MHD (Eq.
2.6), whereas the entropy s and the magnetic flux are not conserved
(frozen—in) in dissipative MHD. Another manifestation of the fact that
the magnetic field is frozen into the plasma for ideal MHD, is that fluid
elements which reside on a common field line at one time, remain on
this magnetic field line at all times. These frozen-in quantities can be
characterized and classified with more insight when one considers them
in the framework of differential forms, vector fields and Lie-derivatives,
as is done for instance in [65]. The magnetic field vector, for instance,
is a 2-form or an azial vector, which in general has the property of
conservation of flux. These considerations, however, are beyond the
scope of this introduction to the MHD equations.

The ideal MHD system belongs to the class of symmetric hyperbolic
systems [21], which have many interesting and well-defined properties.
Hyperbolic systems describe wave phenomena. Characteristic analysis
naturally reveals the properties of the hyperbolicity of the system and
its associated waves, and is taken up in Sec. 3.2.

3.1.3 Scaling invariance of the stationary ideal MHD
equations

Physical variables are expressed in certain units, and we have some free-
dom in choosing these units. The solution to a given physical stationary
MHD problem should of course not depend on the units we choose. We
can scale the primitive variables and space coordinates as

p'(@") = pp(Z)
p'(Z') = pp(7)
7'(2') = v9(2)
B'(z') = BB(%)

=z (3.20)
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with for instance p’ the density in the new units, p the original density,
and p a scaling factor. Scaling the variables in the momentum equation
3.2 with 0/0t = 0 results in

—

(V'x B'")x B'. (3.21)
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This equation describes the same physical problem as the momentum
equation 3.2 in the original variables only if p = p©> and p = B?. This
expresses the fact that we cannot completely freely choose units because
the dimensions of physical quantities are not independent. For stationary
ideal MHD, these are the only two independent dimensional constraints.
We call scaling under these constraints consistent scaling.

This reasoning also implies that every class of solutions to the sta-
tionary ideal MHD system which are equivalent up to scaling, is labeled
by two independent dimensionless quantities taken in an arbitrary point
of the solution, for which we can choose the following:

, (3.22)

with v and B vector magnitudes. The reader can verify that these two
quantities are indeed invariant under consistent scaling. Sometimes the
Alfvénic Mach number My = v/(B/,/p) is taken in stead of the sonic
Mach number M. These quantities do not depend on the spatial scale,
so stationary ideal MHD flows are length scale invariant. For instance, in
stationary bow shock flows the size of the obstacle is irrelevant, because
scaling the obstacle just means that the solution has to be scaled in the
same way.

Consider a stationary ideal MHD flow problem with the boundary
geometry and boundary conditions specified. We can obtain physically
different flow problems by scaling the values imposed at inflow bound-
aries without taking into account the dimensional constraints. This non-
consistent scaling changes the values of 3 and/or M. There are only two
parameters that can be changed independently, so we can say that ideal
MHD problems have two free parameters under scaling. If one studies
stationary ideal MHD problems in a general way and one wants to per-
form complete parameter studies, it is important to know how many free
scaling parameters there are and it is helpful to label solutions with these
free parameters. Therefore most of the time we express inflow conditions
in terms of the dimensionless quantities 8 and M for the numerical sim-
ulations described in this dissertation.
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3.2 Characteristic analysis of the ideal MHD
equations

An extensive general theory exists for the characteristic properties of
symmetric hyperbolic systems [21, 20]. This theory has been applied
early on to unsteady MHD flows [21] and to steady planar (B, = v, = 0)
MHD flows, including the case where the magnetic field is aligned with
the flow (field-aligned or parallel flow) [79, 59]. More complete accounts
of the characteristic theory of steady and unsteady MHD flows appeared
later [71, 85, 70, 3.

In this Section we present a concise derivation of some aspects of the
characteristic theory of the MHD equations with two independent vari-
ables (time-dependent MHD in the zt plane and steady MHD in the zy
plane), in preparation for the characteristic analysis of MHD flows with
shocks later in this dissertation. This Section serves to introduce the
reader who is unfamiliar with the theory of characteristics to the con-
cepts, nomenclature and notation that is used further on. Moreover, our
derivation of this characteristic theory, based on the Galilean invariant
symmetrizable form of the conservative MHD equations with a source
term [51, 118, 7] and using a matrix approach [70, 19], is new and at-
tractive in its own right, because it gives insight into the structure of the
MHD equations as a system of Galilean invariant conservation laws with
a constraint, and because in a simple, compact, and systematic way we
recover all the various results that are scattered throughout the litera-
ture [21, 79, 59, 71, 85, 70, 3, 19]. This derivation of characteristic theory
has appeared in [151]. Before deriving the characteristic properties of
the MHD system with two independent variables, we briefly introduce
the concept of characteristic curves, starting from the simple case of a
scalar equation.

3.2.1 The theory of characteristics

The basic concepts and definitions of characteristic theory can be most
clearly presented for the simple scalar case. Consider a conservation
law for the scalar quantity u(z,t) which depends on two independent
variables = and ¢,

ou  Of(u)

o + e 0, (3.23)
or

ou N

where f(u) is called the flux function and the prime denotes a derivative
with respect to w. If f'(u) is real, then there exist curves z(t) in the xt
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plane defined by

= f'(u), (3.25)
such that
=0. (3.26)

Along these curves, which are called characteristics, the partial differen-
tial equation Eq. 3.23 reduces to the ordinary differential equation Eq.
3.26. The equation is said to be hyperbolic when f’(u) is real and real
characteristic curves exist. The scalar u is then invariant on the charac-
teristic curve and is called a Riemann Invariant (RI). The slope of the
characteristic A = f'(u) is called the characteristic speed. For the scalar
case, the characteristics are straight lines (when f only depends on u
and not directly on the independent variables).

()
t

(b) . ,
u /
a \/ >a/

X X

Figure 3.1: The scalar advection equation. (a) Characteristic curves
(thin solid) are parallel straight lines with slope a. (b) A wave profile u
(thick solid) is advected with speed a.

The most simple illustration of these concepts is probably the case
of the linear scalar conservation law, with flux function f(u) = a w.
The characteristics are parallel straight lines in the zt¢ plane with slope
f'(u) = a, as shown in Fig. 3.1a. The scalar u is constant on every
characteristic, which means that a wave profile is just advected with
speed a, as shown in Fig. 3.1b. A scalar conservation law with a linear
flux function is therefore also called a scalar advection equation.

An example of a nonlinear scalar conservation law is Burgers’ equa-
tion, with flux function f(u) = u?/2. The effect of the nonlinearity of the
flux function is that a smooth profile can steepen into a shock. In Fig.
3.2 we show how an initial state containing a linear profile for x € [0, 1],
varying from v = 1.5 on the left to u = —0.5 on the right, steepens into
a shock. Fig. 3.2a shows the characteristics with slope f'(u) = u in the
xt plane. The shock is formed when the characteristics first intersect
at (z = 3/4,t = 1/2). The discontinuity is necessary to avoid a mul-
tivalued solution where the characteristics intersect. Fig. 3.2b shows a
surface plot of u.



3.2 Characteristic analysis of the 1deal MHD equations

(@)

Figure 3.2: Steepening of a linear profile into a shock for Burgers’ equa-
tion. (a) Characteristic curves (thin solid) converge into the shock (thick
solid). (b) Surface plot of u.

The concept of characteristic curves carries over to a system of con-
servation laws with two independent variables in the following way.
Consider a linear system of n coupled equations

oU U _

W +A: % =0, (327)

with U a state vector of n conserved quantities, and A a n x n constant
matrix. Suppose an eigenvector decomposition of matrix A = R-A-L
exists, with the columns of R being the right eigenvectors of A, the rows
of L being the left eigenvectors of A, R = L™!, and A being a diagonal
matrix with the eigenvalues of A on the diagonal. The system is said to
be hyperbolic if all the eigenvalues are real. The system can be described
in terms of the characteristic variables W =L - U as

A% A BW:

W + : W 0. (3.28)

This decouples the equations, and for every component of W we have
the conservation law 9 5
w; Wi
5 + A 9 0. (3.29)

If the system is hyperbolic, then n families of characteristic curves exist
in real space, defined by dz/dt = \;. These characteristics are straight
lines, and each w; is a RI on its associated family of characteristics. If
some \; is complex, then its associated characteristic does not exist in
real space, and it is said that the i*" characteristic field is elliptic.

A nonlinear system of n coupled equations in quasi-linear form with

two independent variables is described by

ou ou
ot TAU) o=

0, (3.30)
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— where A(U) can be the Jacobian matrix of a flux function F associ-
ated with a set of conservation laws — and is hyperbolic in state U if the
eigenvector decomposition of A(U) exists and all the eigenvalues of A(U)
are real. The definition of the characteristic variables OW = L(U)-90U is
now only locally valid. Characteristics exist if the system is hyperbolic,
and the real eigenvalues of A(U) determine the slopes of the character-
istics locally. The characteristics are in general not straight lines any
more, except in simple wave regions, where one family of characteristics
consists of straight lines [20, 85, 92]. Riemann Invariants do not gen-
erally exist, but sometimes it is possible to find one or more functions
xi of the dependent variables U such that dx; ~ L; - dU, which defines
Xi as a Riemann Invariant. The mathematical interpretation of charac-
teristic curves is that derivatives normal to the characteristic curve can-
not be determined from the governing equations, because the equations
only specify derivatives along the characteristic curves. The solution on
a characteristic curve does not determine the solution in neighboring
points not on this curve. This geometric property puts strict constraints
on the posing of boundary conditions, namely, that characteristic curves
cannot serve as boundaries on which boundary conditions are imposed.
The physical interpretation is that weak discontinuities propagate as
waves along characteristics, such that a characteristic variable is locally
conserved on its corresponding characteristic (whereas Riemann Invari-
ants are globally conserved on their characteristics). Equivalently, the
wave information carried by a local characteristic variable follows a strict
characteristic path and cannot escape in a direction perpendicular to the
characteristic. It does not influence the solution away from this charac-
teristic.

The above analysis was placed in an xt context, and the theory of
characteristics was related to concepts of propagation of physical waves
in a time-dependent system. The same analysis can also be applied
to steady state systems of equations, in which the time variable is not
present anymore. Steady equations can also be hyperbolic, and by direct
analogy we can relate the characteristic structure of steady equations to
the stationary analogs of time-dependent waves, which we call stationary
waves. For instance, the concept of simple waves in MHD can be carried
over from the time-dependent context (xt) to the stationary context (zy)
[85]. The formal analogy between the analysis of zt and zy systems of
equations, both special cases of the full equations in zyt — or even zyzt —,
can be clarified by the following considerations. In the following Sections
we use this formal analogy to derive the characteristic properties of the
xt and xy MHD equations in a unified and systematic way.

A general quasi-linear time-dependent system of n first order partial
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differential equations in two space dimensions is described by

U ). U

ou
a0 TAD oy O

B(U)- 5 = 0.

(3.31)

with U a vector of dependent variables and A and B n x n matrices.
This system reduces to a system with two independent variables for the
case of a 1D time-dependent flow (0/0y = 0) and for the case of a 2D
steady flow (0/0t = 0). In the first case, the last term of Eq. 3.31
vanishes, and the procedure which was outlined above can be used to
study the characteristic structure of the equations. In the second case,
the first term of Eq. 3.31 vanishes, and one can examine the characteristic
properties of the equation

ou

ou
4+ AL.B. =
6x+

— =0, 3.32
> (332)
leading to characteristic analysis in the xy plane. The eigenvalues and
left eigenvectors of the matrix C = A~'-B again determine the type of the
system, the characteristic directions in the xy plane, and the Riemann
Invariants.

3.2.2 Characteristic analysis of time-dependent MHD
in one space dimension

In this section, the above sketched general framework is applied to the
MHD equations and a derivation is presented of some aspects of the
characteristic theory of the MHD equations [21, 79, 59, 71, 85, 70, 3, 19].
We analyze the symmetrizable form of the equations (3.12), and do not
use the condition V - B = 0, unless where necessary and stated. In
this way we are able to see how the characteristic structure of the MHD
equations is independent of the V-B constraint, and when this constraint
becomes important.

Equation 3.12 can be written in the quasi-linear form of Eq. 3.31
with U = (p,vs, vy, v, By, By, B.,p) the vector of primitive variables,
and matrices

Vg P 0 0 0 0 0 0
0 v, 0 0 0 By/p B:p 1/p
0 O Vg 0 0 —-B./p 0 0
10 0 0 Uz 0 0 —B./p 0
A= 0 O 0 0 v, 0 0 0 » (3:33)
0 B, —-B, 0 0 Vg 0 0
0 B, 0 —-B; 0 0 Ug 0
| O cp 0 0 0 0 0 Ve |
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and

(v, 0 p 0 0 0 0 0 ]

0 vy 0 0 —-By/p O 0 0

0 0 Uy 0 B./p 0 B./p 1/p

o 0 0 0 0 —=By/p 0

B= 0 -B, B, O Uy 0 0 0 (3:34)

0o 0 0 0 0 vy 0 0

0 0 B, -B, 0 0 Uy 0
L 0 0 ¢p O 0 0 0 vy |

The zt characteristic analysis yields the following results. The eigen-
values of matrix A are

M2 =V £Cpzy, A34=UpFCazy, A5 =Ur T Csuy A8 =7
(3.35)
Here cfy, cap and ¢y, are the fast magneto-sonic wave speed, the Alfvén
speed, and the slow magneto-sonic wave speed, which all depend on the
direction x — they are anisotropic—, and which are given by

1 B2 B2\? B2
= B2y J(Lﬁ ) 42 (3.36)
2 p p p
32
Che = =2, (3.37)
p
1 B2 B2\? B2
2 == |2P’rD J(”’” > 42 ) (3.38)
2 p p p

These wave speeds satisfy the property
Cfe > CAx 2 Csgz, (339)

for any direction z. The hydrodynamic (HD) system has only one
isotropic wave speed ¢, but the MHD system thus has three different
wave modes which are highly anisotropic. In the direction of the mag-
netic field, the fast wave speed coincides with the largest of the sound and
the Alfvén speed, while the slow wave speed coincides with the smallest
of the two. Slow waves and Alfvén waves have a vanishing propagation
speed in the direction perpendicular to the magnetic field. Slow and fast
waves are called magneto-sonic waves, because they are compressible (p
and p change) like sound waves in hydrodynamics. Compressibility is a
nonlinear effect which can make fast and slow waves steepen into shocks.
Alfvén waves are not compressible. They are linear waves.

We can define three Mach numbers associated with the three different
wave modes. These Mach numbers also depend on the direction, and are
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given by

fo:M: MAm:Ma and M, = |Um|

Cfe CAz Csz

(3.40)

The eigenvalues in Eq. 3.35 are always real, meaning that the system
is always hyperbolic, and the eigenvalues thus determine the character-
istic directions in the zt plane. The left eigenvectors

L, = (—02,0,0,0,0,0,0, 1) and Lg =(0,0,0,0,1,0,0,0), (3.41)
can be used to derive the Riemann Invariants
x7 =s and xs = B;. (3.42)

For instance, the condition that L7-dU = 0 in the direction of the charac-
teristic with slope v, can be written as L7 - (dp, dvg, dvy, dv;,dB,, dBy,
dB.,dp) = —c*dp + dp = 0. This leads to ds = 0, because it follows
from Eq. 3.9 that ds = dp/p” — vp/p"™* dp = (—c*dp + dp)/p”. This
means that the entropy s is a RI. Making use of V - B = 0, it follows
from Eq. 3.12 that B, has to be constant in z and ¢, such that B, is
a global RI (with a constant value in the whole z¢ domain), and can
thus be eliminated from the xt equations, resulting in the more common
description of 1D time-dependent MHD with seven dependent variables.
Here we can also clarify why we have started our analysis from Eq. 3.12
with the RHS term included: omission of this term results in an eigen-
value Ag = 0 [118], which is not a Galilean invariant property, because a
change in reference frame would change v, and thus all the wave speeds
accordingly, except Ag, which would remain zero also in the new refer-
ence frame. This zero eigenvalue makes matrix A singular, such that the
general procedure outlined above to derive the xzy characteristics, which
uses A~1, would fail.

3.2.3 Characteristic analysis of stationary MHD in
two space dimensions

For steady state solutions the zy characteristic analysis yields the fol-
lowing results. In the stationary case, the governing equations are not
always fully hyperbolic. If some eigenvalue of matrix C = A™' - B is not
real, then its associated characteristic does not exist. It is hard to find
closed expressions for the eigenvalues of matrix C = A~! - B, but using
software for symbolical calculation, we can easily factorize the condition
det(C — Al) =0 in terms of the variable

(3.43)
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which represents the square of the velocity component perpendicular
to the characteristic, as the direction of the characteristic is given by
dy/dx = \. This factorization leads to the following roots:

2 _ 2 2 _ 2 2 _ 2 2
Vi1 =Cr1, Uiz =Cal, Vig=2©Cs1, v, =0, (3.44)

where ¢f 1, cai, and ¢, are the fast magnetosonic, Alfvén, and slow
magnetosonic velocities in the direction perpendicular to the character-
istic [85, 19]. For every condition (3.44), if real As can be found which
satisfy the condition, then the associated characteristics exist and we say
that the associated characteristic fields are hyperbolic.

The physical interpretation of these conditions is clear: if they exist,
then the zy characteristics are curves from which no wave information
carried by the associated characteristic variable can escape in a direc-
tion perpendicular to the characteristic. For instance, the wave with
wave speed v; — ¢y perpendicular to the characteristic cannot trans-
port information in this perpendicular direction when v; = ¢y . This
defines the steady xy characteristics as curves on which the perpendic-
ular plasma speed equals a perpendicular wave speed. We say that the
flow is sonic in the direction perpendicular to the characteristic.

The equation for v, 4 always has two real solutions, A7 s = vy /v,
meaning that the streamlines are two-fold degenerate characteristics.
The associated left eigenvectors are

L7 = (_027070707070707 1)7
Ls = (0, By /vy, =By /v, 0, —vy /vg, 1,0,0), (3.45)

and can be used to derive the Riemann Invariants
x7=s and xs = —v,By, +v,B, = E., (3.46)

with E, the z-component of the electric field. Making use of V-B= 0, it
follows from (3.12) that Riemann Invariant xs = E, is a global invariant,
as with V- B = 0 the evolution equation of the magnetic field reduces
to the classical form of the induction equation dB/dt = —V x E. Then
aé/at = -V x E = 0 leads to OE,./0x = 0E,/0y = 0. E, can thus be
eliminated from the equations. The entropy is conserved on a streamline
in continuous flow. However, it follows from the MHD Rankine-Hugoniot
(RH) jump conditions [87, 92, 4], which are discussed in the next Section,
that the entropy is discontinuous when a streamline crosses a shock.

The equation for v, » always has two real solutions as well, A3 4 =
(By £ /pvy) /(B £ /pvz).

The equations for v, 1 and v 3 are much more complicated. Depend-
ing on the parameters, the equation for v, ; can have no solution or two
solutions for A\. The equation for v, 3 can have zero, two, or four real
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solutions for A\, with the total number of real solutions for the two equa-
tions not exceeding four. The slow and fast magnetosonic characteristic
fields can thus be hyperbolic or elliptic depending on the parameters, and
no simple formulas can be found as criteria for hyperbolicity. Graphical
methods can be used to determine the hyperbolic and elliptic regions of
the equations [3, 79, 59, 71, 85, 70, 19].

In the case of planar MHD (v, = B, = 0), the Alfvén waves dis-
appear, meaning that the families of characteristics corresponding to
characteristic speeds A3 and A4 drop out, both in the zt and in the zy
case. The other characteristic families remain unchanged.

For steady MHD in two space dimensions with no variation in the z
direction, the xy plane is called the poloidal plane, and the velocity and
magnetic fields in this plane are called the poloidal fields #?) and B,
If 7P and B® are aligned somewhere in the xy domain, then £, = 0
at that location. It then follows from the analysis given above, that #?)
and B® have to be aligned everywhere, as E. is a global invariant and
thus vanishes everywhere. It can be proved using the MHD RH relations,
that this property is also conserved at shocks (as the tangential electric
field is conserved at a shock). These properties establish the concept of
steady field-aligned MHD flow, which is sometimes also called parallel
flow. The above derived characteristic properties of stationary MHD in
two space dimensions simplify considerably for the case of field-aligned
flow, as is shown in the next Section. It is interesting to note that
the characteristic structure of the MHD equations is independent of the
constraint V - B = 0. The characteristic structure derived from the
symmetrizable form of the equations 3.12 is consistent and complete,
without the need to impose the V - B = 0 constraint. The concept of
field-aligned flow, however, requires that V - B = 0, because only then
E. is a global invariant.

3.2.4 Characteristic analysis of stationary field-
aligned MHD in two space dimensions

The 2D MHD flows which we analyze in Chapters 5 and 6 of this disserta-
tion belong to the class of steady planar field-aligned MHD. Therefore we
now show how the above derived general results on characteristic anal-
ysis of the MHD equations simplify for the special cases of field-aligned
flow and planar (v, = B, = 0) field-aligned flow [79, 59, 70, 62, 19].

We introduce the variable « in Eq. 3.12 with 9/t = 0 by taking
B® = qi® . The steady MHD equations for field-aligned flow reduce
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then to a 7 x 7 system with U = (p, vz, vy, v:, a, B;,p), and matrices

Vg 0 0 0 0 0
0 v a’vy/p 0 avy/p  B:/p 1/p
0 0 (1-a?/p)v, 0 —awg vy /p 0 0
A= 0 0 0 Vg 0 —av,/p O ,
0 « 0 0 Vg 0 0
0 B. 0 —QU, 0 Vg 0
| 0 ¢ 0 0 0 0 Vg J
(3:47)
and
[ vy 0 p 0 0 0 0 ]
0 (1-a%/pv, O 0 QUL Uy /p 0 0
0  a*/p vy O avi/p  B:/p 1/p
B=| 0 0 0w 0 —avy/p 0
0 0 a 0 Uy 0 0
0 0 B, —avy 0 Uy 0
0 0 Zp 0 0 0 vy |
(3:48)

Note that, consistent with our earlier observations, the fifth row of the
equations now automatically leads to V - (a?)) = V - B = 0, although we
have only explicitly imposed that a@(?) = g(”), and not that V- B = 0.

Analysis of the characteristic properties of this 7 x 7 system yields
the following results. The characteristic condition det(C— Al) = 0 can be
factorized in terms of A. This factorization leads to the following roots

1
A2 = pry p(c® —v2) — 2BP? [y(p)2

\/(32 + (p — B@2/o®)2) 2) (po®2 — B2 — (p — B2 /yp(p) 2) 2)),
(3.49)
% (3.50)

T

(—pvzvy £

A7 =

Here B? is the squared magnitude of the total magnetic field, and B(®)?2
and v(”)? are the squared magnitudes of the poloidal fields.

The A3_7 = vy/v, are always real and thus correspond to hyper-
bolic fields with associated characteristics, which means that the poloidal
streamlines are five-fold degenerate characteristics. A basis for the cor-
responding left eigenvector space is

Ls = (_6270)070)070;1) (351)
Ly = (=a/p,0,0,0,1,0,0) (3.52)
L5 = (BZ/(a2 —p),0,0,0,0,l,O) (353)
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Le = (aB./(a’p - p?),0,0,1,0,0,0) (3.54)
B2 4+ 2(—a2 .
L= (Bt t0) vy 600,0), (3.55)
poy(—a® +p) vy

and can be used to derive the Riemann Invariants

X3=5= p% (3.56)
x4 = pla (3.57)
BB

xs=1L= Txmz — v, (3.58)

v(p)BZ E
XG:Q:W_UZ:W (359)

v2 Y p B®  p?
X7:h:3+ﬁ;—vz ZW+7, (360)

with s the entropy, L related to the angular momentum, 2 related to
the electric field, h the Bernoulli function and E the magnitude of the
electric field.

The invariance of these quantities along streamlines can also be de-
rived by direct manipulation of the conservation laws of Eq. 3.12. For
instance, using V- B = 0 and B(®) = a#® | one can see that V - (p7) =
V- (p/a at) = av - V(p/a) + p/a V - (al) = a¥ - V(p/a). Because
V - (p¥) = 0 in a steady state, this leads to @- V(p/a) = 0, which means
that p/a is conserved on a streamline.

cm?2 cP?2 CE_P) 2 v 2
S

Figure 3.3: Elliptic and hyperbolic regions in parameter space for steady
field-aligned MHD. For decreasing v?)?, the axis is divided in a fast
hyperbolic region (Hf), an elliptic region between the fast and the slow
hyperbolic regions (Efs), a slow hyperbolic region (Hs), and an elliptic
region below the cusp speed (Ec).

The eigenvalues A; > are real and the equations are thus hyperbolic
if the factor under the square root sign is positive [79, 59, 71, 85, 70, 3,
62, 19]. This factor changes sign three times, viz. when the square of the
poloidal velocity equals

B2+ yp+ /(B2 + yp)? — ABW)?
o2 = 2 B2 V/(B? + 7p) P (3.61)

2p
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o2 _ o _ A
P22 = CA O 62
v Ceusp 6?4 T2 (3 6 )

Here c4 = B/,/p is the total Alfvén velocity, and c(f) = B /,/p is the

poloidal Alfvén velocity. The poloidal cusp velocity cE{’)S,, is the velocity

of the slow wave cusp in the MHD Friedrichs diagram [59, 71]. This leads
to a division of the parameter space into elliptic and hyperbolic regions,
as depicted in Fig. 3.3. Note that the poloidal Alfvénic Mach number
Mgp ) becomes independent of the direction for the case of field-aligned
flow:

(p)

v v (%

My = el gy, = 1l =My = —. (3.63)
CAz CAy CAp

3.2.5 Characteristic analysis of stationary planar
field-aligned MHD in two space dimensions

In the planar case (v, = B, = 0) the results simplify further. We can
simplify the notation by dropping the superscripts (p), e. g. c(f) =cy
and v = v. The matrices A and B given in Eqgs. 3.47 and 3.48 lose
their fourth and sixth rows and columns. Analysis of the characteristic
properties of the resulting 5 x 5 system yields the following results. The
characteristic condition det(C — Al) = 0 can be factorized in terms of the

variable v? . This factorization leads to the following roots
vi =1 —-a?/p) +v* a?/p and v, =0. (3.64)

The equation for v, » always has three real solutions, A3 45 = vy /v,
meaning that the streamlines are three-fold degenerate characteristics.
The corresponding left eigenvectors are

Ly = (=c%,0,0,0,1) , Ly = (—a/p,0,0,1,0) ,
and Ls = (c*/(pvy), vz /vy, 1,0,0), (3.65)
and can be used to derive the Riemann Invariants
X3 =5, Xa=p/a ,and x5 = hs. (3.66)
The hydrodynamic stagnation enthalpy is defined as

1
TPy g2 (3.67)

hs = ——=
y—1p 2

The entropy, p/a, and the stagnation enthalpy are thus conserved on
a streamline in continuous flow. It follows from the MHD Rankine-
Hugoniot (RH) jump conditions [87, 92, 4], that the entropy is discon-
tinuous when a streamline crosses a shock. However, the stagnation
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Figure 3.4: Elliptic and hyperbolic regions in parameter space for steady
planar field-aligned MHD. The top line corresponds to 3* > 1, and
shows, as v? decreases, a division in a fast hyperbolic region (Hfl), an
elliptic region between the fast and the slow hyperbolic regions (Efsl1), a
slow hyperbolic region (Hs1), and an elliptic region below the cusp speed
(Ecl). The bottom line shows a similar division for * < 1. For §* =1,

At =c4.

enthalpy and p/a are conserved over a shock for the case of field-aligned
flow.
The solutions of the equation for v, | are

s, Pty 2V =)@ = )P = p) = %)
’ p(@ = 12) =@ =) |

(3.68)

If the factor under the square root sign is positive, then these eigenvalues
are real, and the equations are hyperbolic [79, 59, 71, 85, 70, 3, 62, 19].
This factor changes sign three times, viz. when the square of the velocity
equals

v? =, v? = c?, and  v? =l (3.69)
The cusp velocity is defined as ¢2,,,, = (¢*c})/(¢®+¢%) and is the velocity

of the slow wave cusp in the MHD Friedrichs diagram [59, 71]. This leads
to a division of the parameter space into elliptic and hyperbolic regions,
as depicted in Fig. 3.4, for high and low B8*, where the parameter 3*
is defined as 8* = yp/B? = ¢*/c%. When 3* > 1 — or equivalently
B > 2/y = 1.2 — the sound speed is larger than the Alfvén speed, or,
equivalently, thermal pressure effects dominate over magnetic pressure
effects.

In Fig. 3.5a the local geometry of streamlines and xy characteristics
is sketched for the case of planar steady field-aligned MHD in hyperbolic
regions. The streamline is a three-fold degenerate characteristic, and
there are two additional families of characteristics (generalized Mach
lines [21, 20]) which make equal angles ¢ with the streamline. These
characteristics can be of the slow or fast type, depending on which hy-
perbolic regime the parameters are in (Hf or Hs of Fig. 3.4). Division of
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(b)

Figure 3.5: Streamlines (dotted), slow or fast characteristics (thick),
and transition lines between hyperbolic and elliptic regions (dashed), for
steady planar field-aligned MHD. (a) The two families of characteristics
(thick) both make an angle 1 with the streamline. (b) At transition lines
where the plasma velocity equals the sound speed or the Alfvén speed,
the characteristics become perpendicular to the streamline. When the
streamline is perpendicular to the transition line, the characteristics are
tangent to the transition line. (c) At transition lines where the plasma
velocity equals the cusp speed, the characteristics cusp and are tangent
to the streamline.

the expression for v% in Eq. 3.64 by v? leads to the following interesting
formula for the angle ¢ between the streamline and the characteristic
(Fig. 3.5a):
2 2 2
sin ) = L = M7+ Ma—1 (3.70)
v M?2M?3
The total sonic Mach number M = v/c has to be distinguished from
the directional Mach number M, = |v,|/c. The Alfvénic Mach num-
ber M, is independent from the direction. The flow is hyperbolic when
0< (M?>+M3-1)/(M>M3%) <1. For v’ =¢c% (M3 =1) or v’ =¢?
(M? = 1), v? equals v? and ¢ = 90°, meaning that at such transition
lines between elliptic and hyperbolic regions, the characteristics are per-
pendicular to the streamlines, as is shown in Fig. 3.5b. At transition
lines of these types, characteristics can thus only be parallel to these
lines when the streamline is perpendicular to the transition line. For
v? = 2, v1 equals zero and ¢ = 0°, meaning that at this type of
transition line between elliptic and hyperbolic regions, the characteris-
tics cusp parallel to the streamlines [62, 131], as is shown in Fig. 3.5c.
In some cases further simplifications can be made. If the stagnation
enthalpy is the same on every streamline (this is called homenthalpic
flow), then p can be eliminated from the equations, resulting in a 4 x 4
system with state vector U = (p, v, vy, ). In this case A5 and x5 drop
out, but the rest of the analysis remains the same. Similarly, steady pla-
nar hydrodynamics in 2D results in a 4 x 4 system with U = (p, v, vy, D).
The results for this special case of vanishing magnetic field are recovered
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0.40T

030}

= 0205

0.10}

Figure 3.6: Planar field-aligned 2D MHD bow shock flow over a perfectly
conducting plate with a semi—circular bump (thick). The flow comes in
from the left. Density contours (thin solid lines) pile up in the shock. The
streamlines (which are also magnetic field lines) are dotted. The thick
solid lines are two families of fast characteristics making equal angles
with the streamlines. The thick dashed transition line is the M = 1
contour, separating the elliptic region close to the cylinder (Efsl) from
the rest of the flow, which is fully hyperbolic (Hf2 and Hf1). The fast
characteristics are perpendicular to the streamlines at the transition line.
The thick dash-dotted line is the 3* = 1 contour.

by putting a = 0 in the formulas for planar field-aligned MHD, in which
case A4 and y4 drop out.

To illustrate the above derived results, we show the characteristics of
a planar 2D MHD bow shock flow in Fig. 3.6. The flow comes in from the
left (p=1,p=02, v, =2, v, =0, B, =1, B, =0), and is obstructed
by the perfectly conducting cylinder on the right. Due to top-down
symmetry, this setting can also be thought of as to describe the flow over
a perfectly conducting plate with a semi—circular bump (thick). Density
contours (thin solid lines) pile up in the shock. The streamlines (which



Chapter 5. Analytical properties of the M HD equations

Table 3.1: Overview of some characteristic properties of the MHD equa-
tions, for full (8 x 8) MHD in the zt and the zy planes, and for steady
field-aligned MHD (7 x 7 and planar 5 x 5) in the zy plane. The first
column labels the characteristic fields as in the text. The second column
gives the characteristic directions A or the condition on v, for every
characteristic field. The third column gives the Riemann Invariants.
The fourth column gives the multiplicity of the real eigenvalues, and
thus indicates if the corresponding characteristic fields are hyperbolic or
elliptic.

| characteristic field || Aor v | RI | multiplicity |
xt (8 x 8)
1,2 A=uv, ey 2
3,4 A=wv, tcy 2
5,6 A=v, g 2
7,8 A=, s, By 2
xy (8 x 8)
1,2 v = 022”_ 0—2
3,4 v =%, 2
5,6,1,2 vi =c%) 0—2—4
7,8 vl =0 s, Uz By — v, B, 2
wy, BW || 5P (7% 7)
1,2 A2 0—2
3,4,5,6,7 vh =0 s, pla, L, Q, h 5
zy, B || 7 (5 x 5)
1,2 Al2 0—2
3,4,5 v3 =0 s, p/a, hs 3

are also magnetic field lines) are dotted. The thick solid lines are two
families of fast characteristics making equal angles with the streamlines
in the hyperbolic regions. In front of the cylinder we see an elliptic
region, where the thick characteristics do not exist. We can determine
the types of the hyperbolic and elliptic regions in the flow according to
the classification given in Fig. 3.4. The parameter 8* is smaller than one
upstream, and greater than one downstream from the shock, except far
away from the cylinder (the thick dash-dotted line is the * = 1 contour).
The thick dashed transition line is the M = 1 contour, separating the
subsonic elliptic region close to the cylinder (Efsl) from the rest of the
flow, which is supersonic and thus hyperbolic (Hf2 upstream from the
shock and downstream far from the cylinder, and Hfl downstream and
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closer to the cylinder). The fast characteristics are perpendicular to the
streamlines at the transition line, corresponding to case (b) of Fig. 3.5.

A summary of the results on characteristic analysis of the MHD equa-
tions with two independent variables is given in Table 3.1. This charac-
teristic theory is applied to the analysis of numerically obtained model
flow solutions in Chapter 5, and to complex 2D bow shock flow solutions
in Chapter 6.

As a final remark, we can note that the concepts of characteristic
analysis can be extended to systems with three and four independent
variables [21, 169]. The matter becomes quite more complicated, and
necessitates the introduction of concepts like characteristic rays, surfaces,
and cones. For the analysis of numerical results presented further on in
this dissertation, however, it is not necessary to consider systems with
more than two independent variables.

3.3 MHD discontinuities

3.3.1 MHD Rankine-Hugoniot relations

Consider the ideal MHD equations in one space dimension. These equa-
tions allow for solutions composed of a uniform left state and a uniform
right state which are connected by a discontinuity, and this discontinuity
moves with a constant speed s and has a magnitude which is constant in
time. In the frame moving with speed s, the solution is thus stationary,
and we call such a solution a co-stationary discontinuous traveling wave.
We can easily derive the general conditions which must be fulfilled by
such a co-stationary discontinuous traveling wave solution, and verify if
those conditions can indeed be satisfied in the case of the MHD system.
In general, a conservation law system

oU(z,t) N OF(U)
ot or

allows for a co-stationary traveling wave solution U(z,t) = U(y = x— st)
under the condition that

=0 (3.71)

+ =0, (3.72)
or
—sU + F(U) = Feonst (3.73)

with F.,nst a constant vector [173, 46]. In particular, for the discontin-
uous co-stationary traveling wave solution described above, the left and
right states U; and U, thus have to satisfy the condition

F(U,) -F(U;) =s (U, - Uy, (3.74)
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which expresses that the physical fluxes have to be continuous through
the discontinuity in the moving frame. This can be seen more clearly
when we transform to that moving frame and rewrite Eq. 3.74 as

F(U,)=F(U). (3.75)

Conditions 3.74 or 3.75 are called the Rankine-Hugoniot (RH) relations.
We have to remark here that for a discontinuous solution, the derivatives
in the differential form of the conservation law Eq. 3.71 are not defined.
The discontinuous solution is, however, a valid solution of the integral
form of the conservation law Eq. 3.73, and we say that it is a weak
solution of the differential form of the conservation law Eq. 3.71. The
RH relations actually have to be satisfied by any traveling discontinuity
in the ideal system (not only by co-stationary solutions), because they
describe the conservation of the physical fluxes through the discontinuity
interface. The RH relations can alternatively be derived from Eq. 3.71
by applying Gauss’ law on a volume which is cut by a plane shock and
by taking the limit of vanishing thickness of the volume, such that the
time derivative integrated over the volume vanishes as well. This can be
done because the shock has vanishing thickness in the ideal system.
The MHD flux function in the z direction is given by

p P Uz

p Uz pv; +p+ B2~ B;

p Uy p VaVy — By By,
- B.B

F( %7;2 )= porte o . (3.76)
B, Byv, — Byuy
B. B.v, — B,v,
e ] _(e+p+B2/2)vm—Bz(ﬁ-§)J

This flux function allows for several different types of co-stationary dis-
continuous traveling wave solutions each with their particular properties.
The derivation of these properties from the MHD RH relations would
lead us too far here, and is well described elsewhere [4, 87, 80]. We just
give a short overview of some results that are used later. We assume the
z direction to be perpendicular to the shock, and the magnetic field to
lie in the xzy plane.

MHD discontinuities can be divided in three classes. For shocks there
is both a mass flow through the surface of discontinuity, and an increase
in the entropy. For contact and tangential discontinuities, there is an
entropy jump, but no mass flow. For rotational discontinuities, there
is a mass flow, but no entropy change. A general property of MHD
discontinuities is that the normal component of the magnetic field B, is
continuous, as follows directly from the V - B = 0 constraint.
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3.3.2 Shocks

I cl <v® M{) >1 M, >1 MU>1

L _$ ______________________________
2 cP<vP<c? My <1 M, >1 M >1

L _¢ _____________________________
3 cd<vP<c® M <1 M, <1 Mg >1

L _t ______________________________
4 vi< c® M <1 M <1 MY <1

Figure 3.7: Possible states that can be connected through a MHD shock.
They are ordered by increasing entropy, with the lowest entropy for state
1. The normal fast, Alfvén, and slow wave speeds are cf., Cag, and csy,
respectively. The normal plasma speed is v,. The fast, Alfvén, and slow
normal Mach numbers are M¢,, Ma,, and Mg,, respectively. State 1 is
superfast, because its normal velocity in the shock frame is larger than
the normal fast MHD wave speed. Therefore the fast, Alfvénic and slow
Mach numbers are all greater than one. State 2 is subfast but super-
Alfvénic. State 3 is sub-Alfvénic but superslow. State 4 is subslow.
Possible shock transitions are 1-2 (fast), 3-4 (slow), and 1-3, 1-4, 2-3,
2—4 (intermediate).

A general property of MHD shocks is that the left and the right state
are co-planar. This means that the plane defined by the shock normal
and the magnetic field is the same plane on both sides of the shock. This
property can easily be derived from the MHD RH relations. Another
property is that if the magnetic field and velocity field are parallel on
one side of a shock, then the fields are also parallel on the other side of
the shock.

Generally up to four plasma states can be found that satisfy given
values for the fluxes of mass, momentum, magnetic field and energy
through the discontinuity surface. This follows from analysis of the RH
conditions [87, 80]. Each pair of those states satisfies the RH conditions
and can thus be connected by a shock. These states are conventionally
labeled states 1, 2, 3, and 4, ordered by increasing entropy (Fig. 3.7).
State 1 has the lowest entropy, and in a frame moving with the shock
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(a) fast (d) fast switch-on (g) contact

PR N

M, >1 My=M, >
(b) slow (e) slow switch-off (h) tangential

Msx>1
(c) intermediate (f) hydrodynamic
MAX<1 Msx=
MAX<1
M, >1
x M =M, >1

Figure 3.8: Some properties of MHD shocks and discontinuities. The
thick vertical line is the shock surface. The shock normal is dotted. The
full arrowed lines are magnetic field lines that are refracted through the
shock surface. The dashed arrowed lines are velocity vectors. Region 1
is upstream, 2 is downstream.

the normal plasma velocity ofV s larger than the normal fast MHD

wave speed, so that the flow is superfast (and, therefore, also super-
Alfvénic and superslow). This means that the normal fast Mach number
M )(c;) (normal plasma velocity divided by normal fast MHD wave speed)
is greater than one (the same for the Alfvén and slow Mach number).
State 2 is subfast, but super-Alfvénic and superslow. State 3 is subfast
and sub-Alfvénic, but superslow. State 4 is subfast, sub-Alfvénic, and
subslow. In a frame of reference that moves with the shock, a fluid
element that moves from the upstream region (traditionally indicated as
region 1) to the downstream region (region 2), necessarily has to undergo
an increase in entropy. So 1-2, 1-3, 14, 2-3, 2-4, and 3-4 are the
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possible entropy-satisfying shock transitions. In Fig. 3.8 we summarize
some of their properties.

Transition 1-2 is called a fast shock (Fig. 3.8a). The plasma is su-
perfast upstream, and subfast (but super-Alfvénic) downstream. A fast
shock increases B, (because p is in phase with B for a fast wave), such
that magnetic field lines are refracted away from the shock normal. Tran-
sition 3-4 is called a slow shock (Fig. 3.8b). The plasma is superslow
(but sub-Alfvénic) upstream, and subslow downstream. A slow shock
decreases By, (because p is in anti-phase with B for a slow wave), such
that magnetic field lines are refracted towards the shock normal. Tran-
sitions 1-3, 1-4, 2-3, and 2-4 are called intermediate shocks (Fig. 3.8c).
The plasma is super-Alfvénic upstream, and sub-Alfvénic downstream.
An intermediate shock changes the sign of B,,, such that magnetic field
lines are flipped over the shock normal.

There exist limiting cases of these types of shocks for which the up-
stream and/or downstream magnetic field is parallel to the shock normal.
A fast 1-2=3 switch-on shock (Fig. 3.8d) has By = 0 upstream. The
downstream B, », however, does not vanish. The tangential component
of the magnetic field is thus switched on, hence the name of this shock.
For a fast switch-on shock, the downstream normal Alfvénic Mach num-
ber is exactly equal to one. A slow 2=3-4 switch-off shock (Fig. 3.8¢)
has By, = 0 downstream. The upstream B,; however does not van-
ish. The tangential component of the magnetic field is thus switched off,
hence the name of this shock. For a slow switch-off shock, the upstream
normal Alfvénic Mach number is exactly equal to one. A limiting case
of intermediate shocks are shocks that do not change the magnetic field,
and those shocks are called 1-4 hydrodynamic (or parallel) shocks (Fig.
3.8f). Both B,,; and B, » are equal to zero.

Intermediate shocks and switch-on shocks can only occur for some
well-specified regime of the upstream parameters [80, 147]. For switch-
on shocks, the downstream angle 6 (Fig. 3.8d) is non-vanishing only
if the upstream plasma 8; < 2/+ and if the upstream normal velocity
component v, ; lies in the switch-on region between the upstream Alfvén
speed and a critical velocity defined by

y(1—=p1) +1

V1 = Vcrit- (377)

can < Vg1 <cCAn

The upstream tangential component of the velocity, v, 1, does not play
a role in condition 3.77. In fact, one can always make a transformation
to a new frame in the direction tangential to the shock front, and choose
the new frame such that v,,; = 0. The magnetic field does not change
in this transformation of frames. The shock properties can then be
analyzed in this new frame. The parameter regime for which switch-on



Chapter 5. Analytical properties of the M HD equations

shocks occur is called the switch-on regime. Intermediate shocks arise for
the same parameter regime, and can only exist when the angle between
the upstream magnetic field and the shock normal is small, as will be
illustrated shortly.

Switch-on shocks have no analog in the hydrodynamic flow of a neu-
tral fluid, and can thus be called an intrinsically magnetic effect. A
plasma state upstream from a shock with the magnetic field normal to
the shock is a superfast state — type 1 — if v, 1 > ¢1 and vg1 > ca 1,
or equivalently

pLoz. > P (3.78)

and
p1 vil > B?. (3.79)

Here v, is the velocity component along the shock normal and along
the upstream magnetic field. The 1-2 shock with this state of type 1 as
upstream state is a switch-on shock when

B >vyp (3.80)

and

-1
B} > p Uiyl S i (3.81)

(1-p)+1
The latter inequality can be deduced from Eq. 3.77. The expression
(v = 1)/(v(1 — B1) + 1) assumes values between 0.25 and 1 for v =
5/3 and 1 < 2/v. Eqgs. 3.80 and 3.81 show that switch-on shocks
occur when magnetic forces dominate over the effects from both the
thermal pressure p and the dynamic pressure pv2/2 in the direction
normal to the shock. Switch-on shocks can only occur when the magnetic
field B is strong and are an intrinsically magnetic effect. Therefore we
call upstream flows for which switch-on shocks can occur magnetically
dominated flows. Magnetically dominated flows thus satisfy inequalities
3.78-3.81. Upstream flows for which switch-on shocks do not occur are
called pressure-dominated flows.

Fast switch-on shocks and the parameter regime in which they occur,
which we call the magnetically dominated regime, play an important
role in Chapters 6, 7 and 8 of this dissertation. It is shown that for
upstream parameters in this magnetically dominated regime bow shock
flows exhibit a new complex topology which is very different from the
traditional topology obtained for bow shocks with pressure-dominated
upstream flows. This motivates the introduction of the terminology of
pressure-dominated versus magnetically dominated upstream flows as
defined above, and warrants its extension to pressure-dominated versus
magnetically dominated bow shock flows and bow shock flow topologies.
Full justification for this terminology is given in Secs. 6.3 and 7.1.
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Figure 3.9: Solutions of the RH relations for parameter values M 4 = 1.2
and B = 0.4 for state 1 with the field aligned to the flow. These are
magnetically dominated parameters for which switch-on shocks occur. 6
is the angle between the fields and the shock normal. (a) For 8 = 0°,
switch-on shocks, switch-off shocks and hydrodynamic shocks arise. (b—
d) For 6 < 16°, intermediate shocks occur, but they cease to exist for
larger 6.

We can illustrate the above discussion on MHD shocks by explicitly
plotting solutions of the RH conditions for given values of the fluxes
through the discontinuity. We follow closely the procedure described in
[4]. For given fluxes through the discontinuity, up to four states satisfying
the RH relations can be found as the intersection of two curves in the
T — By plane, with 7 = 1/p and B, the component of the magnetic field
tangential to the shock surface. The shock normal is again taken in the
z direction.
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Figure 3.10: Solutions of the RH relations for parameter values M 4 = 1.5
and 3 = 0.4 for state 1 with the field aligned to the flow. These param-
eters still are magnetically dominated, but not strongly. The maximum
angle for which intermediate shocks can occur is smaller than for the
parameter values of Fig. 3.9.

Fig. 3.9 shows RH solutions for parameter valuesp=0.2, p=1, B =
1 and v = 1.2 for state 1. The velocity is taken parallel to the magnetic
field. We vary the angle 6 between the aligned velocity and magnetic
field vectors, and the shock normal. In state 1 c4 =1, M4 = 1.2 and
B =0.4. §is smaller than 2/ = 1.2 and, for 8 = 0°, v, < veprix = 1.732
(Eq. 3.77). Intermediate and switch-on shocks occur, and we call the
upstream state magnetically dominated.

Fig. 3.9b, for # = 8°, shows the generic case with four solutions of the
RH relations. The horizontal dotted line indicates the inverse density
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Figure 3.11: Solutions of the RH relations for pressure-dominated pa-
rameter values for state 1. Switch-on shocks do not occur. Only 1-2 fast
shocks exist. (a-b) M4 =2 and f =0.4. (c-d) Ma =15 and § = 2.

7 for which v, = ca,. 1-2 is a fast shock (B, increases), and 34 is a
slow shock (B, decreases). Transitions 1-3, 1-4, 2-3 and 2-4 all cross
the v, = ca, line, and are thus intermediate shocks, which is confirmed
by the fact that they change the sign of the B, component.

Fig. 3.9a shows the limiting case for § = 0°. 1-2 and 1-3 are both
fast switch-on shocks (B, is switched on), and because states 2 and 3 are
both Alfvénic (v, = ca.), this type of shock is referred to as a 1-2=3
shock. The 2=3-4 shocks are slow switch-off shocks. The 1—4 shock is a
hydrodynamic shock (B does not change through the shock). Figs. 3.9¢
and d show that for angles 6 larger than approximately 16° intermediate
shocks cease to exist.

Fig. 3.10 shows RH solutions for the same parameter values for state
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1 as in Fig. 3.9, except that v = 1.5 and thus closer to v..;; = 1.732.
The upstream state is still magnetically dominated as switch-on shocks
can still occur — remark that the switch-on angle (= B,) even has
increased! —, but the maximum angle for which intermediate shocks
occur decreases to  ~ 3°. This is a generic property: when v, is taken
closer t0 vepit, the maximum angle for which intermediate shocks can
occur decreases. This behavior can also be observed in Fig. 3 of [80] and
Fig. 4 of [147].

Fig. 3.11 shows RH solutions for parameter values for state 1 not
in the switch-on regime — we call the upstream state thus pressure-
dominated. Fig. 3.11a-b shows RH solutions for the same parameter
values for state 1 as in Fig. 3.9, except that v = 2 and thus exceeds
Veri¢ = 1.732. This means that dynamic pressure effects dominate over
magnetic effects — inequality 3.81 is not satisfied. Only 1-2 fast shocks
exist. In Fig. 3.11c-d,p=1,p=1, B=1and v = 1.5. 8 = 2, such that
thermal pressure effects dominate over magnetic effects — inequality
3.80 is not satisfied. Again only fast shocks exist.

3.3.3 Other discontinuities

Contact discontinuities (Fig. 3.8g), with vanishing v, but nonzero B,,
have only a jump in density (and entropy). All other quantities are con-
tinuous. Tangential discontinuities (Fig. 3.8h), with vanishing v, and
B,, have a jump in density, pressure, and tangential velocity and mag-
netic field. However, the total pressure p + B2/2 is continuous. Planar
rotational discontinuities (Fig. 3.81) rotate the magnetic field around the
normal of the discontinuity surface over an angle of 180 degrees, without
a jump in entropy. Rotational discontinuities can actually rotate the
magnetic field over an arbitrary angle, and the planar rotational dis-
continuity is just a special case. The normal plasma velocity v, equals
B, /p*/? on both sides of a rotational discontinuity, such that the normal
Alfvénic Mach number equals one on both sides. Transitions 2-3 in Figs.
3.9a and 3.10a are planar rotational discontinuities which are the limit
of intermediate 2-3 shocks for zero shock strength.

3.3.4 Stability of shocks

All the types of discontinuities discussed above formally satisfy the MHD
RH relations, but there exists a vigorous debate about the physical rele-
vance of some of these types of discontinuities, notably the intermediate
shocks and the rotational discontinuities. This is discussed in detail in
Chap. 9. In the mean time, we refer the reader to the discussion in Sec.
2.3.2, where it was indicated that intermediate shocks can be stable in
small dissipation MHD. We will thus not be surprised when intermediate
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shocks appear in our simulation results presented in Chapters 6, 7 and 8,
but thorough discussion of the relevance of these results for the debate
on the existence of intermediate shocks is postponed to Chap. 9.

3.3.5 Non-convexity and MHD compound shocks

In this Section we show how the non-convexity of characteristic fields
leads to the occurrence of compound shocks. Large parts of our exposi-
tion derive from material presented in [90] and [173].

Let us first consider the scalar conservation law Eq. 3.23. A Riemann
problem is an initial value problem with an initial condition in the form
of a step discontinuity with uniform states to the left and the right of
the discontinuity. Fig. 3.12a and b shows the solution of a Riemann
problem for the scalar conservation law with flux function f(u) = u?/2,
which is called the inviscid Burgers equation, and with left and right
states u; = 1 and u, = —1. We can investigate if these two states can
be connected by a co-stationary discontinuous traveling wave solution
(a traveling shock). From Eq. 3.74 we can derive that the shock speed
would equal s = (f(u,) — f(w))/(ur —u;) = 0.

For now we adopt the — naive, see Chap. 9 — criterion that shocks
are admissible when the characteristics enter the shock on both sides.
We assume that if the characteristics do not enter the discontinuity on
both sides — such discontinuities are called undercompressive —, then
the discontinuity is not stable and cannot be formed. Physically this
criterion corresponds to the fact that the entropy has to increase at a
shock, as is explained in Chap. 9 [90].

() (b) (c)

0 -1 0
-1 X 1 -1 X 1 -1 X 1

Figure 3.12: Solution of a Riemann problem for the inviscid Burgers
equation. (a) Left and right states u; = 1 and u, = —1 lead to an ad-
missible shock (thick solid) with speed s = 0 and characteristics (thin
solid) converging into the shock. (b) Shock profile of the solution pre-
sented in (a) for t = 1/2. (c) Left and right states u; = —1 and u, = 1
do not allow for a shock, because the characteristics leave the shock. In
stead, a centered rarefaction (dotted) results.

In Fig. 3.12 we see that a shock with left and right states u; = 1 and
u, = —1 is an admissible shock, because the characteristics converge
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into the shock. The solution of the Riemann problem is thus given by a
shock solution which happens to be stationary in the frame considered.
If we switch the left and the right states, we find the same shock speed
s = 0, but a shock clearly would be undercompressive and thus inad-
missible, as shown in Fig. 3.12c. In stead of a shock, we find a centered
rarefaction wave which broadens in time as the solution of the Riemann
problem (indicated by the dotted lines in the figure). The admissibility
of rarefactions is, of course, not questionable, because they are regular
continuous solutions.

() (b)
0.5 1
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Figure 3.13: Flux function f(u) and characteristic speed function f'(u)
for Burgers’ equation. f(u) is convex because f'(u) is monotone.

Figs. 3.13a and b show plots of the flux function f(u) and the charac-
teristic speed function f’(u) for Burgers’ flux function f(u) = u?/2. This
flux function is called convez because f'(u) is monotone, or, equivalently,
f"(u) does not change sign. This property is important, because it guar-
antees that every Riemann problem can be solved either with an admis-
sible traveling shock or with a rarefaction. Indeed, given two states wu;
and wuy, with the indices chosen such that f'(u1) > f'(u2), the property
of convexity guarantees that f'(u1) > s = (f(u2) — f(u1))/(u2 —uy) >
f'(uz), which means that states u; = u; and u, = us can be connected
by an admissible shock. If the left and the right states are switched, the
solution to the Riemann problem would consist of a rarefaction between
two constant states. If f were non-convex, then the shock speed s would
not be guaranteed to lie between the characteristic speeds of the two
states, so pairs of states would exist which could never be connected by
an admissible shock.

So what happens with the Riemann problem in the case of a non-
convez flux function? Fig. 3.14 shows the solution of a Riemann problem
for the non-convex scalar conservation law with flux function f(u) =
u?/3, and with left and right states u; = 1 and u, = —3/4. Fig. 3.15a
and b show plots of the flux function f(u) and the characteristic speed
function f’(u) for the flux function f(u) = u®/3. Clearly f’(u) is not
monotone, and the flux function is thus non-convex. For these left and
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Figure 3.14: Solution of a Riemann problem for the scalar conservation
law with flux function f(u) = u®/3. (a) Left and right states u, =
1 and u, = —3/4 do not allow for an admissible shock, because the
characteristics leave the shock on the right. (b) The solution of the
Riemann problem consists of a compound shock, composed of a sonic
shock followed by an attached centered rarefaction. (c) Shock profile of
the solution presented in (b) for t = 1/2.

(a) P (b)
0.333 = 1
B B =" 2
hal S
-0.333 0
a4 % o9 1 1 0 1

Figure 3.15: Flux function f(u) = u®/3 and characteristic speed function
f'(u). f(u) is non-convex because f'(u) is not monotone. In a compound
shock, the right state w, of the shock is chosen such that it can be
connected to u; = 1 by a sonic shock, with the characteristic parallel to
the shock. To this end the straight line connecting p; and p,. has to be
tangent to the curve f(u) in point p..

right states, the shock speed s = 37/168 = 0.22, and the characteristic
speeds are f'(u;) =1 and f'(u,) = 9/16, such that f'(u;) > f'(u,) > s.
The shock is thus undercompressive, as shown in Fig. 3.14a. A rarefac-
tion solution is not possible either, because the characteristics intersect.
So we have to look for a different type of solution for this case of a
non-convex flux function.

It turns out that the solution of Fig. 3.14b and c is admissible. It
consists of a shock with a rarefaction attached, and with the peculiar
property that the characteristic is parallel to the shock where the rar-
efaction is attached to the shock. This combined shock-rarefaction struc-
ture is called a compound shock. The compound shock solution can be
constructed as follows. In Fig. 3.15a we fix the point p; on the curve
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corresponding to the left state u; = 1. We can connect this point to any
other point on the curve with a straight line, and the slope of this line
gives the speed of the shock which could connect the states correspond-
ing to the two points on the curve. This is precisely the geometrical
interpretation of relation Eq. 3.74. We now connect p; to the point p,
on the curve (at u = —1/2) such that the straight line connecting the
two points is tangent to the curve. We choose u, = —1/2, and connect
u; with u, via a shock, with shock speed s = 1/4. This shock speed s
is also equal to the characteristic speed f'(u.) in state w., because the
straight line connecting u; and u, is tangent to the curve in u,, and be-
cause the characteristic speed is given by the slope of the curve f(u), and
the shock speed by the slope of the straight line. The shock connecting
u; and u, is thus admissible, because the characteristic enters the shock
on the left, and is parallel to the shock on the right.

We call the shock sonic because the shock speed equals the charac-
teristic speed on one side of the shock. State u. can then be connected
to state u, by a continuous rarefaction. What happens if we switch v,
and u,.? In this case a solution with a single shock or rarefaction is not
possible either, because the characteristics cross and would enter the
shock on one side, but leave the shock on the other side. So again we
find that a compound shock is necessary. This compound shock can be
constructed by drawing a line now starting from the point correspond-
ing to u = —3/4 (because the characteristics originating from this state
enter the shock) and tangent to the curve f(u).

We can thus conclude that non-convexity leads to the occurrence of
compound shocks in solutions of Riemann problems. Compound shocks
are composed of a sonic shock with an attached rarefaction which broad-
ens in time, as shown in Fig. 3.14c for t = 1/2. The characteristic is
parallel to the shock on the sonic side.

We can also have another look at the property of non-convexity which
allows us to make the link with the MHD case. We follow the reasoning
presented in [173]. Eq. 3.73 describes the propagation of co-stationary
traveling waves, and the scalar version reads

—su+ f(u) = feonst (3.82)

We ask ourselves how many solutions Eq. 3.82 has for u, for given shock
speed s and flux constant f.,,st, and whether admissible shocks with
shock speed s exist which connect the solutions. For the convex Burgers
flux function f(u) = u?/2 this equation has zero or two real solutions,
and the shock speed s always lies between the characteristic speeds of the
two solutions, such that an admissible shock can always be constructed
connecting the two solutions. For the non-convex flux function f(u) =
u?/3, however, Eq. 3.82 has 1 or 3 real solutions. The sum of these roots
vanishes, such that if there are three roots, two roots have the same sign,
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Figure 3.16: Three solutions exist for the scalar conservation law with
non-convex flux function f(u) = u3/3 and for s = 7/12 and feonst =
—3/12 . State 1 and 2 have the same sign, and state 3 has the opposite
sign.

and the third one has the opposite sign. Let us label those first two roots
1 and 2, with root 1 of the smaller magnitude, and let us give the label
3 to the root with the opposite sign. For instance, and as shown in Fig.
3.16, for s = 7/12 and feonst = —3/12, we find uw = 1/2 for state 1, u = 1
for state 2 and u = —1.5 for state 3. We now investigate if the pairs of
solutions (1,2), (1,3) and (2,3) can be connected by admissible shocks
with speed s.

(a) 2-1 (b) 3-1 ()23

7l /
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Figure 3.17: Possible shock connections between the fixed points of Fig.
3.16. (a-b) Connections 2-1 and 3-1 are admissible shocks. (c) Pair
(2,3) cannot be connected by an admissible shock.
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Fig. 3.17 shows that pair (1,2) can indeed be connected by an admis-
sible shock 2-1, with state 2 on the left and state 1 on the right. Pair
(1,3) can also be connected by a 3-1 shock. Pair (2,3), however, can-
not, be connected by an admissible shock. The shock with shock speed
s is undercompressive in this case. We see thus that the non-convex
case is very different from the convex case. In the convex case, there is
just one type of admissible shock. In the non-convex case, we see that
there are two different types of admissible shocks associated with just
one characteristic field. The 1-2 (or 2-1) shock does not change the
sign of the scalar u, and we could call it a regular shock. The 1-3 (or
3-1) shock does change the sign of the scalar u, and we could call it an
intermediate shock. According to this definition, shock 2-3 (or 3-2) is
also of the intermediate type, but this shock is undercompressive and
thus inadmissible.

For the compound shock of Figs. 3.14 and 3.15, states 1 and 2 coin-
cide, so the compound shock is composed of a 3—1=2 sonic intermediate
shock followed by an attached rarefaction. The fact that 1=2 in the right
state (u.) precisely makes the shock sonic.

We can thus learn from this analysis that non-convexity allows for
several different types of shocks associated with a single characteristic
field. Alternatively, we could also say that different types of shocks are
encountered when Eq. 3.82 has more than two real solutions [173].

The concept of a compound shock carries over to the separate non-
convex characteristic fields of systems of hyperbolic equations. At least
one family of characteristics has to converge into a shock on both sides
in order to have an admissible shock. In the case of a 1D Riemann
problem, the attached rarefaction is a simple wave, with the consequence
that one family of characteristics in the rarefaction consists of straight
lines [20, 85, 92]. This family of characteristics is parallel to the shock
on the sonic side. Brio and Wu [12] show that the MHD flux function
is not convex for the fast and the slow characteristic fields, and they
encounter compound shocks in numerical solutions of 1D MHD Riemann
problems. Myong and Roe [109, 110] show that compound shocks are
essential elements for the solution of some planar (v, = B, = 0) MHD
Riemann problems.

The properties of the MHD shock system 1-2-3—4 can be related to
the shock properties of the scalar non-convex equation described above.
This has been done rigorously by several authors who derive ‘model
systems’ by simplifying the MHD equations [81, 109, 110, 46]. Here
we have to restrict ourselves to suggesting some of the analogies and
stating some important results. The non-convex fast characteristic field
of MHD can be thought of as to allow for shock states labeled 1-2-3, and
the non-convex slow field gives rise to states 2-3—4. These three states
are in both instances analogous to the three states associated with the
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scalar non-convex flux function f(u) = u?/3. The change of sign of u can
be associated with the change of sign of the tangential component of the
magnetic field By, and the MHD intermediate shocks 1-3 and 2-4 are
analogous to the scalar intermediate shock 1-3. In MHD, however, the
fast and the slow characteristic fields are ‘merged together’ in a 1-2-3—4
system, and this merged system contains other degenerate phenomena in
addition to the compound shock phenomenon. A fast MHD compound
shock contains a 1=2-3 shock, with v, = ¢, upstream, analogous to the
1=2-3 sonic intermediate shock in the scalar compound shock described
above. Analogously, a slow MHD compound shock contains a 2-3=4
shock, with v, = cs; on the downstream side of the shock.

This analysis thus shows that compound shocks can arise in MHD
flows. They were indeed encountered in numerical simulations of 1D
MHD Riemann problems, but they have never been found in 2D or 3D
simulations of realistic flow problems. In Chapters 6 and 7 we investigate
bow shock flows with magnetically dominated upstream parameters for
the presence of compound shocks.

Another interesting conclusion follows from the above analysis. It
seems that the intermediate shocks are associated to the non-convex
fast and slow modes, and not to the Alfvén mode, as could be expected
intuitively. This explains for instance why intermediate shocks can arise
in planar MHD flows while there are no Alfvén waves in planar MHD.
This also explains the following contradiction. We have suggested that
nonlinearity is necessary for the steepening of shocks, for instance in our
description of the steepening of profiles for the Burgers equation in Fig.
3.2. However, the Alfvén characteristic field is a linearly degenerate field
[90], or, equivalently, the Alfvén waves are not compressible. (It is ex-
actly the compressibility which makes the fast and slow waves nonlinear
and steepening.) But then how can intermediate shocks steepen if they
are associated with a linearly degenerate field?

Part of the answer is that 1-3 and 2—-4 intermediate shocks are not
associated with the Alfvén characteristic field, but rather with the fast
and the slow fields. We have to mention here that linearly degener-
ate fields can also ‘carry’ discontinuous waves, but those discontinuities
are not ‘self-steepening’ and thus more prone to (turbulent) instabil-
ity. They are not shocks (in the MHD context), because there is no
entropy change or no mass flow across them. For instance, the entropy
field is linearly degenerate, and the associated discontinuities are contact
discontinuities, which do not steepen, but can form for instance down-
stream of A-points where three shock branches meet in 2D flows. Chap.
6 shows some examples of this. The linearly degenerate Alfvén field has
rotational discontinuities as associated discontinuous waves. These rota-
tional discontinuities do not steepen. This picture is interesting but too
simple, because 2—3 intermediate shocks can also directly be associated
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with the Alfvén mode [41].

We can thus conclude that 1-3 and 2-4 intermediate shocks are not
the discontinuous solutions directly associated with the Alfvén mode.
However, there is certainly a relationship between these intermediate
shocks and Alfvén waves and Alfvén speeds, because intermediate shocks
satisfy the proper Alfvén Mach number inequalities (Figs. 3.8 and 3.7).
This complex behavior is related to the fact that the MHD system is
non-strictly hyperbolic (wave speeds can coincide). We come back to
issues like this in Chap. 9.



