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Abstract. A new notion of coneigenvalue was introduced by Ikramov in [On pseudo-eigenvalues

and singular numbers of a complex square matrix, (in Russian), Zap. Nauchn. Semin. POMI 334

(2006), 111-120]. This paper presents some majorization inequalities for coneigenvalues, which extend

some classical majorization relations for eigenvalues and singular values, and may serve as a basis

for further investigations in this area.
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1. Preliminaries. The notation Mn(C) means the set of square n× n complex

matrices. For A ∈ Mn(C), AT stands for the transpose of A, A∗ is the transpose

conjugate of A, i.e., A∗ = A
T

= AT ; the real part (or Hermitian part) of A is denoted

by Re(A) = A+A∗

2 ; A is normal if A∗A = AA∗ and is Hermitian if A = A∗. Let λ(A),

σ(A) denote the eigenvalue vector, singular value vector of A, respectively, i.e.,

λ(A) = (λ1(A), λ2(A), . . . , λn(A)),

σ(A) = (σ1(A), σ2(A), . . . , σn(A)),

though sometimes λ(A) (resp. σ(A)) is also used to denote the set of eigenvalues

(resp. singular values) of A.

We begin with a brief review of the weak majorization and weak log-majorization

orders (see [8]). For a real vector x = (x1, x2, . . . , xn), let x↓ be the vector obtained

by rearranging the coordinates of x in decreasing order. Thus x↓
1 ≥ x↓

2 ≥ . . . ≥ x↓
n.

Definition 1.1. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two real

vectors. Then we say that x is weakly majorized by y, denoted by x ≺w y (the same

as y ≻w x), if
∑k

j=1 x↓
j ≤∑k

j=1 y↓
j for all k: 1 ≤ k ≤ n. We say that x is majorized

by y, denoted by x ≺ y (or y ≻ x), if further
∑n

j=1 xj =
∑n

j=1 yj.
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Definition 1.2. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two vectors

with non-negative entries. Then we say that x is weakly log-majorized by y, denoted

by x ≺w log y (the same as y ≻w log x), if
∏k

j=1 x↓
j ≤

∏k
j=1 y↓

j for all k: 1 ≤ k ≤ n.

We say that x is majorized by y, denoted by x ≺log y (or y ≻log x), if further∏n
j=1 xj =

∏n
j=1 yj.

For a complex vector x = (x1, x2, . . . , xn), its entrywise real part and absolute

value are defined by

Re(x) = (Re(x1), Re(x2), . . . , Re(xn)),

|x| = (|x1|, |x2|, . . . , |xn|),

respectively. Moreover, if all the entries of x are real and nonnegative, the notation

xr (r ≥ 0) means the entrywise rth power of x.

Definition 1.3. A matrix A ∈ Mn(C) is said to be conjugate-normal if

AA∗ = A∗A.

In particular, complex symmetric, skew-symmetric, and unitary matrices are special

subclasses of conjugate-normal matrices. It seems that the term ‘conjugate-normal

matrices’ was first introduced in [11]. For more properties and characterizations of

this kind of matrices, we refer to [3].

2. Introduction. For A ∈ Mn(C), define B = AA. An early result of Djoković

[2] says B is similar to R2, where R is a real matrix. Thus λ(B) = {λ1, λ2, . . . , λn}
is symmetric with respect to the real axis and the negative eigenvalues of B (if any)

are of even algebraic multiplicity, see also [4].

Definition 2.1. [7] The coneigenvalues of A ∈ Mn(C) are n scalars µ1, µ2, . . .,

µn obtained as follows:

1. If λk ∈ λ(B) does not lie on the negative real semiaxis, then the corresponding

coneigenvalue µk is defined as the square root of λk with a nonnegative real

part. The multiplicity of µk is set equal to that of λk.

2. With a real negative λk ∈ λ(B), we associate two conjugate purely imaginary

coneigenvalues (i.e., the two square roots of λk). The multiplicity of each

coneigenvalue is set equal to half the multiplicity of λk.

For A ∈ Mn(C), the vector of its coneigenvalues will be denoted by

µ(A) = (µ1(A), µ2(A), . . . , µn(A)).

In the sequel, we will briefly review some known properties related to coneigen-

values.
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Define the matrix

Â =

[
0 A

A 0

]

Proposition 2.2. [7] If µ1, µ2, . . . , µn are the coneigenvalues of an n×n matrix

A, then

λ(Â) = (µ(A),−µ(A)).

Proposition 2.3. [7] Let A be a conjugate-normal matrix. Then the coneigen-

values of the matrices A+AT

2 and A−AT

2 are the real and imaginary parts, respectively,

of the coneigenvalues of A.

The purpose of this paper is to extend the following classical eigenvalue majoriza-

tion results to the coneigenvalue case.

Theorem 2.4. (see, e.g., [5]) Let A ∈ Mn(C), then

λ (Re(A)) ≻ Re(λ(A)), (2.1)

σ(A) ≻log |λ(A)|. (2.2)

Theorem 2.5. (see, e.g., [5]) Let A, B ∈ Mn(C) be Hermitian, then

λ↓(A) + λ↓(B) ≻ λ(A + B), (2.3)

λ(A) ≻ λ↓(A + B) − λ↓(B). (2.4)

Applying (2.3) to Ã =

[
0 A

A∗ 0

]
and B̃ =

[
0 B

B∗ 0

]
gives the analogous majoriza-

tion for singular values.

Corollary 2.6. (see, e.g., [12]) Let A, B ∈ Mn(C), then

σ↓(A) + σ↓(B) ≻ σ(A + B). (2.5)

The next proposition shows that (2.3) can be extended to the case of normal

matrices, i.e., we have

Proposition 2.7. Let A, B ∈ Mn(C) be normal matrices, then

(Re(λ(A)))↓ + (Re(λ(B)))↓ ≻ Re(λ(A + B)). (2.6)
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Proof.

Re(λ(A + B)) ≺ λ(Re(A + B))

= λ(Re(A) + Re(B))

≺ λ↓(Re(A)) + λ↓(Re(B))

= (Re(λ(A)))↓ + (Re(λ(B)))↓,

where the first majorization is by (2.1) and the second majorization is by (2.3).

It is natural to ask whether (2.4) also has such an analogue, i.e., if A, B ∈ Mn(C)

are normal matrices, do we have

Re(λ(A)) ≻ (Re(λ(A + B)))↓ − (Re(λ(B)))↓? (2.7)

Unfortunately, the answer is no as the following example shows.

Example 2.8. Taking

A =

[
0

√
3

2

−
√

3
2 0

]
, B =

[
1 0

0 −1

]
,

obviously, A, B are normal. Simple calculation gives

λ(A) = {
√

3i/2,−
√

3i/2}, λ(B) = {1,−1}, λ(A + B) = {1/2,−1/2}.

Thus

Re(λ(A)) = (0, 0), (Re(λ(A + B)))↓ − (Re(λ(B)))↓ = (1/2,−1/2).

3. Main Results. We start with some observations.

Observation 3.1. The coneigenvalues of a complex symmetric matrix are non-

negative, the coneigenvalues of a complex skew symmetric matrix are purely imagi-

nary.

Proof. If A is complex symmetric, then AA = AT A = A∗A, thus the coneigen-

values of A coincide with the singular values of A and are thus all nonnegative. The

case A being complex skew symmetric can be proved similarly.

Observation 3.2. Let A ∈ Mn(C), then | det(A)| =
∏n

k=1 µk(A). However, we

generally do not have tr A =
n∑

k=1

µk(A) or | trA| =
n∑

k=1

µk(A).
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Proof. By definition of coneigenvalues,
∏n

k=1 µ2
k(A) = det(AA) = | det(A)|2.

Moreover, Re(µk(A)) ≥ 0 for all k and the multiplicity of µk(A) coincides with that

of µk(A). Thus
∏n

k=1 µk(A) ≥ 0. Taking the square root leads to the first claim.

For the second claim, we take A =

[
1 0

0 i

]
. Then trA = 1 + i, | tr A| =

√
2 and

∑2
k=1 µk(A) = 2.

Lemma 3.3. Let x, y be two nonnegative vectors of the same size. Denote x̂ =

(x,−x), ŷ = (y,−y). If x̂ ≺ ŷ, then

x ≺w y.

Proof. This is trivial by definition of majorization.

Lemma 3.4. Let x, y be two nonnegative vectors of the same size. Denote x̂ =

(x, x), ŷ = (y, y). If x̂ ≺log ŷ, then

x ≺log y.

Proof. Trivial.

Theorem 3.5. Let A ∈ Mn(C), then

µ

(
A + AT

2

)
≻w Re(µ(A)). (3.1)

Proof. It is clear that the left hand side of (3.1) is a nonnegative vector, since
A+AT

2 is complex symmetric.

Re

(
λ

([
0 A

A 0

]))
≺ λ

(
Re

([
0 A

A 0

]))

= λ

([
0 A+(A)∗

2
A+A∗

2 0

])

= λ

([
0 A+AT

2
A+AT

2 0

])
.

That is,

λ

([
0 A+AT

2
A+AT

2 0

])
≻ Re

(
λ

([
0 A

A 0

]))
.



6 Hans De Sterck and Minghua Lin

By Lemma 3.3, the desired result holds.

We cannot replace “≻w” by “≻” in (3.1) as the following example shows

Example 3.6. Let A =

[
1 2i

0 1

]
, then µ(A) = (1, 1), µ

(
A+AT

2

)
= σ

(
A+AT

2

)
=

(
√

2,
√

2). Thus
∑2

k=1 µk

(
A+AT

2

)
>
∑2

k=1 Re(µ(A)) in this case.

Theorem 3.7. Let A ∈ Mn(C), then

σ(A) ≻log |µ(A)|. (3.2)

Proof. By Proposition 2.2, we have

(|µ(A)|, |µ(A)|) = |λ(Â)|
≺log σ(Â)

= λ1/2

([
0 A

A 0

]∗ [
0 A

A 0

])

= λ1/2

([
A∗A 0

0 A∗A

])

= (σ(A), σ(A)),

where the majorization is by (2.2). Then Lemma 3.4 gives the desired result.

By the well known fact that log majorization implies weak majorization (see e.g.,

[8]), we have the following corollary, which was the first majorization result discovered

on coneigenvalues.

Corollary 3.8. [7] Let A ∈ Mn(C), then for any p ≥ 0,

σp(A) ≻w |µp(A)|. (3.3)

The next corollary is an analogue of the generalized Schur inequality [10] with

coneigenvalues involved.

Corollary 3.9. Let A = [ajk] ∈ Mn(C), then for any 0 ≤ p ≤ 2,

n∑

j,k=1

|ajk|p ≥
n∑

k=1

µp
k(A). (3.4)
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Proof. Note that the right hand side of (3.4) is real. Mond and Pečarić [9] have

showed that

n∑

j,k=1

|ajk|p ≥
n∑

k=1

σp
k(A) (3.5)

for 0 ≤ p ≤ 2. Thus (3.4) follows immediately by (3.3).

Remark 3.10. As pointed out by a referee, though Petri and Ikramov [10] only

presented (3.5) for p ≥ 1 and later a much simpler proof was given in [6], the proofs

given there held also for 0 ≤ p < 1.

Theorem 3.11. Let A, B ∈ Mn(C) be conjugate normal matrices, then

(Re(µ(A)))↓ + (Re(µ(B)))↓ ≻w Re (µ (A + B)) . (3.6)

Proof. By Theorem 3.5, we have

Re (µ (A + B)) ≺w µ

(
A + B + (A + B)T

2

)

= σ

(
A + B + (A + B)T

2

)

≺w σ↓
(

A + AT

2

)
+ σ↓

(
B + BT

2

)

= µ↓
(

A + AT

2

)
+ µ↓

(
B + BT

2

)

= (Re(µ(A)))↓ + (Re(µ(B)))↓,

where the second weak majorization is by (2.5) and the last equality is by Proposition

2.3.

Corollary 3.12. Let A, B ∈ Mn(C) be symmetric matrices, then

µ↓(A) + µ↓(B) ≻w µ (A + B) . (3.7)

Remark 3.13. Readers should be able to observe that (3.7) is the same as (2.5).

Theorem 3.14. Let A, B ∈ Mn(C) be symmetric matrices, then

µ(A) ≻w |(µ↓(A + B) − µ↓(B))|. (3.8)
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Proof. Since A, B are symmetric, (3.8) is the same as

σ(A) ≻w |(σ↓(A + B) − σ↓(B))|. (3.9)

(3.9) is the singular value counterpart of (2.4) and can be found in, e.g., [1].

4. Concluding Remarks. For A ∈ Mn(C), we know that one alternative defi-

nition for singular values of A is the nonnegative eigenvalues of the augmented matrix[
0 A

A∗ 0

]
. Given the present notion of coneigenvalue, the notion of its counterpart,

say consingular value, seems lacking. What would be a possible definition for consin-

gular value? We provide one here, analogous to the definition of singular values in

terms of eigenvalues of an augmented matrix.

Definition 4.1. Let A ∈ Mn(C). The consingular values of A are the n scalars

γ1(A), γ2(A), . . . , γn(A) defined by the coneigenvalues of

[
0 A

AT 0

]
, with each consin-

gular value taking half the multiplicity of the corresponding coneigenvalue.

We can see that, since

[
0 A

AT 0

]
is symmetric,

µ

([
0 A

AT 0

])
= σ

([
0 A

AT 0

])

= λ1/2

([
0 A

AT 0

]∗ [
0 A

AT 0

])

= λ1/2

([
(AA∗)T 0

0 A∗A

])

= σ

([
A 0

0 A

])
.

Thus, with our definition, we have

The consingular values of a matrix are exactly its singular values.

Theorem 3.7 can thus be rephrased as

The consingular values of a matrix log majorize its coneigenvalues in absolute value.

Majorization relations for eigenvalues or singular values are currently still an

active area of study. It is expected that more results on coneigenvalue majorization

will be discovered in the near future.
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