Chapter 2

Fluid description of

shock phenomena in
gases and plasmas: a
bird’s eye view

In the present Chapter we introduce the general subject of this disser-
tation in an intuitive way. We discuss the concepts, ideas, techniques
and terminology that are used to describe shock phenomena in fluids.
We give an overview of the results on MHD bow shock flows which are
presented throughout this dissertation. We introduce MHD shock phe-
nomena in nature for which the simulation results are relevant.

We believe that it is important to attempt to give such a global
overview of the results and their relevance in a single Chapter, which
should be easily accessible. In doing so, we touch upon a great variety of
often quite complicated subjects, such that our discussion cannot always
be rigorous and complete, but necessarily has to remain intuitive at
places. Such an intuitive introduction makes the results more easily
accessible for the reader who is not so familiar with the topics addressed,
while at the same time the more knowledgeable reader may appreciate
being reminded of some basic aspects of the physics of shocks and space
plasmas. Most of the material covered in this introductory Chapter
is discussed more rigorously and completely in the following Chapters.
Other topics are not revisited after their brief introduction in the present
Chapter, in which case the reader is referred to the literature for more
extensive information.
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2.1 Hydrodynamic description of shock phe-
nomena in gases

This dissertation deals with shock phenomena in MHD plasmas, which
describe ionized gases. The dynamical behavior of a neutral gas already
exhibits many phenomena which are of interest to us. Therefore we
introduce some aspects of the fluid dynamics of neutral gases before
turning our attention to MHD plasma phenomena.

Although gases consist of free particles which interact through colli-
sions, it is for many purposes sufficient to give a mathematical descrip-
tion of a gas as a continuous fluid. Such a description is given by the
hydrodynamic (HD) equations [20, 160, 90, 54]
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These equations are formulated in terms of the macroscopic thermody-
namic quantities pressure p, mass density p and specific total energy e,
and in terms of the bulk velocity ¢. | is the unity matrix. These equa-
tions describe the conservation of mass, momentum and energy. The
specific total energy e is given by
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with e;,; the specific internal energy of the gas. The internal energy,
the pressure, and the density are related by an equation of state. In this
dissertation we assume ideal gas behavior for simplicity, such that (in
suitable units)

Cint = _P_ and T = B, (2.3)
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where 7T is the temperature and -y is the adiabatic index. The ideal gas
law is a good approximation for most space and solar plasmas. The ten-
sorial quantity D in Eq. 2.1 represents the contribution from irreversible
dissipative processes like viscosity and thermal conduction. The matrix
of dissipative fluxes D depends on dissipative parameters like the viscos-
ity, and on the state variables and gradients of the state variables. An
ideal or dissipationless fluid is described by Eq. 2.1 with D = 0, in which
case Eqs. 2.1 are called the Euler equations. When dissipative effects
are included the equations are called the Navier-Stokes equations. Most
real gasses have a finite dissipation, but this dissipation is often small. It
can be neglected for many phenomena, in which case the ideal equations
give a good approximate description of the behavior of the real gas.
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The Euler equations (Eq. 2.1 with D = 0) allow for sound waves
[20, 160, 90, 54], which for small amplitudes are linear perturbations
propagating isotropically with the sound velocity

c=,/—. (2.4)
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Figure 2.1: A fixed point source sends out small-amplitude perturba-
tions while a uniform fluid flows along the source with constant velocity
v relative to the fixed source. In the frame of the moving fluid, the per-
turbations propagate to the left and to the right with the wave velocity
c. In the frame of the source, the waves are carried by the fluid and
propagate with velocities v — ¢ and v + c.

Fig. 2.1 shows schematically how a small-amplitude perturbation gen-
erated by a fixed source would propagate in a hypothetical 1D system
with uniform background flow. In the static case (v = 0), the perturba-
tion propagates to the left and to the right with speeds —c and +c (a
negative sign thus means propagation to the left). If there is a uniform
background flow to the right with velocity v < ¢, then we say that the
flow is subsonic. The perturbation can still propagate to the left and
to the right with speeds v — ¢ and v + ¢, but v — ¢ now has a smaller
magnitude than v + ¢. When the flow is supersonic (v > ¢), the pertur-
bation can only propagate to the right, with speeds v — ¢ and v + ¢ both
pointing rightwards. This means that in supersonic flow, information
cannot propagate in the upstream direction. The sonic Mach number,
which is defined as the ratio of the magnitude of the velocity vector and
the sound speed
U

M= M, (2.5)

o

is greater than 1 for supersonic flow.

The HD equations 2.1 are nonlinear, which can cause large-amplitude
waves (Fig. 2.2a) to steepen into shocks (Figs. 2.2b and c). The state
variables jump discontinuously at shocks. For the Navier-Stokes equa-
tions, the steep shock profile actually remains smooth and the width of
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Figure 2.2: Nonlinear steepening of a large-amplitude profile — for in-
stance the density — into a shock.

the shock layer ¢ is related to the values of the dissipative coefficients.
The Euler equations, however, allow for strictly discontinuous shock so-
lutions. Strictly speaking, a discontinuous profile cannot be a solution
of the partial differential equation (PDE) 2.1, because derivatives are
not defined at discontinuities. Discontinuous profiles, however, can be
solutions of the integral form of the Euler equations, and in this case it
is said that they are weak solutions of the PDE [90).

//

Figure 2.3: Experimental shadowgraph pictures of a sphere in free flight
through air at M=1.53 (left) and M=4.01 (right). (from An Album of
Fluid Motion, M. Van Dyke [30])

Fig. 2.3 shows shadowgraph pictures of an experiment where a small
sphere flies freely through air (towards the left) with supersonic speeds
(M = 1.53 and M = 4.01) [30]. The flow pattern around the sphere
in the left panel of Fig. 2.3 shows several interesting phenomena. The
sphere is preceded, on the left, by a paraboloid-like-shaped nearly sta-
tionary dark surface, which indicates a sudden jump in density. This
surface is a shock surface, and is called a bow shock.
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We can understand intuitively why this bow shock has to be present.
First, let us set our mind on the coordinate system which moves to the
left together with the sphere. In this frame, the sphere and the bow shock
are nearly stationary or steady, which facilitates the analysis. In this
frame, the gas to the left of the bow shock is no longer at rest, but moves
to the right in the direction of the sphere with supersonic speed v. In
this supersonic region to the left of the bow shock, information can only
propagate to the right, as illustrated in Fig. 2.1c. However, the sphere
has to be able to ‘communicate’ its presence to the flow in front of it, such
that the flow field can adapt to the presence of the sphere. This requires
that a subsonic region forms in the immediate front of the sphere, in
which the sphere can make its presence felt through waves capable of
propagating to the left (Fig. 2.1b). The flow far upstream (left) remains
supersonic, and the subsonic region close to the sphere is connected to
the supersonic region upstream by a shock surface. Conceptually, it is
not immediately evident why the subsonic region close to the sphere
and the supersonic region upstream necessarily have to be connected
by a shock. One could imagine that the uniform supersonic upstream
region could be connected to the subsonic region by a continuous profile,
like in Fig. 2.2a, but stationary in the frame of the sphere. Intuitively
one could say that such a continuous profile separating the two regions
would steepen into a shock because of nonlinear effects, like in Fig. 2.2.
A more sophisticated argument is the following. The small-amplitude
perturbation at point x in Fig. 2.2a, where the uniform region would
be connected to the slope, would have to move with the local small-
amplitude wave speed v — ¢, which is determined by the sound speed
¢ and the velocity v of the incoming supersonic flow. This observation
shows that such a configuration can never be stationary in the frame of
the sphere, because for supersonic flow v > ¢, and thus v — ¢ # 0. The
uniform supersonic region upstream thus necessarily has to be connected
to the subsonic region close to the sphere by a discontinuous profile or
shock, and analysis shows indeed that a shock can have a shock speed
which exactly makes the shock stationary in the frame of the sphere.

At the backside of the sphere in the left panel of Fig. 2.3 we see sev-
eral other structures. A boundary layer [160] separates from the sphere,
and the flow is highly turbulent (and thus non-stationary) in the result-
ing wake. An additional shock can be seen where the boundary layer
separates, both on the top and the bottom of the sphere in the figure.
The M = 4.01 flow (right panel of Fig. 2.3) shows similar features as the
M = 1.53 flow.

It is thus clear that shock phenomena in gases are quite complex.
The HD equations offer an adequate description of many of these phe-
nomena, but, mainly due to the inherent nonlinearity of the equations, it
is hard to find explicit analytical solutions for 2D and 3D flow problems.
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Therefore, the alternative to solve the HD equations using numerical
methods on computers has proven to be a useful approach. When ge-
ometries are modeled accurately and parameter values are chosen with
care, numerical simulations of Euler or Navier-Stokes flows around geo-
metrically complex objects agree well with experiments [167]. Numerical
simulations are especially useful to study physical phenomena in regimes
of parameters and physical sizes for which experiments cannot reason-
ably be performed, and for which detailed observations are not available.
It would seem that this applies to many phenomena in space physics and
astrophysics.

Figure 2.4: Numerical simulation of supersonic hydrodynamic flow
around a cylinder (thick solid). The flow comes in from the left
(M = 2.6). Density contours (thin solid) pile up in shocks.

In Fig. 2.4 we show numerical simulation results for the M = 2.6 flow
of a gas around a cylinder. These simulations were performed with our
numerical simulation code, which discretizes the ideal HD equations but
introduces a small amount of numerical dissipation. Contours of equal
density are shown. In this simulation we did not attempt to faithfully
model the geometry and parameter regime of the experimental flows
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of Fig. 2.3, but we want to demonstrate in a qualitative way that the
simulation results reproduce many of the flow features present in the
experiments. The density contours pile up in a stationary bow shock on
the left of the cylinder. Boundary layers separate from the back of the
cylinder. The spatial resolution of the simulation is not high enough,
however, to reproduce turbulence in the wake [167].

In this dissertation, we study stationary bow shock configurations
around cylinders and spheres, much like the configurations in Figs. 2.3
and 2.4, using numerical simulation techniques. Most of the time we
focus on the bow shock itself. This allows us to limit the simulation
to the half-plane on the upstream side of the center of the cylinder or
the sphere. We then expect a resulting flow which is in a perfect non-
turbulent steady state. We are, however, not concerned with flows in
non-conducting fluids which describe neutral gases, but on the contrary
we are interested in bow shock flows in MHD plasmas which model
iomized gases. Much of the discussion on neutral gas dynamics that was
given above, remains relevant for plasma flows. The fact that plasma
particles are charged and MHD plasmas thus conduct currents, however,
introduces interesting additional dynamical effects, which are discussed
next.

2.2 Magnetohydrodynamic description of
shock phenomena in plasmas

At sufficiently high temperatures, the atoms or molecules in a gas lose
negatively charged electrons and thus become positively charged ions
themselves. Such a gas of charged particles is called a plasma.

A continuous fluid description of a plasma is given by the magnetohy-
drodynamic (MHD) equations [87, 118, 7, 54]. We now briefly introduce
the MHD equations and the properties of MHD waves and shocks. A
more complete discussion is given in Chap. 3. The MHD equations read
in conservation form

pu
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B is the magnetic field, with units chosen such that the magnetic perme-
ability p = 1. This equation has to be supplemented with the divergence
free condition V - B = 0 as an initial condition. The second right hand
side term of Eq. 2.6 is proportional to V - B =0 and is thus equal to
zero. For several reasons to be explained further on, it is advantageous
to keep this term in the equations. The total specific energy is given by

e=——4p—+ . (2.7)

For the dissipative MHD equations, the matrix of dissipative fluxes D
depends on dissipative parameters like the viscosity and the electric re-
sistivity, and on the state variables and gradients of the state variables.
The ideal MHD equations describe a dissipationless conducting fluid,
and are given by Eq. 2.6 with D = 0. The MHD equations describe the
conservation of mass, momentum, magnetic field, and energy.

Inspection of Eq. 2.6 shows that the magnetic field influences the
velocity of the plasma — through the J x B force, with J = V x B
— and that the magnetic field in its turn is influenced by the moving
fluid. These effects result in a dynamical behavior which is quite more
complicated than in the case of a non-conducting fluid. MHD allows for
three different linear wave modes, the fast magnetosonic, the Alfvén, and
the slow magnetosonic wave [87, 54]. Due to the extra J x B force in
the momentum equation, which depends on the magnetic field and its
direction, the three linear wave speeds become strongly dependent on
the direction relative to the local magnetic field. It is said that MHD
waves are anisotropic. The fact to be illustrated below that MHD bow
shock flows can exhibit much more complex behavior than their HD
counterparts can be related to this anisotropy. The fast, Alfvén (or
intermediate) and slow wave speeds in the direction x are represented
by cfz, caz and cgu, respectively. The Alfvén speed is given by ca, =
|B:|/+/p- For any direction z, it holds that cs, > car > 4. In the
direction of the magnetic field, the fast wave speed coincides with the
largest of the sound and the Alfvén speed, while the slow wave speed
coincides with the smallest of the two. Slow waves and Alfvén waves
have a vanishing propagation speed in the direction perpendicular to
the magnetic field.

Due to nonlinear effects large-amplitude MHD waves can steepen into
shocks [4, 87, 80]. There exist three different types of MHD shocks, as
shown in Fig. 2.5, and we can distinguish between them by considering
the way in which they refract the magnetic field. Fast MHD shocks
refract the magnetic field away from the shock normal (Fig. 2.5a), such
that the upstream angle between the shock normal and the magnetic
field #; is smaller than the downstream angle 6> (in Fig. 2.5 the plasma
flow in the shock frame goes from left to right). In an intermediate MHD
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(b) intermediate | (c) slow (d) fast switch-on

Figure 2.5: MHD shock types. The magnetic field (arrowed) is refracted
at the shock (thick). The shock normal is dashed. Region 1 is upstream,
2 is downstream.

shock the magnetic field line is flipped over the shock normal (Fig. 2.5b).
Slow MHD shocks refract the magnetic field toward the shock normal
(Fig. 2.5¢).

In Fig. 2.5d we show the peculiar MHD shock phenomenon which is
called a fast switch-on shock. The upstream magnetic field is perpen-
dicular to the shock front, but downstream there exists a finite angle 6,
between the shock normal and the magnetic field.

Switch-on shocks have no analog in the hydrodynamic flow of a neu-
tral fluid, and can thus be called an intrinsically magnetic effect. Switch-
on shocks can occur when the inflow plasma [, which is defined as the
ratio of the thermal pressure to the magnetic pressure (8 = p/(B?/2)),
is smaller than 2/ = 1.2, and when, along the magnetic field lines,
the incoming plasma velocity lies between the fast MHD wave speed and
roughly twice this speed [80]. This parameter regime is called the switch-
on regime. Switch-on shocks thus arise when magnetic forces dominate
over thermal pressure and dynamic pressure effects. Switch-on shocks
occur when the upstream magnetic field is strong and are an intrinsically
magnetic effect. Therefore we call upstream flows for which switch-on
shocks occur magnetically dominated flows. Upstream flows for which
switch-on shocks do not occur are called pressure-dominated flows.

It is clear that, analogous to the HD case, the formation of a bow
shock can be expected when MHD flows fall in on blunt bodies with a ve-
locity which is faster than the fast MHD wave speed — in which case we
say that the flow is superfast. We may, however, expect additional phe-
nomena due to the influence of the magnetic field and the more complex
nature of the MHD equations. It turns out that for magnetically domi-
nated upstream flows MHD bow shocks exhibit a new complex topology
which is very different from the traditional topology obtained for bow
shocks with pressure-dominated upstream flows. This motivates the in-
troduction of the terminology of pressure-dominated versus magnetically
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dominated upstream flows as defined above, and warrants its extension
to pressure-dominated versus magnetically dominated bow shock flows
and bow shock flow topologies.

In this dissertation we discuss numerical simulation results of MHD
bow shock flows around perfectly conducting cylinders and spheres. Our
numerical code discretizes the ideal MHD equations, but introduces a
small numerical dissipation. The numerical solutions thus describe MHD
plasma flows with small dissipation. In the following Sections we give a
preview of the results and the phenomena encountered.

A note on notation for wave speeds and Mach numbers

MHD wave speeds and Mach numbers — defined as the ratios of plasma
velocities and wave speeds for the various waves — are anisotropic, so
we have to define clearly how we refer to them. In general, we specify
the direction in which we take wave speeds and Mach numbers in the
subscript of the referring symbols, except for scalar quantities which
do not depend on the direction. Thus c¢;, ca, and cs, represent the
(positive) MHD wave speeds in the direction z. The (positive) sound
speed c is isotropic. Sometimes the Alfvén speed in the direction of the
magnetic field is referred to as the Alfvén speed (or the total Alfvén
speed), which we then represent as cq4 = ||§||/ﬁ, without subscript

z, and with ||B|| the magnitude of the magnetic field vector. My, =
[vzl/Cfa, Maz = |Vz]/cas and My, = |vg|/cs, are the fast, intermediate
and slow Mach numbers, respectively, with |v,| the absolute value of the
plasma velocity in direction z. The sonic or acoustic Mach number in the
direction z is given by M, = |v;|/c. Sometimes the sonic Mach number
in the direction of the velocity is referred to as the Mach number (or the
total Mach number), which we then represent as M, without subscript
x. This quantity is thus defined as M = ||7]|/¢, with ||7]| the magnitude
of the velocity vector. When the magnetic field is everywhere aligned
to the plasma velocity — we call this field-aligned flow —, the Alfvénic
Mach number becomes independent of the direction, in which case we
drop the subscript z. The Alfvénic Mach number is then defined as
Ma = |7]|/ca.

2.2.1 Symmetrical two-dimensional flow around a
cylinder

First we treat the 2D problem of uniform flow falling in on a cylinder. We
basically take the configuration of Fig. 2.4, but initially we prefer to re-
duce the complexity of the problem as much as possible. We concentrate
on the bow shock, such that the simulation domain can be restricted to
the left half plane (the flow comes in horizontally from the left). We also
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Figure 2.6: Symmetrical bow shock flows around a cylinder (thick solid).
The flow comes in horizontally from the left. Density contours (thin
solid) pile up in the bow shock. Magnetic field lines are dotted. The
thick solid horizontal line is a line of symmetry. (a) Hydrodynamic
flow: B, =0, M = 3.46. (b) Pressure-dominated MHD flow: B, =1,
M =346, Ms=2,3=04.

exploit the symmetry of the problem, by realizing that the horizontal
line coming in from the left and going through the center of the cylinder
is a line of top-bottom symmetry. This line is called the stagnation line
because a stagnation point — a point with vanishing flow velocity —
exists at the intersection of this line with the cylinder. This symmetry
allows us to carry out the simulation in the upper left quadrant only. The
simulation result for a M = 3.46 HD bow shock flow (B = 0) is shown in
Fig. 2.6a. On the stagnation line we explicitly impose symmetry bound-
ary conditions. This flow can thus also be considered as the flow over
a plate with a semi-circular bump or corner. It will turn out later that
this may be an important detail for stability reasons, so we repeat that
we explicitly impose the top-bottom symmetry in these bow shock flows
around cylinders, and we call the bow shock flows symmetrical. The
resulting stationary HD bow shock flow of Fig. 2.6a shows the expected
bow shock geometry, with a bow shock which is curved concave-inward
(towards the cylinder), like the bow shocks in the experimental results
of Fig. 2.3.

In Fig. 2.6b we have added a horizontal magnetic field in the inflowing
plasma, parallel to the incoming velocity. It can be proved theoretically
that the upstream magnetic field has to be taken parallel to the flow
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velocity in order to obtain a steady flow solution, and that the magnetic
field is then parallel to the plasma velocity in the whole bow shock
solution — the flow is thus field-aligned. The sonic Mach number of the
inflow is still M = 3.46, and the Alfvénic Mach number M4 = 2. The
plasma [ equals 0.4. Switch-on shocks cannot arise for these parameter
values, so we call the upstream flow pressure-dominated. The flow is
superfast, and we expect a bow shock in front of the cylinder in the
stationary simulation result. This bow shock can indeed be seen in Fig.
2.6b. The magnetic field has changed the shape of the bow shock a
little compared to the case with B = 0, but the concave-inward bow
shock orientation is preserved. The bow shock is of the fast type along
the entire shock surface, because the magnetic field lines (dotted) are
refracted away from the shock normal. For this pressure-dominated flow
we find the same bow shock flow topology as for the hydrodynamic bow
shock flow of Fig. 2.6a. We can say that the hydrodynamic bow shock
flow is also pressure-dominated because B=0.

Fig. 2.7 shows the simulation result of a MHD bow shock flow with
upstream conditions M = 2.6, M4 = 1.5 and 8 = 0.4. Switch-on shocks
can arise for these parameter values, so we call the upstream flow mag-
netically dominated. The topology of the flow is surprisingly different
from the topology of the flow in Fig. 2.6b. A switch-on shock occurs
at the point well above the stagnation line where the magnetic field is
perpendicular to the leading shock front. We see that the central part of
the bow shock is now oriented concave-outward (away from the cylinder).
This feature has been observed first by Steinolfson and Hundhausen [147]
in numerical simulations of time-dependent MHD flows related to solar
coronal mass ejections, and they called it a ‘dimple’ in the shock front.
They related this phenomenon to the occurrence of switch-on shocks,
and it is indeed remarkable that the flow of Fig. 2.6b, with the ‘tradi-
tional’ bow shock topology, has parameters outside the regime in which
switch-on shocks are possible, whereas the complicated bow shock of Fig.
2.7 has parameters inside the switch-on regime!

A second unusual feature of the flow in Fig. 2.7 is that the leading
shock front is followed by several secondary shock fronts, which turn out
to be of various MHD shock types, as can already be observed from the
intricate way in which the magnetic field lines are refracted by these
shocks. These interesting features were not anticipated in Steinolfson
and Hundhausen’s important earlier work [147].

These results suggest that, depending on the upstream conditions,
two entirely different topologies exist for MHD bow shock flows. For
magnetically dominated upstream flows — for which switch-on shocks
occur —, a complex topology arises involving several interacting shock
fronts with segments of various MHD shock types. For pressure-domina-
ted upstream flows the traditional single-front topology known from hy-
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Figure 2.7: Magnetically dominated MHD bow shock flow: B, = 1,
M =26, Mas =1.5, 3 =0.4. The flow comes in from the left. Density
contours (solid) pile up in shocks. Magnetic field lines are dotted. The
leading shock front has a concave-outward central part (‘dimple’), and
is followed by secondary shock fronts.

drodynamic bow shock flows is recovered. The magnetically dominated
bow shock topology of Fig. 2.7 was previously unknown. Its complexity
is due to intrinsically magnetic effects.

2D MHD bow shock flows around cylinders are discussed in detail
in Chap. 6. We identify and study in detail the nonlinear wave features
present in the complex magnetically dominated bow shock flows.
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2.2.2 Three-dimensional flow over a sphere

3D MHD bow shock flows are important for space physics applications.
The 2D results introduced above suggest that intrinsically magnetic ef-
fects may also affect the topology of 3D MHD bow shocks with magnet-
ically dominated upstream flows. We consider stationary 3D bow shock
flows over a sphere. In these 3D flows the magnetic field and the plasma
velocity do not have to be aligned.

(a) pressure-dominated (b) magnetically dominated

Figure 2.8: Bow shock flows over a sphere (thick solid) with a small angle
between the upstream magnetic field and velocity. The flow comes in
from the left. Density contours (thin solid) in a plane through the sphere
center are shown. (a) Pressure-dominated flow: B, = 1, M, = 6.90,
Ma, = 3985, f = 04, v, = 3.985, v, = 0.022. (b) Magnetically
dominated flow: B, = 1, M, = 2.6, M4, = 1.5, § = 04, v, = 1.5,
vy = 0.01.
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In Fig. 2.8a we show the simulation result of a superfast pressure-
dominated MHD flow over a perfectly conducting sphere, with param-
eters B, = 1, M, = 6.90, M4, = 3.985 and § = 0.4, and with a
small angle between the horizontal magnetic field and the plasma flow
(v = 3.985 and v, = 0.022). Density contours are shown in the plane
through the center of the sphere which contains the inflow magnetic and
velocity field vectors. We are not surprised to find a stationary solu-
tion with a traditional concave-inward (towards the sphere) single shock
surface, because the inflow is pressure-dominated.

Let us now investigate the case of a magnetically dominated inflow
with parameters B, = 1, M, = 2.6, M4, = 1.5, 8 = 0.4, and a small
angle between the inflow magnetic field and the velocity (v, = 1.5 and
vy = 0.01). Fig. 2.8b shows the steady state solution for this bow shock
flow. The existence of a slight dimple and a secondary shock front is
confirmed (compare to the 2D flow of Fig. 2.7), and the global bow
shock topology of Fig. 2.8b, for magnetically dominated parameters, is
very different from the traditional concave-inward single-front bow shock
topology of Fig. 2.8a for pressure-dominated parameters. This indicates
that intrinsically magnetic effects change the topology of bow shock flows
drastically for magnetically dominated upstream parameter values.

Analogous to the 2D case, these results suggest that depending on
the upstream conditions, two entirely different topologies exist for 3D
MHD bow shock flows. For pressure-dominated upstream flows the tra-
ditional single-front topology known from hydrodynamic bow shock flows
is recovered. For magnetically dominated upstream flows a previously
unknown complex topology arises. This is the main result presented in
this dissertation.

Magnetically dominated 3D MHD bow shock flows over spheres are
discussed in detail in Chap. 7.

In the next Section we give a brief overview of where MHD bow
shocks can be found in nature, and where our findings on magnetically
dominated MHD bow shock topology may be relevant.

2.3 MHD shock phenomena in nature

In this section we give an overview of where plasma bow shocks can be
encountered in nature, and how these bow shocks have been described in
the literature using the MHD model. But first we say something about
the validity of the MHD model to describe a plasma, and about the
stability of intermediate MHD shocks.
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2.3.1 The validity of the MHD approximation

A plasma is a gas composed of charged particles. There exists a hierarchy
of theories to describe plasma motion at different levels of complexity
(see e.g. [84, 54] for an introduction).

Particle dynamics considers directly the forces exerted on individual
particles and the influence of the particles on the electric and magnetic
fields (via the Mazwell equations). It is obvious that such a description
entails a complexity which is often prohibitive, because macroscopic vol-
umes of gas contain an enormous amount of particles. An important con-
sideration is the nature of the physical application at hand, i.e. whether
it is necessary to follow the motion of every single particle in order to
analyze the behavior of the plasma in the application. Analytical the-
ory is not much developed, but attempts are made to describe particle
plasma dynamics using supercomputer simulations.

The kinetic theory of plasmas is a statistical theory of plasma motion,
which describes the evolution of a distribution function. This function
represents the number density of particles in function of spatial coor-
dinates, velocity, and time, and is a solution of a Boltzmann equation,
which needs to be solved together with the Maxwell equations. Some an-
alytical results can be obtained, but the complexity is often prohibitively
high, even when numerical approaches are used.

The MHD equations are a continuum fluid description of a plasma, in
terms of evolution equations for the macroscopic state variables, and with
the Maxwell equations built-in into the formulation. This description,
which can be derived by taking moments of the Boltzmann equation, is
much more tractable than the particle or kinetic theories, and the mathe-
matical properties of ideal MHD as a symmetrical hyperbolic system [21]
are clearly defined. However, one pays a price for this tractability. Many
complex dynamical phenomena are retained in the MHD description, but
many other microscopic and some macroscopic plasma phenomena are
not, properly described by the MHD equations.

It is thus important to identify and bear in mind the range of parame-
ters for which the MHD description of a plasma is a good approximation.
The ideal MHD equations introduced in Sec. 2.2 describe a fully ionized
plasma for which the following properties hold. The particles are consid-
ered as one fluid, which means that the ions and electrons have to be in
thermal equilibrium. A MHD plasma is quasi-neutral, meaning that in a
small volume (of the size of a Debeye sphere [54]) positive and negative
charges neutralize. The pressure is isotropic. The plasma velocities are
non-relativistic. All charged particles gyrate around magnetic field lines
with the Larmor frequency wy,, which is given by

qB
= — 2.8
wr m ) ( )
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with ¢ the charge of the particle, and m its mass. Ions have a greater
mass than electrons, so the gyro-frequency is lower and the gyro-radius
is larger for ions than for electrons. This gyration is not retained in
the MHD description. MHD is thus valid when the frequencies in the
solution are smaller than the ion gyro-frequencies. Also, local length
scales in the MHD solution have to be larger than the ion gyro radius.
Similarly, MHD frequencies have to be lower than electron plasma fre-
quencies. Electrons are much lighter than ions, such that the inertia and
macroscopic velocity of a plasma are mainly due to ions, while the elec-
tric current is due to the electron motion relative to the ions. The electric
resistivity 17 can be neglected when the magnetic Reynolds number

Lv
R, = —, 2.9
; (2.9)

is large, where L is a characteristic length of the problem, and v is a
characteristic velocity. If in addition other dissipative mechanisms can
be neglected as well, the equations of ideal MHD can be used to de-
scribe the plasma behavior. Another important point is that the par-
ticle distribution function has to be nearly Maxwellian for the MHD
approximation to be valid. In ordinary gases, collisions between parti-
cles provide the necessary dissipation to relax the distribution function
towards a Maxwellian. In many plasmas in the real world, however, the
mean free path of plasma particles is much larger than the length scale
of the total plasma volume, which means that they hardly undergo any
collision. Those plasmas are said to be collisionless. But this raises the
question which process provides the dissipation in plasmas necessary to
relax to Maxwellian states? Or which mechanism provides the dissipa-
tion in plasma shocks? Actually, it turns out that most plasmas are not
very close to be Maxwellian, and in this sense the MHD description is
only an approximation. The shocks formed in collisionless space plas-
mas dissipate by microscopic particle-wave interactions and instabilities
[27, 120].

We have thus to be aware that MHD is only an approximate descrip-
tion of plasma behavior. It is, however, interesting and worthwhile to
investigate plasma shock phenomena in the MHD approximation (see
e.g. [74] for interesting thoughts on this issue). The MHD equations are
statements of the fundamental conservation of mass, momentum, mag-
netic field and energy, and they often give a good description of plasma
phenomena on a macroscopic scale, even if not all microscopic processes
are faithfully reproduced in detail. Furthermore, the equations of ideal
MHD have a well-defined mathematical structure, and the complexity is
tractable. The phenomena that are to be described in this dissertation,
are fundamentally 2D and 3D. Plasma particle simulations or kinetic
simulations are feasible in 1D, but would require non-trivial computing
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resources in 2D and certainly in 3D.

In this dissertation we thus study plasma shocks in the MHD approx-
imation. It is important to understand the behavior of these nonlinear
wave phenomena in the MHD system, and the well-defined mathemat-
ical nature of the system allows for rigorous analysis of the results and
is useful for the development of rigorous numerical methods. We may
then expect that our results on MHD bow shocks apply to shocks in
real plasmas on a global macroscopic scale, although we are aware that
not all plasma phenomena are retained in the MHD description. In the
following paragraphs we illustrate how some plasma shock phenomena
in space physics have been successfully described in the MHD model.
But first we say something about the stability of intermediate shocks.

2.3.2 On the physical existence of intermediate and
compound shocks

Intermediate shocks

It has been believed for a long time that intermediate shocks are un-
physical [87]. Intermediate shocks were found to be unstable (in a cer-
tain peculiar sense, see [87]) in the ideal MHD system. Intermediate
shocks were said to be ‘non-evolutionary’, and it was concluded that
non-evolutionary shocks cannot exist in nature.

However, recently it has been shown that intermediate shocks can be
stable in the dissipative MHD system for wide ranges of the dissipation
coefficients [173, 43, 49, 110]. They can be destabilized by magnetic per-
turbations out of the plane formed by the shock normal and the magnetic
field (Alfvén waves), but only when the amplitude of the perturbation is
sufficiently large [171]. The amplitude of the perturbation required for
destabilization decreases with decreasing dissipation [47, 102]. It would
seem that dissipative MHD with small dissipation coefficients applies
more directly to nature than perfectly ideal MHD. Consequently most
authors now seem to agree that intermediate shocks can exist in nature
and can persist when perturbations are not too large, although others
keep on arguing against the existence of intermediate shocks [35]. In
our simulation code we discretize the ideal MHD equations, but numeri-
cal dissipation plays a role analogous to a small physical dissipation. We
will show that stationary intermediate shock fronts are present in our 2D
and 3D MHD simulation results (Figs. 2.7 and 2.8b). This seems to be
relevant for the ongoing debate on the physical existence of intermediate
shocks. Intermediate shocks have been found before in one-dimensional
simulations of the dissipative MHD equations [170], but it seems that
our simulations are the first confirmation in 3D that intermediate shocks
can indeed exist and persist for small dissipation MHD in a realistic flow
configuration.
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It is an interesting question what the 3D bow shock solutions with
magnetically dominated upstream parameter values would be in some
limit of vanishing dissipation [47], or in perfectly ideal MHD. Some au-
thors seem to indicate that for some problems vanishing dissipation limit
solutions and the perfectly ideal solution could be different, because
small dissipation MHD and ideal MHD do not approach each other uni-
formly [48, 47] if one considers shock solutions. The precise type and
magnitude of the dissipation may influence results to some problems in
a non-uniform way. This non-uniform behavior of the vanishing dissipa-
tion limit is attributed to the fact that the MHD system is non-strictly
hyperbolic — wave speeds may coincide — and non-convex (see below).
The Euler equations are strictly hyperbolic and convex, and the Navier-
Stokes equations approach the Euler equations uniformly for vanishing
viscosity. This means that Euler simulation codes with numerical diffu-
sion approach the ideal Euler solution to problems uniformly when grids
are refined. The above discussion indicates that this may not be true for
the MHD case. Some authors reject the use of ideal MHD to describe
physical systems precisely because ideal MHD is not a uniquely defined
limit of dissipative MHD [173]. However, all these considerations remain
speculative because the limit of vanishing dissipation MHD, and the rela-
tion between vanishing dissipation MHD and perfectly ideal MHD, have
not been understood yet in full [40, 173, 44, 46, 47].

If these considerations on non-uniformity were to be true, however,
then the consequence would be that for some problems ideal MHD solu-
tions cannot be calculated with numerical codes which introduce numer-
ical dissipation [48], and that for small dissipation MHD calculations —
which presumably would correspond to most physical applications — the
dissipative effects should be modeled explicitly, because solutions may
depend on the specific form of the dissipation [173]. Most researchers do
not seem to be aware of these concerns. Recently many new algorithms
have been presented which are intended to solve the ideal MHD equations
[12, 157, 158, 183, 23, 128, 1, 118, 162, 6, 7, 99, 36, 26, 111, 5], and when
those techniques are applied to space physics and astrophysics flows, it
is generally believed that the solutions approach the ideal MHD solu-
tion. The above discussion indicates that it would be best to include an
explicit description of dissipation mechanisms in numerical MHD simula-
tions. However, this makes numerical MHD codes more complex and de-
mands substantially larger computing resources. Therefore we adopt the
pragmatic approach — which is customary in the field of space physics
and astrophysics research — of utilizing a numerical code which dis-
cretizes the ideal MHD equations, but in which numerical dissipation
plays a role analogous to a small physical dissipation. We will then ar-
gue that our simulation results are solutions of the MHD equations with
small dissipation. This small dissipation remains unspecified, however,
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and this is not very satisfactory. It remains thus an interesting topic
of future research to verify the bow shock flow solutions which are pre-
sented in this dissertation with a numerical code which explicitly models
the dissipation mechanisms, and to study vanishing dissipation limits or
ideal MHD solutions. As mentioned above, the small dissipation case
would seem the most appropriate to describe physical systems. In this
sense the discussion on vanishing dissipation limits and ideal MHD solu-
tions is probably not so relevant for space physics applications, although
these topics remain interesting mathematical problems. Our simulation
results are probably relevant for bow shock flows in space physics and
astrophysics flows, because they confirm in 3D that intermediate shocks
can indeed exist and persist for small dissipation MHD in a realistic flow
configuration.

The problem of the existence of intermediate shocks is very subtle
and has probably not been resolved yet in full. Therefore we dedicate
a full Chapter (Chap. 9) to the discussion of this topic. We illustrate
the main issues of the ongoing debate on the existence of intermediate
shocks and we discuss the relevance of our results for this debate.

Compound shocks

MHD compound shocks are intermediate shocks for which the plasma
velocity exactly equals the fast or the slow wave speed in the upstream
or downstream state of the shock. MHD allows for compound shocks
because the MHD system is non-convex [11, 90, 109]. MHD compound
shocks were initially believed to be unphysical because they are a special
kind of intermediate shock, which was believed to be non-evolutionary.
But compound shocks were found in 1D numerical simulations of the
MHD equations [12], and they were shown to be necessary elements in
the analytical solution of planar MHD Riemann problems [110].

We show in Chapters 6 and 7 of this dissertation that our simulation
results of flows around cylinders and spheres (Figs. 2.7 and 2.8b) clearly
contain compound shocks. These peculiar nonlinear wave structures
were earlier found in 1D simulations, but our results seem to be the first
clear confirmation that compound shocks can arise in 2D and 3D flows.

2.3.3 Bow shocks in the solar system: planets, comets
and the heliosphere

Nearly stationary plasma bow shock configurations can be found in the
solar system where the superfast solar wind [67] encounters planets or
comets [84].

Fig. 2.9 shows a sketch of the earth’s magnetic environment [168].
The earth has an intrinsic magnetic field, which is confined to a region
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Figure 2.9: The earth’s magnetic environment. (courtesy ISPEC)

which is called the magnetosphere. This region is separated from the
solar wind magnetic field by the magnetopause. The solar wind flow is
deflected to flow around the magnetopause, and this deflection involves
a transition through a bow shock from a superfast to a subfast state, as
was explained in Sec. 2.1 and as is seen in the MHD simulations of Sec.
2.2. The region between the bow shock and the magnetopause is called
the magnetosheath.

Fig. 2.10 shows a time series of local magnetic field and electron
temperature measurements of the Ulysses spacecraft crossing Jupiter’s
bow shock [115]. A clear jump in magnetic field and electron temperature
can be seen at approximately 17:30 UT, which can be demonstrated to
quantitatively agree with a fast MHD shock transition.

All planets are expected to have bow shocks, and this has been proven
by direct measurements of passing spacecraft, except for Pluto [143].
Some spacecraft have crossed cometary bow shocks [73]. Such satellite
observations are important, because they establish the presence of the
bow shocks, but they are limited in the sense that they provide only
datasets along a 1D curve. Direct observations of the spatial geometry
and extent of planetary bow shocks are not available. The 1D observa-
tions do, however, provide us with detailed observations of local shock
transitions. These observations show that those planetary and cometary
bow shocks are not just ‘clean’” MHD shock transitions, because wave
perturbations are present upstream and downstream of the shocks (Fig.
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Figure 2.10: Ulysses crosses Jupiter’s bow shock. (courtesy D. Balogh
and J. Phillips, NSSDC)

2.10) and because the shock profiles have structures which indicate that
particle and kinetic processes, neglected in the MHD description, are
present. Explanations have been proposed for many types of observed
wave perturbations and for observed shock structures, based on detailed
particle and kinetic plasma models [27].

The global bow shock flows can often be modeled quite satisfactorily
using the MHD model, and MHD models have reproduced successfully
many aspects of the observations, for flows around planets and moons
(e.g. [174, 159, 144, 17, 114, 74]) and for flows around comets ([55, 56]).

The solar wind is most often high-3 and the solar wind Mach number
is high (M ~ 10), such that pressure effects dominate over magnetic
effects. The magnetically dominated parameter regime for which we do
find the complex bow shock topology of Fig. 2.8b, is thus not typical for
the solar wind. This explains probably why this parameter regime —
to our best knowledge — has not been considered before in 3D MHD
simulations of terrestrial bow shock flows [174, 16]. However, we explain
further on that the solar wind can be magnetically dominated at the
earth for up to 8% of the time. This means that the earth’s bow shock
flow may exhibit the complex topology with the secondary slow shock
of Fig. 2.8b under those magnetically dominated solar wind conditions.
Some satellite observations do indeed suggest that a slow shock may be
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Figure 2.11: The solar system’s magnetic environment or heliosphere.
The sun is located in the center of the picture. (courtesy NASA)

found in the earth’s magnetosheath downstream of the bow shock [141].
Our simulation results exhibit such secondary shock fronts of slow type
following the leading bow shock, and the observed slow secondary shock
in the earth’s magnetosheath may be due to a process similar to what
is described in our simulations. In particular, our 3D simulation results
of Fig. 2.8b suggest that such a secondary shock front should be present
only on one side of the sun-earth line. It would be interesting to verify
this in the earth’s magnetosheath using observations by several satellites
covering different locations in the global system. The application of our
simulation results to the earth’s bow shock flow is discussed in detail in
Chap. 8.

It is believed that a superfast interstellar wind interacts with the
whole solar system to produce a heliospheric magnetic configuration
[64] like the one sketched in Fig. 2.11. A heliospheric bow shock is
expected to exist. Fig. 2.11 also shows the approximate trajectories of
several spacecraft that were launched to study the solar system. The
heliospheric magnetic configuration has been modeled using MHD (e.g.
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[117,124, 100]), and it is expected that observational tests for these mod-
els will become available when several outward traveling spacecraft will
cross the heliospheric termination shock (Fig. 2.11) early in the 21st cen-
tury. Not much is known about the conditions in the interstellar wind,
so it is an open question whether the flow upstream of the heliospheric
bow shock can be magnetically dominated.

2.3.4 Solar coronal mass ejections and traveling in-
terplanetary shocks

Up to several times per day, large-scale structures in the solar corona
disrupt and are ejected out of the corona at speeds ranging from 10 to
2 x 103 km s™!, carrying a mass of 1012713 kg and liberating an energy of
102425 J [66, 104, 68]. Many aspects of the propagation of coronal mass
ejections (CMEs) in the solar coronal plasma can be described by the
equations of ideal MHD. White light coronagraph observations of fast
CMEs show bright leading fronts which can be interpreted as signatures
of fast MHD shock fronts [68].

Fig. 2.12 shows two consecutive images taken by the SMM coron-
agraph, on 30 January 1989, at 2:11 and 2:28 UT. A bright spiraling
prominence structure is seen to expand rapidly, and is preceded by a
bright loop-like structure. This leading front contains a small ‘dimple’
in the image on the left. In the right image, about 17 minutes later,
the leading front is less bright, but the dimple is more pronounced, and
the leading front seems to be followed by secondary fronts. The plasma
[ in the inner solar corona is believed to be substantially smaller than
unity, and the fast MHD wave speed is believed to be of the order of 600
km/s. The projected velocity of the leading front in Fig. 2.12 is 1055
km/s. These numbers indicate that the flow upstream of the leading
shock front may well be magnetically dominated. Steinolfson and Hund-
hausen [147, 146] studied these dimpled leading fronts, they related the
dimple to the properties of switch-on shocks, and they performed time-
dependent numerical MHD simulations in 2D. Their simulations of mov-
ing shock fronts confirmed the existence of the dimple effect, and seemed
to contain intermediate shocks.

Steinolfson and Hundhausen’s work was the motivation and starting
point for the work described in this dissertation. We study the forma-
tion of MHD shocks with magnetically dominated upstream flow, not in
a time-dependent outflow driven by a pressure pulse as in Steinolfson
and Hundhausen’s case, but in the much simpler setting of a uniform
flow falling in on a perfectly conducting cylinder or sphere. This simple
setting allows us to analyze the stationary flow results in a rigorous way.
It allows us to describe the intricate secondary shock patterns discovered
in our simulation results and not anticipated by Steinolfson and Hund-
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Figure 2.12: SMM coronagraph images of a CME. The sun is blacked
out by a disc with radius 1.6 Rgy,.

hausen’s important earlier work, and to identify clearly intermediate and
compound shocks. In Chap. 8 we discuss how our simulation results are
relevant for shocks induced by fast CMEs.

It is believed that the shocks induced by fast CMEs propagate through
the interplanetary space as interplanetary shocks [136]. They may travel
in the direction of the earth as the leading edges of magnetic clouds
[15, 58]. Magnetic clouds often cause magnetic storms, which are severe
disruptions of the earth’s magnetic environment, disturbing communi-
cations and sometimes even leading to power failures. Fig. 2.13 shows
measurements by the WIND satellite, which is located in front of the
earth’s bow shock. Discontinuous jumps in magnetic field, ion density,
and ion temperature, indicate the arrival of interplanetary shocks [58].
The magnetic effects on bow shock topology discovered in our simu-
lation results may also become important when magnetic clouds reach
the earth’s bow shock, because the magnetic field is strong in magnetic
clouds. We speculate in Chap. 8 that intrinsically magnetic effects may
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Figure 2.13: Interplanetary shock just before it reaches the Earth’s mag-
netic system. (WIND satellite data, courtesy R. Lin and R. Lepping,
CDAWEB)

cause a global reconfiguration of the magnetosheath flow which may de-
termine the timing of magnetic storm onset.

An important application of space physics and solar physics is the
study of ‘space weather’, which is concerned with disturbances of the
earth’s magnetic system by perturbations in the solar wind. Those per-
turbations are believed to originate directly on the sun. The ultimate
goal is to provide operational predicting capabilities, much like weather
prediction on earth, which could help in reducing the harmful effects of
magnetic storms. One of the possible approaches to this problem is the
global simulation of the sun-earth system, and for this the MHD model
seems to offer a physical starting point that promises both accuracy and
tractability. Much can be learned from problems with reduced complex-
ity, like the stationary bow shock flows discussed in this dissertation.
This knowledge then serves as a part of the intuitive basis to understand
the simulation of more complex systems comprising the time-dependent
evolution of magnetic disturbances originating at the sun, propagating
through the solar wind, and interacting with the quasi-stationary bow
shock and magnetosphere of the earth. This is an ambitious program,
but first attempts are made using adaptive grids to cover the different
spatial scales, and the resulting MHD models are capable of delivering
faster-than-real-time turn-around on the world’s largest supercomputers.

The problems faced in trying to understand these complicated in-
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teractions are obviously enormous, and as is not unusual for ambitious
undertakings, the space weather project meets with a lot of criticism
from many established scientists, especially about the operational as-
pect. Of the many points of criticism, we can mention the following
two. It is argued that many essential physical processes — including the
heating mechanism of the solar corona — are not understood, and that
numerical methods cannot make deterministic predictions about nonlin-
ear physical systems which may involve chaotic behavior. We believe
that space weather prediction is indeed an extremely difficult task, but
we are not convinced that there are solid theoretical arguments which
would indicate that the prediction of space weather is fundamentally
impossible. Indeed, physical processes of which the microscopic mech-
anisms are not well known, can be incorporated into large-scale mod-
els in a parametrized way. A good example is the relatively successful
parametrization of turbulence in gasdynamic or atmospheric physics ap-
plications [167, 101]. The detection at the earth of magnetic clouds as
well-structured entities with components which can directly be related
to pre-CME structures in the lower solar corona [15, 58], shows that
space weather events may be caused by deterministic large-scale flow
patterns, and may not be influenced too much by perturbations of a
chaotic nature.

We believe that the problems which can be addressed in large-scale
MHD simulations of the sun-earth system are interesting and important,
and next to the operational and predictional aspects, a lot has to be
learned regarding the complex interaction of nonlinear phenomena in
three space dimensions. We think that global MHD simulations are a
good way to approach these complex interactions. It is our belief that
global time-dependent MHD simulations will indeed become more and
more feasible and that much can be learned from them, and we do see
the results of this dissertation and the methods employed as an initial
step towards such a goal.

2.3.5 Astrophysical shock phenomena

Magnetic fields are believed to play an important role in many astro-
physical phenomena. Since the launch of the Hubble Space Telescope
(HST), observations become available with sufficient resolution for the
direct observation of shock phenomena in distant astrophysical objects.
Fig. 2.14 shows HST images of jets emanating from young stellar objects.
Magnetic fields are believed to be important for the collimation of these
jets, and shocks are observed at the leading edges of the jets [29, 126].
Many MHD simulations have been performed on the subject of astro-
physical jets [165], and it is argued that some complex morphological
characteristics of those objects can be explained using MHD models.
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Jets from Young Stars HST - WFPC2

Figure 2.14: Jets from young stellar objects. It is believed that during
star formation stellar outflow is collimated into bipolar jets perpendicular
to an accretion disk. In the bottom image, for instance (HH47), a large
horizontally extended jet is seen. The jet induces a bow shock on the
leading edge (far right), and several additional bow shocks and internal
shocks have been identified [126]. (courtesy C. Burrows, J. Hester, and
J. Morse, NASA)

MHD models are employed for the study of shock phenomena in various
other astrophysical objects, like jets ejected from active galactic nuclei
[166] and the interaction of supernova remnants with the interstellar
medium [25]. General relativistic MHD equations are used to study the
formation of shock waves in magnetohydrodynamical accretion onto a
black hole [181].

The use of magnetic fields in the study of astrophysical objects is,
however, still relatively new and unexplored, and the magnetically dom-
inated bow shock flows which are described in this dissertation may have
applications in astrophysical flows when upstream plasmas are magnet-
ically dominated.
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2.3.6 Laboratory plasmas and magnetic reconnec-
tion

Plasmas have been studied intensively in the laboratory. MHD shocks
have been studied in plasma shock tubes [4, 92]. Models of the earth’s
magnetic system are being studied in the laboratory, where an intense
plasma flow simulating the solar wind interacts with a magnetized ‘ter-
rella’ [123], resulting in a flow with a bow shock and a magnetosphere.
Spacecraft re-entry is simulated in plasma wind tunnels or plasmatrons
[9], where a sample is exposed to a supersonic partially-ionized plasma,
resulting in a flow with a bow shock.

In the last decades much effort has been devoted to the study of con-
trolled nuclear fusion, mainly in tokamak devices. Tokamak plasmas can
be described approximatively by the MHD equations. Linear MHD sta-
bility calculations impose important bounds on tokamak stability limits
[116]. The numerical MHD code described in this dissertation has been
used to describe the dynamics of hot filaments in a tokamak plasma. Be-
cause it does not deal directly with MHD shock phenomena, this work is
not described in this dissertation, but is reported elsewhere [155]. MHD
shock phenomena are not studied so much in the context of tokamak
physics, probably because shocks are generally believed to be related to
disruption of the plasma, which one tries to avoid. It remains difficult
to measure densities and magnetic fields inside tokamak plasmas, such
that it is hard to know if, when and where shocks would be formed.

Figure 2.15: Topology of the Petschek reconnection model. Magnetic
field lines (thin solid) and streamlines (dashed) are refracted at slow
shocks (thick solid). Reconnection takes place in the central shaded
diffusive region.
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The process of magnetic reconnection is another subject of active
theoretical study [86, 39, 119, 8]. Magnetic reconnection can naively be
depicted as the process in which a region of plasma changes its magnetic
topology by breaking magnetic field lines and connecting the broken ends
to other broken field lines as the result of electrical resistivity. Magnetic
reconnection is an inherently resistive process, and in highly conductive
plasmas it is in general restricted to small regions where gradients of the
magnetic field (and thus currents) become very large. Fig. 2.15 shows
a sketch of a popular reconnection mechanism proposed by Petschek in
1963 in which shocks play an intrinsic role. Plasma is brought in from
above and below, and is deflected towards the left and the right by slow
MHD shocks. In a small central region the gradients of the magnetic
field become very large and reconnection takes place. This is only one
theoretical model of MHD reconnection, and it has not been proven that
it actually works in practice [86]. Other reconnection models, however,
also contain MHD shocks, and it has even been argued that the existence
of intermediate MHD shocks is essential for reconnection [96]. Magnetic
reconnection for plasmas in the MHD regime has recently been studied
in laboratory experiments [179, 72]. Some numerical MHD simulations
seem to confirm the importance of MHD shocks for reconnection phe-
nomena [39, 132], but there is still much discussion about the true nature
of MHD reconnection, and much of the numerical results seem to be crit-
ically dependent on the formulation of the boundary conditions [39, 8].

Magnetic reconnection is also believed to be an important process
in many solar and space plasmas, and many numerical simulations are
performed which attempt to describe this. Solar corona X-ray jets were
modeled using the resistive MHD equations, and fast MHD shocks occur
at the reconnection site [182]. Reconnection is believed to be important
at the earth’s magnetopause and magnetotail, and many numerical sim-
ulations have been performed using MHD models [133, 94, 96, 175]. The
simulation results have been compared with the abundant observational
data available from satellite magnetopause crossings. Recently hybrid
simulations have been performed, where the electrons are treated as a
massless fluid and the ions are treated as particles, and the results from
these simulations seem able to explain some of the wave features present
in the observations but not described by MHD [89, 176, 78, 76, 77, 95, 98,
134, 112]. These simulations are certainly a step beyond MHD simula-
tions and may explain additional physical phenomena, but it seems that
much care has to be exercised in evaluating the numerical results, be-
cause a unique closure is not available for the hybrid system, because its
mathematical properties are not well-known, and because only numeri-
cal results are available. For instance, the influence of the formulation of
the boundary conditions may even be more important than in the MHD
case [39].
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2.4 Analytical and numerical techniques to
study MHD shock phenomena

An important part of this dissertation deals with analytical and numeri-
cal techniques to study MHD shock phenomena. Much of the knowledge
necessary in this study did only partially exist and had to be collected
and developed as a large part of the thesis work.

The main analytical technique used in this dissertation to analyze
steady state MHD flows in 2D is the theory of stationary characteristics.
This theory also turns out to be useful for the validation of numerical re-
sults. An extensive general theory exists for the characteristic properties
of symmetric hyperbolic systems [21, 20]. This theory has been applied
early on to unsteady MHD flows [21] and to steady MHD flows, including
the case where the magnetic field is aligned with the flow (field-aligned
or parallel flow) [79, 59]. More complete accounts of the characteristic
theory of steady and unsteady MHD flows appeared later [71, 85, 70, 3].
In Chap. 3 we present a new derivation of this characteristic theory,
based on the Galilean invariant symmetrizable form of the conservative
MHD equations [52, 118, 7] with a source term (the right hand side term
proportional to V - B in Eq. 2.6) and using a matrix approach [70, 19].
This derivation gives insight into the structure of the MHD equations
as a system of Galilean invariant conservation laws with a constraint,
and in a simple, compact, and systematic way we recover all the various
results that are scattered throughout the literature.

Numerical simulations of MHD flows with shocks have been per-
formed for many decades, but most of the time relatively primitive nu-
merical techniques of Lax-Wendroff or Flux Corrected Transport type
were used. Numerical codes typically either were excessively diffusive or
produced spurious oscillations near discontinuities. In the mean time ro-
bust and accurate shock-capturing numerical techniques of the so-called
high-resolution type were developed in the domain of Computational
Fluid Dynamics (CFD) [90]. Only since a decade or so, some of these
new numerical methods have started to be used in MHD codes. The
MHD system has a few peculiar properties which impeded the straight
translation of the CFD techniques, but it seems that the main obstacles
have been cleared in recent work by Roe and Balsara (1996) [127], who
provided a well-behaved eigensystem decomposition of the MHD Jaco-
bian, and by Powell (1995) [118], who provided a consistent and efficient
way to deal numerically with the V - B = 0 constraint via a source term
(the right hand side term proportional to V - Bin Eq. 2.6). In Chap. 4 of
this dissertation we report on the development of the massively parallel
shock capturing MHD code PAR-MA (PARallel MAgnetohydrodynam-
ics). Starting from the proven CFD concepts present in the von Karman
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institute multi-block solver [106], and incorporating the essential con-
tributions of Roe and Powell [1], a robust and accurate high-resolution
MHD flow solver was developed. Numerical techniques similar to the one
used in this dissertation are currently being used in several application
codes [118, 162, 124, 117], but not much can be found in the litera-
ture about rigorous validation of this approach. In Chap. 5 it is shown
through careful validation studies based on characteristic theory that the
from CFD derived numerical MHD scheme produces valid results.



