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SUMMARY

Steepest descent preconditioning is considered for the recently proposed nonlinear generalized
minimal residual (N-GMRES) optimization algorithm for unconstrained nonlinear optimization. Two
steepest descent preconditioning variants are proposed. The first employs a line search, while the
second employs a predefined small step. A simple global convergence proof is provided for the N-
GMRES optimization algorithm with the first steepest descent preconditioner (with line search),
under mild standard conditions on the objective function and the line search processes. Steepest
descent preconditioning for N-GMRES optimization is also motivated by relating it to standard non-
preconditioned GMRES for linear systems in the case of a standard quadratic optimization problem
with symmetric positive definite operator. Numerical tests on a variety of model problems show
that the N-GMRES optimization algorithm is able to very significantly accelerate convergence of
stand-alone steepest descent optimization. Moreover, performance of steepest-descent preconditioned
N-GMRES is shown to be competitive with standard nonlinear conjugate gradient and limited-
memory Broyden-Fletcher-Goldfarb-Shanno methods for the model problems considered. These results
serve to theoretically and numerically establish steepest-descent preconditioned N-GMRES as a
general optimization method for unconstrained nonlinear optimization, with performance that appears
promising compared to established techniques. In addition, it is argued that the real potential of the N-
GMRES optimization framework lies in the fact that it can make use of problem-dependent nonlinear
preconditioners that are more powerful than steepest descent (or, equivalently, N-GMRES can be
used as a simple wrapper around any other iterative optimization process to seek acceleration of that
process), and this potential is illustrated with a further application example.
Copyright c© 2012 John Wiley & Sons, Ltd.
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1. Introduction

In recent work on canonical tensor approximation [1], we have proposed an algorithm that
accelerates convergence of the alternating least squares (ALS) optimization method for the
canonical tensor approximation problem considered there. The algorithm proceeds by linearly
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recombining previous iterates in a way that approximately minimizes the residual (the
gradient of the objective function), using a nonlinear generalized minimal residual (GMRES)
approach. The recombination step is followed by a line search step for globalization, and the
resulting three-step non-linear GMRES (N-GMRES) optimization algorithm is shown in [1] to
significantly speed up the convergence of ALS for the canonical tensor approximation problem
considered.

As explained in [1] (which we refer to as Paper I in what follows), for the tensor
approximation problem considered there, ALS can also be interpreted as a preconditioner
for the N-GMRES optimization algorithm. The question then arises what other types of
preconditioners can be considered for the N-GMRES optimization algorithm proposed in
Paper I, and whether there are universal preconditioning approaches that can make the N-
GMRES optimization algorithm applicable to nonlinear optimization problems more generally.
In the present paper, we propose such a universal preconditioning approach for the N-GMRES
optimization algorithm proposed in Paper I, namely, steepest descent preconditioning. We
explain how updates in the steepest descent direction can indeed naturally be used as a
preconditioning process for the N-GMRES optimization algorithm. In fact, we show that
steepest descent preconditioning can be seen as the most basic preconditioning process for the
N-GMRES optmization method, in the sense that applying N-GMRES to a quadratic objective
function with symmetric positive definite (SPD) operator, corresponds mathematically to
applying standard non-preconditioned GMRES for linear systems to the linear system
corresponding to the quadratic objective function. We propose two variants of steepest descent
preconditioning, one with line search and one with a predefined small step. We give a simple
global convergence proof for the N-GMRES optimization algorithm with our first proposed
variant of steepest descent preconditioning (with line search), under standard mild conditions
on the objective function and for line searches satisfying the Wolfe conditions. The second
preconditioning approach, without line search, is of interest because it is more efficient in
numerical tests, but there is no convergence guarantee. Numerical results are employed for a
variety of test problems demonstrating that N-GMRES optimization can significantly speed
up stand-alone steepest descent optimization. Performance of N-GMRES with steepest descent
preconditioning is compared with the standard steepest descent method and with two well-
known and widely used nonlinear optimization methods, namely the nonlinear conjugate
gradient (N-CG) method and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) method.

1.1. Numerical Methods for Unconstrained Nonlinear Optimization

We consider the following unconstrained nonlinear optimization problem with associated first-
order optimality equations:

optimization problem I:

find u∗ that minimizes f(u). (1.1)

first-order optimality equations I:

∇f(u) = g(u) = 0. (1.2)

Many of the most widely used nonlinear unconstrained optimization methods are formulated
either within the line search or within the trust region frameworks [2]. In the line search
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framework, the algorithm computes a search direction pk and searches along this direction
for a new iterate uk+1 with a lower function value, starting from the current iterate, uk. Two
prototypical choices for the search direction are provided by the steepest descent direction,
pk = −∇f(uk), and the Newton direction, pk = −(∇2f(uk))−1 ∇f(uk). The steepest descent
method is simple (it only requires computation of the gradient) and is inexpensive per step,
but its convergence can be very slow. Newton’s method has a quadratic local convergence rate,
but it is expensive per step (it requires computing the Hessian matrix and inverting it) and fast
convergence only kicks in once iterates are sufficiently close to the solution. For both methods,
the line search process is an essential ‘globalization’ mechanism that guides the algorithm to the
solution, guarding against erratic behaviour and divergence. Line search procedures typically
generate a limited number of trial step lengths until a step length is found that satisfies certain
conditions on sufficient decrease in function value and gradient size. A well-known set of line
search conditions are the so-called Wolfe conditions [2]. These line search conditions are also
often used in convergence analysis. For example, when line searches are employed that satisfy
the Wolfe conditions, global convergence can be proved for steepest descent and for Newton’s
method with suitably modified Hessian matrix (see Chapter 3 of [2]).

As an alternative to the full Newton method, so-called quasi-Newton methods attempt to
attain a superlinear convergence rate while avoiding computation of the Hessian. In place of the
true Hessian ∇2f(uk), they use an approximation that is updated after each step using gradient
information, often satisfying a secant equation. One of the most popular methods in this class
is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which updates the Hessian with a
rank-two matrix in every step. Storing the full Hessian is memory-inefficient for large problems,
and a limited-memory version of BFGS (L-BFGS) has been developed which stores only a few
vectors that implicitly represent the approximate Hessian. Another approach within the line
search framework is provided by nonlinear versions of the conjugate gradient method, which
was originally developed for solving symmetric positive definite systems of linear equations.
Like our N-GMRES algorithm, N-CG is a generalization to nonlinear optimization of a Krylov
method for linear equations. N-CG is attractive because it does not require matrix storage,
and it improves significantly on steepest descent in terms of convergence speed.

An alternative to the line search globalization mechanism is provided by the trust region
approach. This approach is not considered in this paper, but we mention it for completeness.
In the trust region approach, a quadratic model function is constructed in each step whose
behaviour near the current iterate uk is similar to that of the objective function, f(u). A
minimizer of the quadratic model is sought in a trust region about uk with radius ∆k. If this
minimizer does not produce a sufficient decrease, ∆k is reduced, until a suitable minimizer
uk+1 is found, after which the quadratic model function is computed for uk+1 in the next
step of the iterative procedure. Popular approaches for building the quadratic model function
are to use the Hessian (trust-region Newton method) or approximations to it (trust region
quasi-Newton methods).

Our new N-GMRES method uses line search as the globalization mechanism. In this paper,
we compare our N-GMRES method with the N-CG and L-BFGS line search methods, which
are two well-established algorithms for nonlinear optimization that are widely used in practice.
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1.2. The N-GMRES Optimization Algorithm from [1]

The N-GMRES optimization algorithm proposed in Paper I for accelerating ALS for canonical
tensor approximation consists of three steps that can be summarized as follows. (Fig. 1 gives a
schematic representation of the algorithm, and it is described in pseudo-code in Algorithm 1.)
In the first step, a preliminary new iterate ūi+1 is generated from the last iterate ui using a
one-step iterative update process M(.), which can be interpreted as a preconditioning process
(see Paper I and below). ALS preconditioning is used for M(.) in Paper I. In the second step,
an accelerated iterate ûi+1 is obtained by linearly recombining previous iterates in a window
of size w, (ui−w+1, . . . ,ui), using a nonlinear GMRES approach. (The details of this step will
be recalled in Section 2 below.) In the third step, a line search is performed that minimizes
objective function f(u) on a half line starting at preliminary iterate ūi+1, which was generated
in Step I, and connecting it with accelerated iterate ûi+1, which was generated in Step II, to
obtain the new iterate ui+1.

Algorithm 1: N-GMRES optimization algorithm (window size w)

Input: w initial iterates u0, . . . ,uw−1.

i = w − 1
repeat

Step I: (generate preliminary iterate by one-step update process M(.))
ūi+1 = M(ui)

Step II: (generate accelerated iterate by nonlinear GMRES step)
ûi+1 =gmres(ui−w+1, . . . ,ui; ūi+1)

Step III: (generate new iterate by line search process)
if ûi+1 − ūi+1 is a descent direction

ui+1 =linesearch(ūi+1 + β(ûi+1 − ūi+1))
else

ui+1 = ūi+1

end
i = i + 1

until convergence criterion satisfied

(Note that the w initial iterates required in Algorithm 1 can naturally be generated by
applying the algorithm with a window size that gradually increases from one up to w, starting
from a single initial guess. Also, as in [1], we perform a restart and reset the window size back
to 1 whenever ûi+1 − ūi+1 is not a descent direction.)

The second step in the N-GMRES optimization algorithm (Step II in Algorithm 1) uses the
nonlinear extension of GMRES for solving nonlinear systems of equations that was proposed
by Washio and Oosterlee in [3] in the context of nonlinear partial differential equation (PDE)
systems (see also [4] and [5] for further applications to PDE systems). It is a nonlinear extension
of the celebrated GMRES method for iteratively solving systems of linear equations [6, 7].
Washio and Oosterlee’s nonlinear extension is related to Flexible GMRES as described in [8],
and is also related to the reduced rank extrapolation method [9]. An early description of this
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type of nonlinear iterate acceleration ideas for solving nonlinear equation systems appears
in so-called Anderson mixing, see, e.g., [10, 11]. More recent applications of these ideas to
nonlinear equation systems and fixed-point problems are discussed in [10, 11]. In Paper I we
formulated a nonlinear GMRES optimization algorithm for canonical tensor decomposition
that uses this type of acceleration as one of its steps, combined with an ALS preconditioning
step and a line search for globalization. The type of nonlinear iterate acceleration in Step II of
Algorithm 1 has thus been considered several times before in the context of solving nonlinear
systems of equations, but we believe that its combination with a line search to obtain a
general preconditioned nonlinear optimization method as in Algorithm 1 (see Paper I) is new
in the optimization context. In the present paper we show how this N-GMRES optimization
approach can be applied to a broad class of sufficiently smooth nonlinear optimization problems
by using steepest descent preconditioning. We establish theoretical convergence properties for
this approach and demonstrate its effectiveness in numerical tests.
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Figure 1. Schematic representation of one iteration of the N-GMRES optimization algorithm (from
[1]), see Algorithm 1. Given previous iterations u0, u1 and u2, new iterate u3 is generated as follows. In
Step I, preliminary iterate ū3 is generated by the one-step update process M(.): ū3 = M(u2). In Step
II, the nonlinear GMRES step, accelerated iterate û3 is obtained by determining the coefficients αj in
û3 = ū3 +α0d0 +α1d1 +α2d2 such that the gradient of the objective function in û3 is approximately
minimized. In Step III, the new iterate, u3, is finally generated by a line search that minimizes the

objective function f(ū3 + β(û3 − ū3)).

The rest of this paper is structured as follows. In Section 2 we propose two types of steepest
descent preconditioners for N-GMRES Optimization Algorithm 1. We briefly recall the details
of the nonlinear GMRES optimization step, give a motivation and interpretation for steepest
descent preconditioning that relate it to non-preconditioned GMRES for SPD linear systems,
and give a simple proof for global convergence of the N-GMRES optimization algorithm using
steepest descent preconditioning with line search. In Section 3 we present extensive numerical
results for N-GMRES optimization with the two proposed steepest descent preconditioners,
applied to a variety of nonlinear optimization problems, and compare with stand-alone steepest
descent, N-CG and L-BFGS. Finally, Section 4 concludes.

2. Steepest Descent Preconditioning for N-GMRES Optimization

In this section, we first propose two variants of steepest descent preconditioning. We then
briefly recall the details of the nonlinear GMRES recombination step (Step II in Algorithm 1),
and relate N-GMRES optimization to standard non-preconditioned GMRES for linear systems
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in the case of a simple quadratic optimization problem with SPD operator. Finally, we give
a simple global convergence proof for the N-GMRES optimization algorithm using steepest
descent preconditioning with line search.

2.1. Steepest Descent Preconditioning Process

We propose a general steepest descent preconditioning process for Step I of N-GMRES
Optimization Algorithm 1 with the following two variants:

Steepest Descent Preconditioning Process:

ūi+1 = ui − β
∇f(ui)

‖∇f(ui)‖
with

option A: β = βsdls, (2.1)

option B: β = βsd = min( δ , ‖∇f(ui)‖ ). (2.2)

For Option A, βsdls is the step length obtained by a line search procedure. For definiteness,
we consider a line search procedure that satisfies the Wolfe conditions (see below). We refer to
the steepest descent preconditioning process with line search (2.1) as the sdls preconditioner.
For Option B, we predefine the step βsd as the minimum of a small positive constant δ, and
the norm of the gradient. In the numerical results to be presented further on in the paper, we
use δ = 10−4, except where noted. We refer to the steepest descent preconditioning process
with predefined step βsd (2.2) as the sd preconditioner. These two Options are quite different,
and some discussion is in order.

Preconditioning process A can be employed as a stand-alone optimization method (it can
converge by itself), and N-GMRES can be considered as a wrapper that accelerates this
stand-alone process. We will show below that N-GMRES with preconditioning process A has
strong convergence properties, but it may be expensive because the line search may require
a significant number of function and gradient (f/g) evaluations. However, the situation is
very different for preconditioning process B. Here, no additional f/g evaluations are required,
but convergence appears questionable. It is clear that preconditioning process B cannot be
used as a stand-alone optimization algorithm; in most cases it would not converge. It can,
however, still be used as a preconditioning process for N-GMRES. As is well-known and will
be further illustrated below, preconditioners used by GMRES for linear systems do not need
to be convergent by themselves, and this suggests that it may be interesting to consider
this for N-GMRES optimization as well. As will be motivated further below, the role of
the N-GMRES preconditioning process is to provide new ‘useful’ directions for the nonlinear
generalization of the Krylov space, and the iteration can be driven to convergence by the N-
GMRES minimization, even if the preconditioner is not convergent by itself. However, for this
to happen in the three-step N-GMRES optimization algorithm with preconditioning process
B, it is required that ūi+1 eventually approaches ui and the step length βsd approaches 0. For
this reason, we select βsd = ‖∇f(ui)‖ as soon as ‖∇f(ui)‖ ≤ δ. The initial step length βsd

is chosen to be not larger than a small constant because the linear case (see below) suggests
that a small step is sufficient to provide a new direction for the Krylov space, and because the
minimization of the residual is based on a linearization argument (see also below), and small
steps tend to lead to small linearization errors.
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2.2. N-GMRES Recombination Step

Before relating steepest-descent preconditioned N-GMRES to non-preconditioned GMRES for
linear systems, we first recall from [1] some details of the N-GMRES recombination step,
Step II in Algorithm 1. In this step, we find an accelerated iterate ûi+1 that is obtained by
recombining previous iterates as follows:

ûi+1 = ūi+1 +

i
∑

j=0

αj (ūi+1 − uj). (2.3)

The unknown coefficients αj are determined by the N-GMRES algorithm in such a way that the
two-norm of the gradient of the objective function evaluated at the accelerated iterate is small,
in the following sense. In general, g(.) is a nonlinear function of the αj , and linearization is
used to allow for inexpensive computation of coefficients αj that may approximately minimize
‖g(ûi+1)‖2. Using the approximations

g(ûi+1) ≈ g(ūi+1) +

i
∑

j=0

∂g

∂u

∣

∣

∣

∣

ūi+1

αj (ūi+1 − uj)

≈ g(ūi+1) +

i
∑

j=0

αj (g(ūi+1) − g(uj)) (2.4)

one arrives at minimization problem

find coefficients (α0, . . . , αi) that minimize

‖g(ūi+1) +

i
∑

j=0

αj (g(ūi+1) − g(uj))‖2. (2.5)

This is a standard least-squares problem that can be solved, for example, by using the normal
equations, as explained in [3, 1]. (In this paper, we solve the least-squares problem as described
in [1].) In a windowed implementation with window size w, the memory cost incurred by N-
GMRES acceleration is the storage of w previous approximations and residuals. The dominant
parts of the CPU cost for each acceleration step are the cost of building and solving the least-
squares system (which can be done in approximately 2nw flops if the normal equations are used
and some previous inner products are stored, see [3]), and nw flops to compute the accelerated
iterate. For problems with expensive objective functions, this cost is often negligible compared
to the cost of the f/g evaluations in the line searches [1]. An alternative to the normal equations
approach would be to use QR decomposition, which has better stability properties. As is
explained in [11] for a similar algorithm applied to fixed-point iterations, computations can be
organized such that information can be reused from previous steps: the QR factorization in
step i can efficiently be obtained from the QR factorization in step i− 1 in O(nw) operations,
using standard QR factor-updating techniques.

2.3. Motivation and Interpretation for Steepest Descent Preconditioning

Consider a standard quadratic minimization problem with objective function

f(u) =
1

2
uT Au− bTu, (2.6)
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where A is SPD. It is well-known that its unique minimizer satisfies Au = b. Now consider
applying the N-GMRES optimization algorithm with steepest descent preconditioner to the
quadratic minimization problem. The gradient of f at approximation ui is given by

∇f(ui) = Aui − b = −ri with ri = b − Aui, (2.7)

where ri is defined as the residual of the linear system Au = b in ui. N-GMRES steepest
descent preconditioner (2.1)-(2.2) then reduces to the form

ūi+1 = ui + β
ri

‖ri‖
, (2.8)

where ūi+1 is the preliminary new iterate, see Fig. 1, and it can easily be shown that this
corresponds to the stationary iterative method that generates the Krylov space in non-
preconditioned linear GMRES applied to Au = b. We now briefly show this because it provides
further insight (recalling parts of the discussion in [3, 1]). (Note also that GMRES reduces to
the MINRES algorithm in the case of SPD matrices, see, for example, [6].)

We first explain how preconditioned GMRES for Au = b works. Consider so-called
stationary iterative methods for Au = b of the following form:

ui+1 = ui + M−1 ri. (2.9)

Here, matrix M is an approximation of A that has an easily computable inverse, i.e.,
M−1 ≈ A−1. For example, M can be chosen to correspond to Gauss-Seidel or Jacobi iteration,
or to a multigrid cycle [3].

Consider a sequence of iterates u0, . . . ,ui generated by update formula (2.9), starting from
some initial guess u0. Note that the residuals of these iterates are related as

ri = b− Aui = (I − AM−1) ri−1 = (I − AM−1)i r0. (2.10)

This motivates the definition of the following vector spaces:

V1,i+1 = span{r0, . . . , ri},
V2,i+1 = span{r0,AM−1 r0, (AM−1)2 r0}, . . . , (AM−1)i r0}

= Ki+1(AM−1, r0),

V3,i+1 = span{M (u1 − u0),M (u2 − u1), . . . ,M (ui+1 − ui)},
V4,i+1 = span{M (ui+1 − u0),M (ui+1 − u1), . . . ,M (ui+1 − ui)}.

Vector space V2,i+1 is the so-called Krylov space Ki+1(AM−1, r0) of order i +1, generated by
matrix AM−1 and vector r0. It is easy to see that the vector spaces defined above are equal
[3]:

Lemma 2.1
V1,i+1 = V2,i+1 = V3,i+1 = V4,i+1.

Proof. First, V1,i+1 = V2,i+1 by (2.10), which directly shows that rj ∈ V2,i+1 for all j, and
(AM−1)j r0 ∈ V1,i+1 for all j follows by recursion.
Second, V1,i+1 = V3,i+1 because M (ui+1 − ui) = ri, by (2.9).

Third, V3,i+1 = V4,i+1 because, for k < i + 1, ui+1 − uk =
∑i+1

j=k+1
(uj − uj−1), and

uk − uk−1 = (ui+1 − uk−1) − (ui+1 − uk).
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Expression (2.9) shows that M (ui+1 − ui) ∈ Ki+1(AM−1, r0). The GMRES procedure can
be seen as a way to accelerate stationary iterative method (2.9), by recombining iterates (or,
equivalently, by reusing residuals). In particular, we seek a better approximation ûi+1, with
M (ûi+1 −ui) in the Krylov space Ki+1(AM−1, r0), such that r̂i+1 = b−A ûi+1 has minimal
two-norm. In other words, we seek optimal coefficients βj in

M (ûi+1 − ui) =

i
∑

j=0

βj M (ui+1 − uj),

and it is easy to show that this corresponds to seeking optimal coefficients αj in

ûi+1 = ui+1 +

i
∑

j=0

αj (ui+1 − uj), (2.11)

such that ‖r̂i+1‖2 is minimized (which leads to a small least-squares problem equivalent to
(2.5)). Note that V1,i+1 and V2,i+1 do not easily generalize to the nonlinear case, but the image
of V4,i+1 under M−1, span{ui+1−u0,ui+1−u1, . . . ,ui+1−ui}, does generalize naturally and is
taken as the ‘generalized Krylov space’ that is used to seek the approximation in the nonlinear
case.

Up to this point, we have presented GMRES as a way to accelerate one-step stationary
iterative method (2.9). A more customary way, however, to see GMRES is in terms of
preconditioning. The approach described above reduces to ‘non-preconditioned’ GMRES when
one sets M = I. Applying non-preconditioned GMRES to the preconditioned linear equation
system AM−1(Mu) = b also results in the expressions for preconditioned GMRES derived
above. In this viewpoint, the matrix M−1 is called the preconditioning matrix, because its
role is viewed as to pre-condition the spectrum of the linear system operator such that the
(non-preconditioned) GMRES method applied to (AM−1)y = b becomes more effective. It is
also sometimes said that the stationary iterative process preconditions GMRES (for example,
Gauss-Seidel, Jacobi or multigrid can precondition GMRES [3]). We can summarize that the
role of the stationary iterative method is to generate preconditioned residuals that build the
Krylov space. (Note that considering right-preconditioning [7] leads to the desired equivalence
here, similar as in the case of Flexible GMRES [8], where right-preconditioning enables the
use of preconditioners that vary from step to step, as in the case of N-GMRES.)

In the presentation above, all iterates uj for j = 0, . . . , i (for instance, in the right-hand
side of (2.11)) refer to the unaccelerated iterates generated by stationary iterative method
(2.9). However, the formulas remain valid when accelerated iterates are used instead; this does
change the values of the coefficients αj , but leads to the same accelerated iterates [3]. This
is so because the Krylov spaces generated in the two cases are identical due to linearity (see
(2.10)), and consequently GMRES selects the same optimal improved iterate.

This brings us to the point where we can compare steepest-descent preconditioned N-
GMRES applied to quadratic objective function (2.6) with SPD operator A, to non-
preconditioned linear GMRES applied to Au = b. Assume we have w previous iterates ui

and residuals ri. Stationary iterative process (2.9) without preconditioner (M = I) would
add a vector to the Krylov space which has the same direction as the vector that would
be added to it by the steepest descent preconditioning process (2.8). This means that the
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PRECONDITIONING FOR NONLINEAR GMRES OPTIMIZATION 9

accelerated iterate ûi+1 produced by N-GMRES with steepest descent preconditioner applied
to quadratic objective function (2.6) with SPD operator A is the same as the accelerated
iterate ûi+1 produced by linear GMRES with identity preconditioner applied to Au = b. This
motivates our proposal to use steepest descent preconditioning as the natural and most basic
preconditioning process for the N-GMRES optimization algorithm applied to general nonlinear
optimization problems.

Note that, in the case of linear systems, the efficiency of GMRES as an acceleration technique
for stationary iterative methods can be understood in terms of how optimal polynomials
can damp modes that are slow to converge [3, 7]. In the case of N-GMRES for nonlinear
optimization, if the approximation is close to a stationary point and the nonlinear residual
vector function g(.) can be approximated well by linearization, then it can be expected that
the use of the subspace span{ui+1 − u0,ui+1 − u1, . . . ,ui+1 − ui} for acceleration may give
efficiency similar to the linear case [3]. Also, restarting N-GMRES is analogous to restarting
GMRES [7]. Note finally that the above also explains why a small step is allowed in the sd
preconditioner of (2.2) (basically, in the linear case, the size of the coefficient does not matter
for the Krylov space, in exact arithmetic), and the linearization argument of (2.4) indicates
that a small step may be beneficial.

2.4. Convergence Theory for N-GMRES Optimization with Steepest Descent Preconditioning

We now formulate and prove a convergence theorem for N-GMRES Optimization Algorithm 1
using steepest descent preconditioning with line search (2.1). We assume that all line searches
provide step lengths that satisfy the Wolfe conditions [2]:

sufficient decrease condition:

f(ui + βipi) ≤ f(ui) + c1 βi ∇f(ui)
T pi, (2.12)

curvature condition:

∇f(ui + βipi)
T pi ≥ c2 ∇f(ui)

Tpi, (2.13)

with 0 < c1 < c2 < 1. Condition (2.12) ensures that large steps are taken only if they lead
to a proportionally large decrease in f . Condition (2.13) ensures that a step is taken that is
large enough to sufficiently increase the gradient of f in the line search direction (make it
less negative). Global convergence (in the sense of convergence to a stationary point from any
initial guess) can then be proved easily using standard approaches [12, 2].

Theorem 2.2 (Global convergence of N-GMRES optimization algorithm)
Consider N-GMRES Optimization Algorithm 1 with steepest descent line search
preconditioning (2.1) for Optimization Problem I, and assume that all line search solutions
satisfy the Wolfe conditions, (2.12) and (2.13). Assume that objective function f is bounded
below in R

n and that f is continuously differentiable in an open set N containing the level
set L = {u : f(u) ≤ f(u0)}, where u0 is the starting point of the iteration. Assume also that
the gradient ∇f is Lipschitz continuous on N , that is, there exists a constant L such that
‖∇f(u) − ∇f(û)‖ ≤ L‖u − û‖ for all u, û ∈ N . Then the sequence of N-GMRES iterates
{u0,u1, . . .} is convergent to a fixed point of Optimization Problem I in the sense that

lim
i→∞

‖∇f(ui)‖ = 0. (2.14)
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Proof. Consider the sequence {v0,v1, . . .} formed by the iterates u0, ū1, u1, ū2, u2, . . .
of Algorithm I, but with ūi removed if ûi − ūi is not a descent direction in Step III of the
algorithm (ūi equals ui in this case). Then all iterates vi are of the form vi = vi−1 +βi−1pi−1,
with pi−1 a descent direction and βi−1 such that the Wolfe conditions are satisfied. According
to Theorem 3.2 of [2] (p. 38, Zoutendijk’s Theorem), we have that

∞
∑

i=0

cos2 θi ‖∇f(vi)‖2 < ∞, (2.15)

with

cos θi =
−∇f(vi)

T pi

‖∇f(vi)‖ ‖pi‖
, (2.16)

which implies that

lim
i→∞

cos2 θi ‖∇f(vi)‖2 = 0. (2.17)

Consider the subsequence {‖∇f(ui)‖} of {‖∇f(vi)‖}. Since all the ui are followed by a steepest
descent step in the algorithm, the θi corresponding to all the elements of {‖∇f(ui)‖} satisfy
cos θi = 1. Therefore, it follows from (2.17) that limi→∞ ‖∇f(ui)‖ = 0, which concludes the
proof.

Note that the notion of convergence (2.14) we prove in Theorem 2.2 for N-GMRES
optimization with steepest descent line search preconditioning is stronger than the type of
convergence that can be proved for some N-CG methods [12, 2], namely,

lim
i→∞

inf ‖∇f(ui)‖ = 0. (2.18)

Note also that in Theorem 2.2 we do not prove that sequence {‖∇f(ūi)‖} converges to 0. It
may be possible to prove this under the stated conditions by using more advanced tools, but
it is also possible that stronger conditions are required to guarantee that {‖∇f(ūi)‖} → 0. In
any case, we are able to prove the strong global convergence result (2.14) for the iterates ui of
N-GMRES optimization with steepest descent line search preconditioning under the conditions
of Theorem 2.2: sequence {‖∇f(ui)‖} converges to 0.

3. Numerical Results

We now present extensive numerical results for the N-GMRES optimization algorithm with
steepest descent preconditioners (2.1) and (2.2), compared with stand-alone steepest descent
optimization, N-CG and L-BFGS.

In all tests, we utilize the Moré-Thuente line search method [13] and the N-CG and L-
BFGS optimization methods as implemented in the Poblano toolbox for matlab [14]. For all
experiments, the Moré-Thuente line search parameters used were as follows: function value
tolerance c1 = 10−4 for (2.12), gradient norm tolerance c2 = 10−2 for (2.13), starting search
step length β = 1, and a maximum of 20 f/g evaluations are used. These values were also
used for the N-CG and L-BFGS comparison runs. Note that the Moré-Thuente line search
is designed to compute a line search step length that satisfies the Wolfe conditions. We use
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the N-CG variant with Polak-Ribière update formula, and the two-loop recursion version of
L-BFGS [2]. We normally choose the N-GMRES window size w equal to 20, which is confirmed
to be a good choice in numerical tests described below. The L-BFGS window size is chosen
equal to 5 (we found that larger window sizes tend to harm L-BFGS performance for the tests
we considered). All initial guesses are determined uniformly randomly with components in
the interval [0, 1], and when we compare different methods they are given the same random
initial guess. All numerical tests were run on a laptop with a dual-core 2.53 GHz Intel Core i5
processor and 4GB of 1067 MHz DDR3 memory. matlab version 7.11.0.584 (R2010b) 64-bit
(maci64) was used for all tests.

3.1. Test Problem Description

We first describe the seven test problems we consider. In what follows, all vectors are chosen
in R

n, and all matrices in R
n×n.

Problem A. (Quadratic objective function with spd diagonal matrix.)

f(u) =
1

2
(u − u∗)T D (u − u∗) + 1, (3.1)

with D = diag(1, 2, . . . , n).

This problem has a unique minimizer u∗ in which f∗ = f(u∗) = 1. We choose u∗ = (1, . . . , 1).
Note that g(u) = D(u−u∗), and the condition number of D is given by κ = n. It is well-known
that for problems of this type large condition numbers tend to lead to slow convergence of the
steepest descent method due to a zig-zag effect. Problem A can be used to show how methods
like N-CG and N-GMRES improve over steepest descent and mitigate this zig-zag effect.

Problem B. (Problem A with paraboloid coordinate transformation.)

f(u) =
1

2
y(u − u∗)T D y(u − u∗) + 1, (3.2)

with D = diag(1, 2, . . . , n) and y(x) given by

y1(x) = x1 and yi(x) = xi − 10 x2
1 (i = 2, . . . , n).

This modification of Problem A still has a unique minimizer u∗ in which f∗ = f(u∗) = 1.
We choose u∗ = (1, . . . , 1). The gradient of f(u) is given by g(u) = D y(u − u∗) − 20 (u1 −
u∗

1) (
∑n

j=2
(D y(u−u∗))j) [1, 0, . . . , 0]T . This modification of Problem A increases nonlinearity

(the objective function is now quartic in u) and changes the level surfaces from ellipsoids into
parabolically skewed ellipsoids. As such, the problem is more difficult for nonlinear optimization
methods. For n = 2, the level curves are modified from elliptic to ‘banana-shaped’. In fact, the
objective function of Problem B is a multi-dimensional generalization of Rosenbrock’s ‘banana’
function.

Problem C. (Problem B with a random non-diagonal matrix with condition
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number κ = n.)

f(u) =
1

2
y(u − u∗)T T y(u − u∗) + 1, (3.3)

with T = Q diag(1, 2, . . . , n)QT , where Q is a

random orthogonal matrix and y(x) is given by

y1(x) = x1 and yi(x) = xi − 10 x2
1 (i = 2, . . . , n).

This modification of Problem B still has a unique minimizer u∗ in which f∗ = f(u∗) = 1.
We choose u∗ = (1, . . . , 1). The gradient of f(u) is given by g(u) = T y(u − u∗) − 20 (u1 −
u∗

1) (
∑n

j=2
(T y(u−u∗))j) [1, 0, . . . , 0]T . The random matrix Q is the Q factor obtained from a

QR-factorization of a random matrix with elements uniformly drawn from the interval [0, 1].
This modification of Problem B introduces nonlinear ‘mixing’ of the coordinates (cross-terms)
and further increases the difficulty of the problem.

Problem D. (Extended Rosenbrock function, problem (21) from [15].)

f(u) =
1

2

n
∑

j=1

t2j (u), with n even and

tj = 10 (uj+1 − u2
j) (j odd),

tj = 1 − uj−1 (j even).

Note that g(u) can easily be computed using gk(u) =
∑n

j=1
tj ∂tj/∂uk (k = 1, . . . , n).

Problem E. (Extended Powell singular function, problem (22) from [15].)

f(u) =
1

2

n
∑

j=1

t2j(u), with n a multiple of 4 and (3.4)

t4i−3 = u4i−3 + 10 u4i−2,

t4i−2 =
√

5 (u4i−1 − u4i),

t4i−1 = (u4i−2 − 2 u4i−1)
2,

t4i =
√

10 (u4i−3 − u4i)
2 for i = 1, . . . , n/4.

Problem F. (Trigonometric function, problem (26) from [15].)

f(u) =
1

2

n
∑

j=1

t2j(u), with

tj = n −
(

n
∑

i=1

cosui

)

− j (1 − cosuj) − sinuj .
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Problem G. (Penalty function I, problem (23) from [15].)

f(u) =
1

2









n
∑

j=1

t2j (u)



+ t2n+1(u)



 , with

tj =
√

10−5 (uj − 1) (j = 1, . . . , n),

tn+1 =

(

n
∑

i=1

u2
i

)

− 0.25.
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Figure 2. Problem A (n = 100). Convergence histories of the 10-logarithms of |f(ui) − f∗| and
‖g(ui)‖ as a function of iterations and f/g evaluations. N-GMRES-sdls is the N-GMRES optimization
algorithm using steepest descent preconditioning with line search, N-GMRES-sd is the N-GMRES
optimization algorithm using steepest descent preconditioning with predefined step, N-CG is the
Polak-Ribière nonlinear conjugate gradient method, L-BFGS is the limited-memory Broyden-Fletcher-

Goldfarb-Shanno method, and sdls is the stand-alone steepest descent method with line search.

3.2. Numerical Results for Problems A–C

Before presenting average performance comparisons for the different methods applied to
Problems A–C in Table I, we first present some convergence plots for instances of Problems

Copyright c© 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2012; 00:0–0
Prepared using nlaauth.cls



14 HANS DE STERCK

0 200 400 600 800 1000

10
−15

10
−10

10
−5

10
0

(a) convergence to f*, N−GMRES with sd preconditioner

f and g evaluations

 

 

1
2
3
5
10
15
20
30
40

0 500 1000 1500

10
−15

10
−10

10
−5

10
0

(b) gradient norm convergence, N−GMRES with sd preconditioner

f and g evaluations

 

 

1
2
3
5
10
15
20
30
40

0 200 400 600 800 1000

10
−15

10
−10

10
−5

10
0

(c) convergence to f*, N−GMRES with sdls preconditioner

f and g evaluations

 

 

1
2
3
5
10
15
20
30
40

0 500 1000 1500

10
−15

10
−10

10
−5

10
0

(d) gradient norm convergence, N−GMRES with sdls preconditioner

f and g evaluations

 

 

1
2
3
5
10
15
20
30
40

Figure 3. Problem A (n = 100). Effect of varying window size w on |f(ui)−f∗| and ‖g(ui)‖ convergence
for N-GMRES-sdls and N-GMRES-sd optimization as a function of f/g evaluations. Window size
w = 20 emerges as a suitable choice, leading to rapid convergence. These results give some general
indication that, if sufficient memory is available, w = 20 may be a good choice. However, if memory

is scarce, w = 3 already provides good results, especially for N-GMRES-sd.

A–C. Fig. 2 shows results for an instance of Problem A. (To make the plots less dense and avoid
cluttered plotting symbols, we only plot data points corresponding to every fifth iteration.)
We see that stand-alone steepest descent with line search (sdls) converges slowly, which is
expected because the condition number of matrix D is κ = 100. Both N-GMRES optimization
using steepest descent preconditioning with line search (2.1) (N-GMRES-sdls) and N-GMRES
optimization using steepest descent preconditioning with predefined step (2.2) (N-GMRES-
sd) are significantly faster than stand-alone sdls, in terms of iterations and f/g evaluations,
confirming that the N-GMRES acceleration mechanism is effective, and steepest descent is
an effective preconditioner for it. As could be expected, the preconditioning line searches
of N-GMRES-sdls add significantly to its f/g evaluation cost, and N-GMRES-sd is more
effective. N-GMRES accelerates steepest descent up to a point where performance becomes
competitive with N-CG and L-BFGS. It is important to note that convergence profiles like the
ones presented in Fig. 2 tend to show significant variation depending on the random initial
guess. The instances presented are arbitrary and not hand-picked with a special purpose in
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Figure 4. Problem C (n = 100). Convergence comparison.

mind (they simply correspond to random seed 0 in our matlab code) and we show them
because they do provide interesting illustrations and show patterns that we have verified to be
quite general over many random instances. However, they cannot reliably be used to conclude
on detailed relative performance of various methods. For this purpose, we provide tables below
that compare performance averaged over a set of random trials.

Fig. 3 shows the effect of varying the window size w on |f(ui)−f∗| and ‖g(ui)‖ convergence
for N-GMRES-sdls and N-GMRES-sd optimization as a function of f/g evaluations, for an
instance of Problem A. Window size w = 20 emerges as a suitable choice if sufficient memory
is available, leading to rapid convergence. However, window sizes as small as w = 3 already
provide good results, especially for N-GMRES-sd. This indicates that satisfactory results can
be obtained with small windows, which may be useful if memory is scarce. We use window
size w = 20 for all numerical results in this paper.

Fig. 4 shows results for an instance of Problem C, which is a modification of Problem A
introducing a nonlinear coordinate transformation (as in Problem B) and random nonlinear
mixing of the coordinate directions. The figure shows that stand-alone sdls is very slow,
confirms that N-GMRES-sdls and N-GMRES-sd significantly speed up steepest descent, and
shows that N-GMRES-sd and L-BFGS perform much better than N-CG for this problem.
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problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS
A n=100 242 111 84 73
A n=200 406 171 127 104
B n=100 1200 395 198 170
B n=200 1338 752 606 321
C n=100 926(1) 443 13156(7) 151
C n=200 1447 461 26861(9) 204

Table I. Average number of f/g evaluations needed to reach |f(ui) − f∗| < 10−6 for 10 instances of
Problems A–C with random initial guess and with different sizes. Numbers in brackets give the number
of random trials (out of 10) that did not converge to the required tolerance within 1500 iterations (if

any).

Table I confirms the trends that were already present in the specific instances of test
problems A and C that were shown in Figures 2 and 4. The table gives the average number
of f/g evaluations that were needed to reach |f(ui) − f∗| < 10−6 for 10 random instances of
Problems A–C with different sizes. For Problems A and B, N-GMRES-sdls and N-GMRES-sd
consistently give f/g evaluation counts that are of the same order of magnitude as N-CG.
N-GMRES-sd comes close to being competitive with N-CG. L-BFGS is the fastest method for
all problems in Table I. For the more difficult Problem C, both N-GMRES-sdls, N-GMRES-sd
and L-BFGS are significantly faster than N-CG, which appears to have convergence difficulties
for this problem. N-GMRES-sd is clearly faster than N-GMRES-sdls for all tests.

In these comparisons, it is also interesting to consider the computational cost per iteration
in addition to the cost of the f/g evaluations. The cost of the f/g evaluations may dominate in
many cases, but sometimes the other costs are not negligible. As discussed before, N-GMRES
requires approximately 3nw operations per step to solve the least-squares problem and update
the solution, L-BFGS requires approximately 5nw operations per step (the two-loop recursion
version, see [2]), and N-CG requires approximately 4n operations. We use somewhat larger
window size for N-GMRES than for L-BFGS, and their additional costs per iteration are
expected to be comparable (within a factor of 2 or so). The additional cost per N-CG iteration
is expected to be about 10 times smaller.

3.3. Numerical Results for Problems D–G

Figure 5 gives convergence plots for a single instance of Problem D. It confirms the observations
from Figures 2 and 4: for this standard test problem from [15], stand-alone sdls again is
very slow, and N-GMRES-sdls and N-GMRES-sd significantly speed up steepest descent
convergence. N-GMRES-sdls and N-GMRES-sd have iteration and f/g counts that are of the
same order of magnitude as N-CG and L-BFGS, and in particular N-GMRES-sd is competitive
with N-CG and L-BFGS. Convergence plots for instances of Problems E–G show similar
behaviour and are not presented.

Figure 6 gives convergence plots for an instance of Problem D investigating the effect of
varying the steepest descent parameter δ in βsd of (2.2) for N-GMRES-sd optimization. It can
be seen that there is a rather broad range about our choice of δ = 10−4 that appears suitable,
but choosing δ too large (like 1) or too small (like 10−7) leads to much decreased performance.
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Figure 5. Problem D (n = 1000). Convergence comparison.

We have found δ = 10−4 to be a suitable choice for the test problems reported on in this
paper.

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS
D n=500 525 172 222 166
D n=1,000 445 211 223 170
D n=50,000 461 251 236 216
D n=100,000 661 220 237 243
E n=100 294 259 243 358
E n=200 317 243 240 394
E n=50,000 832 494 496 1592
E n=100,000 933 650 556 1752

Table II. Average number of f/g evaluations needed to reach |f(ui) − f∗| < 10−6 for 10 instances
of Problems D and E with random initial guess and with different sizes. Numbers in brackets give
the number of random trials (out of 10) that did not converge to the required tolerance within 500

iterations (if any).
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Figure 6. Problem D (n = 1000). Effect of varying steepest descent parameter δ on |f(ui) − f∗|
convergence for N-GMRES-sd optimization as a function of f/g evaluations. Steepest descent

parameter δ = 10−4 emerges as a suitable choice, leading to rapid convergence.

Tables II and III on f/g evaluation counts for Problems E–G again confirm the trends that
were observed before. N-GMRES-sdls and N-GMRES-sd give f/g evaluation counts that are
of the same order of magnitude as N-CG and L-BFGS, and N-GMRES-sd in particular is
competitive with N-CG and L-BFGS. Table II includes some tests with larger problem size.

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS
F n=200 140 102(1) 102 92
F n=500 206(1) 175(1) 135 118
G n=100 1008(2) 152 181 358
G n=200 629(1) 181 137 240

Table III. Average number of f/g evaluations needed to reach |f(ui) − f∗| < 10−6 for 10 instances
of Problems F and G with random initial guess and with different sizes. Numbers in brackets give
the number of random trials (out of 10) that did not converge to the required tolerance within 500

iterations (if any).

3.4. Numerical Results for a Tensor Optimization Problem

We conclude this section with some numerical results for a difficult tensor optimization
problem, in particular, the canonical tensor approximation problem of Figures 1.2 and 1.3 in
Paper I ([1]). In this problem, a rank-three canonical tensor approximation (with 450 variables)
is sought for a three-way data tensor of size 50×50×50. The data tensor is generated starting
from a canonical tensor with specified rank and random factor matrices that are modified to
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Figure 7. Convergence histories of the 10-logarithm of |f(ui) − f∗| as a function of f/g evaluations,
for the canonical tensor approximation problem of Figures 1.2 and 1.3 in [1]. Panel (a) shows that
stand-alone sdls is very slow for this problem, and N-GMRES-sdls and N-GMRES-sd significantly
speed up steepest descent. However, for this difficult problem, it is beneficial to use a more powerful
nonlinear preconditioner. Using the ALS preconditioner in stand-alone fashion already provides faster
convergence than N-GMRES-sdls and N-GMRES-sd. The zoomed view in Panel (b) shows that N-
CG and L-BFGS are faster than stand-alone ALS when high accuracy is required, but N-GMRES
preconditioned with the powerful ALS preconditioner is the fastest method by far, beating N-CG
and L-BFGS by a factor of 2 to 3. This illustrates that the real power of the N-GMRES optimization
algorithm may lie in its ability to employ powerful problem-dependent nonlinear preconditioners (ALS

in this case).
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have pre-specified column collinearity, and noise is added. This is a standard canonical tensor
decomposition test problem [16]. See Paper I for a full description of the problem and for
pointers to background information on tensor decomposition.

This problem is interesting because it illustrates how N-GMRES allows for the use of
powerful problem-specific nonlinear preconditioners (M(.) in Step I of Algorithm 1), as an
alternative to the generic steepest-descent based preconditioners that are the main topic of this
paper. In particular, as in [1], we use the alternating least squares (ALS) optimization method
for the canonical tensor approximation problem as the nonlinear preconditioning process. It is
also interesting to note that ALS is in fact a nonlinear block Gauss-Seidel iteration for the first-
order optimality equations of the canonical tensor optimization problem, and as such its use in
N-GMRES constitutes a direct generalization to the nonlinear case of GMRES preconditioned
by Gauss-Seidel.

Panel (a) of Fig. 7 shows how stand-alone steepest descent (sdls) is very slow for this tensor
decomposition problem: it requires more than 30,000 f/g evaluations. (The tensor calculations
are performed in matlab using the Tensor Toolbox [17]. For this problem, we use δ = 10−3

in (2.2).) The GMRES-sdls and N-GMRES-sd convergence profiles confirm once more one of
the main messages of this paper: steepest-descent preconditioned N-GMRES speeds up stand-
alone steepest descent very significantly. However, steepest descent preconditioning (which we
have argued is in some sense equivalent to non-preconditioned GMRES for linear systems)
is not powerful enough for this difficult problem, and a more advanced preconditioner is
required. Indeed, Panel (a) of Fig. 7 shows that the stand-alone ALS process is already more
efficient than steepest-descent preconditioned N-GMRES. Panel (b) indicates, however, that
N-GMRES preconditioned by ALS is a very effective method for this problem: it speeds up
ALS very signficantly, and is much faster than N-CG and L-BFGS, by a factor of 2 to 3.
(Panel (b) of Fig. 7 illustrates the findings from extensive tests comparing ALS, N-CG and
ALS-preconditioned N-GMRES that were reported in Paper I and [16].)

4. Conclusion

In this paper, we have proposed and studied steepest descent preconditioning as a
universal preconditioning approach for the N-GMRES optimization algorithm that we
recently introduced in the context of a canonical tensor approximation problem and ALS
preconditioning [1] (Paper I). We have considered two steepest descent preconditioning process
variants, one with a line search, and the other one with a predefined step length. The first
variant is significant because we showed that it leads to a globally convergent optimization
method, but the second variant proved more efficient in numerical tests, with no apparent
degradation in convergence robustness. Numerical tests showed that the two steepest-descent
preconditioned N-GMRES methods both speed up stand-alone steepest descent optimization
very significantly, and are competitive with standard N-CG and L-BFGS methods, for a variety
of test problems. These results serve to theoretically and numerically establish steepest-descent
preconditioned N-GMRES as a general optimization method for unconstrained nonlinear
optimization, with performance that appears promising compared to established techniques.

However, we argue that the real potential of the N-GMRES optimization framework lies in
the fact that it can use problem-dependent nonlinear preconditioners that are more powerful
than steepest descent. Preconditioning of N-CG in the form of (linear) variable transformations
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is an area of active research [18]. However, it is interesting to note that our N-GMRES
optimization framework naturally allows for a more general type of preconditioning: any
nonlinear optimization process M(.) can potentially be used as a nonlinear preconditioner
in the framework, or, equivalently, N-GMRES can be used as a simple wrapper around
any other iterative optimization process M(.) to seek acceleration of that process. The
potential of this approach was illustrated by applying N-GMRES with nonlinear block Gauss-
Seidel preconditioning to a difficult tensor optimization problem (as in Paper I), significantly
outperforming N-CG and L-BFGS.

In the case of GMRES for linear systems, non-preconditioned GMRES (or: GMRES with the
identity preconditioner) is often just a starting point. For many difficult problems it converges
too slowly, and there is a very extensive and ever expanding research literature on developing
advanced problem-dependent preconditioners that in many cases speed up convergence very
significantly. In the same way, the present paper is likely not more than a starting point in
theoretically and numerically establishing the N-GMRES optimization method with general
steepest descent preconditioning process. As the results shown in Fig. 7 already indicate, we
expect that the real power of the N-GMRES optimization framework will turn out to lie in
its ability to use powerful problem-dependent nonlinear preconditioners. This suggests that
further exploring N-GMRES optimization with advanced preconditioners may lead to efficient
numerical methods for a variety of nonlinear optimization problems.
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