A SELF-LEARNING ALGEBRAIC MULTIGRID METHOD FOR
EXTREMAL SINGULAR TRIPLETS AND EIGENPAIRS

HANS DE STERCK*$

Abstract. A self-learning algebraic multigrid method for dominant and minimal singular triplets
and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative
phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of
interpolation operators that approximately fit the tentative singular vectors in a collective and self-
learning manner, using multiplicative update formulas. In the second, additive phase (solve phase),
the tentative singular triplets are improved up to the desired accuracy by using an additive correction
scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of
the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles.
The proposed algorithm combines and extends two existing multigrid approaches for symmetric
positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical
tests on model problems from different areas show that the algorithm converges to high accuracy in
a modest number of iterations, and is flexible enough to deal with a variety of problems due to its
self-learning properties.

Key words. multilevel method, algebraic multigrid, singular values, singular vectors, eigenval-
ues, eigenvectors

AMS subject classifications. 656N55 Multigrid methods, 65F15 Eigenvalues, eigenvectors

1. Introduction. In this paper we present an algebraic multigrid (AMG) method
for accurately computing a few of the largest or smallest singular values and associ-
ated singular vectors of a sparse rectangular matrix A € R™*"™. Let the singular
value decomposition (SVD) of A be given by

A=UXV" (1.1)

Here, U € R™*™ and V € IR™*", with U'U = I, and V'V = I,,, where I,,, and
I,, are the unit matrices of sizes m x m and n x n, respectively. Matrix ¥ € IR"™*"
has the | = min(m,n) singular values o1 > 09 > ... > 0, > 0 of A on its diagonal.
In what follows we will normally assume that m > n, except where noted otherwise.
The columns u; of U are called the left singular vectors of A, and the columns v; of V'
are its right singular vectors. The n singular triplets (o, u;,v;), 7 = 1,...,n, satisfy

A’UjZO'j’U,j and At’U,j:Uj’Uj. (12)

For the special case that A is square and symmetric positive definite (SPD), the SVD
of A coincides with the eigendecomposition of A, and a suitably simplified version
of the AMG method we propose in this paper will be applicable to the problem of
computing a few of the largest or smallest eigenvalues and associated eigenvectors of
an SPD matrix A.

For definiteness, we will frame the presentation in most of the paper in terms of
calculating a few of the singular triplets with largest singular values (which we call
dominant triplets), and we will comment on the case of the singular triplets with the
smallest singular values (which we call minimal triplets) at the end of the algorithm
presentation. So we assume we seek the n;, dominant singular triplets (o;,u;,v;),
j=1,...,np, of A, with singular values 01 > 09 > ... > 0y,

*Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
$hdesterck@uwaterloo.ca

2 H. DE STERCK

There are many applications in scientific computing where dominant or mini-
mal singular triplets of large sparse matrices need to be computed, see, for example,
the discussion and references in [30, 3]. We mention a few examples. Latent se-
mantic indexing determines concepts in documents by calculating dominant singular
triplets of term-document matrices [19]. Similarly, principal component analysis is
used in exploratory data analysis to identify orthogonal components with maximal
variance, which correspond to dominant singular triplets of the data matrix [27]. In
[15], a smoothed aggregation method is described for nonsymmetric linear systems
that arise from partial differential equation (PDE) discretization, and which requires
approximate calculation of the minimal singular triplet of the problem matrix in a
setup phase of the solver. Similarly, calculating dominant or minimal eigenpairs of
SPD matrices also has many applications, see, e.g., [29, 6, 25, 31, 7).

Recently, there has been extensive research on algorithms for computing a few
extremal singular triplets of large sparse matrices that work directly on Egs. (1.2) and
only require matrix-vector multiplications with A and A?, see, for example, [32, 30, 3]
and the numerous references therein. In particular, Lanczos bidiagonalization meth-
ods have received significant attention. More traditional approaches for computing
extremal singular triplets of a matrix A proceed by applying symmetric eigenvalue
solvers to A A or to the augmented operator

X:[jt g‘] (1.3)

In most solver environments, singular triplets for large sparse matrices are indeed
computed by applying symmetric eigenvalue solvers to the augmented operator X of
Eq. (1.3). For example, Matlab’s svDS uses EIGS on X. General-purpose eigenvalue
packages like Anasazi [4] or SLEPc [17] can be used in a similar manner for SVD
computations. Standard eigenvalue approaches for large sparse symmetric matrices
often rely on Lanczos techniques, for example, the implicitly restarted shift-invert
Lanczos method as implemented in ARPACK, which is used in Matlab’s EI1GS. Even
though Lanczos-based eigensolvers have reached high levels of maturity and sophis-
tication, there have also been many promising developments in different directions,
see, for example the recent overview in [17] and [2], and developments reported in
[29, 4, 37, 6, 25, 31]. Many of these developments for symmetric eigensolvers involve
preconditioned iterations, and some have been in the field of algebraic multigrid meth-
ods [6, 25, 31]. In particular, it has been shown that methods based on or aided by
algebraic multigrid can be very effective for certain eigenproblems, for which error
components that are damped only weakly by fine-level relaxation processes can be
represented and damped efficiently on coarser levels [6, 25, 31].

While the approach to compute singular triplets of A by applying symmetric
eigensolvers to the augmented operator X is satisfactory in many cases, it is sometimes
argued that methods that work directly on Egs. (1.2) without forming the equivalent
symmetric eigensystem may lead to a more efficient algorithm for SVD computations
under certain circumstances [17], and the merits of these direct SVD approaches are
discussed in [32, 30, 3]. In particular, preconditioned Lanczos-type methods applied
to find the near-zero eigenvalues of X are problematic because of the indefiniteness
of X (suitable preconditioners may not necessarily be available).

The self-learning algebraic multigrid method for dominant and minimal singular
triplets proposed in this paper works directly on Egs. (1.2). On the other hand,
it can also be interpreted as a symmetric eigensolver for the augmented operator

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 3

X, but taking advantage of the a-priori knowledge of the special block structure of
X to formulate efficient block relaxations and coarsening strategies. In the practical
implementation of our algorithm we also use the products A*A and AA? for coarsening.
It appears that multilevel methods have not been explored yet for the calculation of
singular triplets working directly on Eqgs. (1.2). This is, perhaps, not surprising, since
practical AMG methods for the SPD eigenproblem are also still quite a young area
[6, 25, 31, 28, 12] (with earlier work described in [8, 7, 10, 9]). It can be expected that
AMG methods for extremal singular triplets will be competitive for problems in which
the extremal singular values are highly clustered and the extremal singular vectors are
similar to each other such that they can be represented well collectively (in group) by
an interpolation operator that interpolates coarse-grid representations of the singular
vectors to the fine grid. Nonsymmetric discretized second-order elliptic PDE operators
are expected to have this kind of spectral decomposition. We will investigate such
a problem in the numerical results section of our paper, but we think that it is also
interesting to investigate the applicability and performance of our algorithm for other,
more general SVD problems, and we do so in the numerical results section as well.
Numerical results will also be presented for SPD eigenproblems, since our algorithm
offers a new extension of previous approaches for this type of problems as well.

Algebraic multigrid was originally developed for solving sparse systems of linear
equations (see [8] and references in [39] and [18]). Over the years, its applicability has
been extended in several ways, including to SPD eigenvalue problems [10, 9, 6, 25,
31, 28, 12]. The AMG method we propose belongs to the class of self-learning AMG
methods (we borrow this term from [34]). In these methods, a multigrid hierarchy is
built with interpolation operators that are determined adaptively and iteratively over
several multilevel cycles, to match approximately the vectors that are of interest in
the problem at hand. For linear system solvers, these are the vectors that lie close
to the null-space of the matrix, and for eigenvalue problems, they are the desired
eigenvectors. In our new method for singular triplets, they will be the desired singular
vectors. Self-learning AMG solvers are an active area of research and have been
developed for solving linear equation systems, SPD eigenproblems, and Markov chain
problems, see, for example, [8, 10, 13, 14, 9, 21, 22, 5, 43, 23, 33, 34, 15, 12]. Our
AMG method is also collective, in that it strives to represent several singular vectors
by a single interpolation matrix for efficiency.

The AMG method we propose for computing dominant singular triplets consists
of two multilevel phases. It combines and extends existing AMG approaches for the
SPD eigenproblem, that were proposed by Borzi and Borzi in [6], by Kushnir, Galun
and Brandt in [31], and by Kahl and co-workers in [28, 12]. In the first, multiplicative
phase (setup phase), we calculate tentative singular triplets and a multigrid hierarchy
with interpolation operators that approximately fit the tentative singular vectors in
a collective and self-learning manner. This phase uses power method relaxation and
multiplicative coarse-grid update formulas for the tentative singular vectors. We use
the bootstrap framework [10] in this phase with least-squares fitting and random ini-
tial singular vectors, in a way similar to the approach described in [31] and [28, 12]
for calculating minimal eigenpairs of an SPD matrix. In other related work, the setup
phase of the algorithm described in [15] calculates an approximation of the singular
vectors that correspond to the smallest singular value of a square nonsymmetric ma-
trix, in a way that is less general than but similar to our multiplicative phase. In
[31], great care is taken to try to make the interpolation operators highly accurate for
all eigenvectors, in the spirit of the exact interpolation scheme (EIS) [9], leading to

4 H. DE STERCK

an eigenvalue solver that only employs this first, multiplicative phase, with accuracy
limited to the accuracy by which the single interpolation operator represents each
eigenvector. In our approach, however, we use generic interpolation that fits the ten-
tative singular vectors only approximately, and we employ a second, additive phase
(solve phase), in which the tentative singular triplets are improved up to the desired
accuracy by using an additive correction scheme with fixed interpolation operators,
combined with a Ritz update. Our additive phase is similar to the approach described
by Borzi and Borzi in [6] for calculating minimal eigenpairs of an SPD matrix (which
itself is an extension of [7]), but in [6] standard AMG interpolation is used, and there
is no initial multiplicative self-learning phase. Our hybrid multiplicative-additive ap-
proach results in a new AMG method for extremal singular triplets that combines
two desirable properties: it allows for high-accuracy convergence when desired, and it
is flexible enough to deal efficiently with a variety of problems due to its self-learning
properties. The specialization of our algorithm to the SPD eigenpair case also leads
to a new extension of the AMG eigenvalue algorithms of [6], [31] and [28, 12] that has
the same desirable properties.

The remainder of this paper is structured as follows. In the next section we give
a description of the first phase of our singular triplet algorithm, the multiplicative
setup phase. This section also introduces a suitable generalization of the SVD for
formulating the coarse-level problems. Section 3 then describes the second phase of
the algorithm, the additive solve phase. Section 4 describes how it can be extended
and specialized to the case of square matrices, minimal singular triplets and extremal
eigenpairs of SPD matrices. Section 5 contains extensive numerical evaluation of our
algorithm, and Section 6 concludes.

2. AMG SVD Algorithm: Multiplicative Phase. In this section, we de-
scribe the first, multiplicative phase of our algorithm to compute dominant singular
triplets (o, u,v) of rectangular matrix A € IR™*", satisfying

Av=o0ou and Aty =ow. (2.1)

2.1. Coarse-level Equations. Consider interpolation matrices P for u and @
for v, with P € IR™*™< and Q € IR"*", and P and @ of full rank. First assume
that u lies exactly in the range of P, and v in the range of @, so

u=Pu,. and v=Qu,, (2.2)
for some coarse-level vectors u. and v.. We define coarse-level equations
P'AQu. =0 P'BPu, and QA Pu.=0Q'CQu., (2.3)
and coarse-level operators
A.=P'AQ, B.=P'BP and C.=Q'CQ, (2.4)

with, for the finest-level operators, B = I,,, and C = I,,. The coarse-level version of
fine-level equations (2.1) is then given by

A.v. = 0 B, ue and Al v, =0 C,v,. (2.5)

The intuition behind this approach is as follows: the coarse-level equations can be
expected to be useful for finding triplet (o, u,v), since, if (o, u,v) is a singular triplet

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 5

of A and Egs. (2.2) are assumed, then (o, u.,v.) is a singular triplet of A.. So one
can see that, if P and @) can be constructed such that v and v lie exactly in their
respective ranges (Eqgs. (2.2)), then a coarse-level solve can give us (o, u,v) exactly.
The same reasoning applies when coarsening is repeated recursively. Note that the
B. and C. on all recursive levels are symmetric positive definite (SPD) since the P
and @ are chosen of full rank. We will now consider methods to build P and @ such
that v and v lie in their respective ranges approximately.

2.2. Generalization of Singular Value Problem. Coarse-level equations
(2.5) are of the form

Av=0cBu and Aty =0Cv, (2.6)

with B and C' SPD. The coarse-level equations motivate the following generalization
of the singular value decomposition.

DEFINITION 2.1 (Generalized singular value decomposition). The generalized
singular value decomposition of A € IR™*™ with respect to B € IR™ ™ and C €
IR™™ ™, with B and C SPD, is given by

A=BUXV'C, (2.7)

with U € R™* ™, V € R"™™ and ¥ € IR™*"™. The columns of U are called the
left generalized singular vectors, and the columns of V' are called the right generalized
singular vectors. They satisfy the orthogonality relations Ut BU = I,, = U BU" and
VICV =1, =V OVt Matriz ¥ has the | = min(m,n) real nonnegative generalized
singular values 01 > o9 > ... > o > 0 on its diagonal. FEgs. (2.6) are called the
generalized singular value problem for matriz A with respect to matrices B and C.

It is easy to see that the generalized singular triplets (o, u,v) of generalized SVD
(2.7) satisfy Eqs. (2.6). When B = I, and C = I,,, generalized SVD (2.7) reduces to
the standard SVD.

It has to be remarked that the notion of generalized SVD as defined above is
different from the more commonly used generalized SVD of A € IR™*"™ with respect
to B € IRP*™ (with m > n), as, for example, defined in [24], p. 471. Definition 2.1 is
the sense of generalized SVD that we need in this paper. While Eq. (2.7) is a natural
generalization of the singular value decomposition and relates to it in the same way
the generalized eigenvalue problem (as it is commonly defined) relates to the standard
eigenvalue problem, we have not been able to find it in the literature yet. In what
follows, we formulate the properties of the generalized SVD that are useful for the
calculations to be done in our multilevel cycles. We discuss existence and uniqueness,
which is important for the well-posedness of our multilevel cycles, and we explain how
the generalized SVD can be calculated, which we will need to do on the coarsest level
of our multilevel cycles.

THEOREM 2.2. Generalized SVD (2.7) has the same existence and uniqueness
properties as the standard SVD.

Proof. This follows from a simple change of variables: with

T = B2 U, W=0CY?VvV and D=B Y2402 (2.8)
generalized SVD (2.7) can be rewritten as a standard SVD

D=TXW" (2.9)

6 H. DE STERCK

O
This change of variables provides a first manner of computing generalized SVD

(2.7) using standard SVD algorithms. An alternative way of computing generalized
SVD (2.7) proceeds as follows. Let

X = [jt gl], (2.10)
Y:[g g} (2.11)

It is clear that X is symmetric and Y is SPD, and
(X —0Y) 2=0, (2.12)

is a symmetric generalized eigenvalue problem of size (m+n) x (m+n), with m+n real
eigenvalues o; and associated eigenvectors [u§ ’U;—]t, which can be chosen orthonormal
with respect to Y. The following theorem indicates how the solutions of this gener-
alized eigenvalue problem can be used to compute the generalized singular triplets of
generalized SVD (2.7).

THEOREM 2.3. Let A € R™*", B € IR™*™ and C € IR"*", with B and C SPD.

Let | = min(m, n). Then generalized eigenvalue problem

<[£ﬁ§]_”{]g g])[HZO (2.13)

has m~+n solutions with generalized eigenvalues o and linearly independent generalized
eigenvectors [u' v']* # 0. There are | independent solutions with o; > 0 and vectors u,;
and v; satisfying orthogonality relations u§ Bu; = 0d;; and v§ Cvi=0;; (j=1,...,1).
The triplets (oj,u;,v;) are the generalized singular triplets of A with respect to B and
C. Furthermore, there are | independent solutions (—oj,uj, —v;). Finally, there are
abs(m —n) = m + n — 21 independent solutions with o = 0 and either v = 0 and
v € Null(A), or v =0 and u € Null(A").

Proof. This follows directly from the variable transformations Eqgs. (2.8), which
transform generalized eigenvalue problem Eq. (2.13) into eigenvalue problem

qgt 10)}_”{[31 ;:LD[H:O (2.14)

which has the properties listed in the theorem, see, for example, [24], p. 427. O
A third possible way to calculate generalized SVD (2.7) is by solving for the left
and right generalized singular vectors separately, using

(A'B™' A)v=0%*Cwv and (ACT'AYu=0?Bu. (2.15)

2.3. Bootstrap AMG V-cycles. In this section, we describe how we use the
bootstrap AMG approach [10] to find approximations of the desired n, dominant
singular vectors and values, and adaptively determine interpolation operators that
approximately fit the singular vectors. We follow the approaches described in [31]
and [28, 12]. For completeness and definiteness, we briefly describe all steps in the
process, with some details discussed in more detail in subsequent sections. Algorithm
1 gives a high-level algorithmic description of the multiplicative V-cycle.

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 7

Algorithm 1: AMG_SVD _mult multiplicative cycle (recursive)

(Uba ‘/bv Ob, Ut7 ‘/t) :AMG—SVD—mUIt(Ub7 ‘/b; Ob, Uta ‘/fm Aa Ba O)
input/output variables: boot singular vectors U, and V}, and boot singular
values oy; test singular vectors U; and V;; matrices A, B, C

if not on coarsest level then

relax on test vectors U, V; (Sec. 2.4), uy times;

relax on boot vectors Uy, V}, and update boot singular values o, (Sec. 2.5),

Ly times;

coarsen u and v variables (Sec. 2.7);

compute interpolation matrices P and @ that fit U and V boot and test

vectors in their ranges (Sec. 2.8);

form coarse operators A., B., C. (Sec. 2.1);

restrict Uy, V; and Uy, V4, to coarse level (Sec. 2.3) — Uy ¢, Vic and Uy, Vi.c;

recursive call:

(Ub,ca ‘/b,ca Ob, Ut,ca ‘/t,c) :AMG—SVD—mUIt(Ub,c; ‘/b,c; Ob, Ut,c; ‘/t,c; Am Bm CC)7

interpolate Up ¢, Vi . up to current fine level (Sec. 2.1);

relax on boot vectors Uy, V;, and update boot singular values o, (Sec. 2.5),

Ly times;

// Note: in the downward part of the first cycle (i.e.,
before the recursive call), the boot triplets U, V,, 0, are
not considered; the first boot triplets are generated when
the coarsest level is visited for the first time, in the
else block below

else
compute n; singular boot triplets Uy, V3, 03 on coarsest level by computing
generalized SVD of (4, B,C') (Sec. 2.6);

end

We first describe the initial BAMG V-cycle. We start out on the finest level
by choosing n; random test vectors for each of u and v, and we place them in the
columns of Uy and V;, respectively. We relax on the test vectors (using a few iterations
of the SVD power method for Eq. (2.1), see below) such that components with small
o are damped and components with large o become dominant in the test vectors. We
coarsen the finest grid (see below) and determine interpolation operators P, @, where
P fits the vectors in Uy (in a least-squares sense), such that they lie approximately in
the range of P, and @ fits the vectors in V4, such that they lie approximately in the
range of). We also build coarse-level operators A., B., and C. according to Egs.
(2.4). We then restrict the fine-level U; and V; (by injection) to the first coarse level,
and obtain coarse versions of the test vectors, stored in the columns of U . and V.
We relax on Uy . and V; . with the power method applied to Eqgs. (2.5). The whole
process of building new, coarser interpolation operators P and) and operators A,
B., C;, by restricting Uy . and V; . is then repeated recursively, up to some coarse
level where the problem is small enough for a direct generalized SVD calculation.

On the coarsest level, we compute n, dominant singular triplets by a direct de-
composition, and store them in vector o, and matrices U, and V;. These singular
triplets are the starting approximations for our desired dominant singular triplets,

8 H. DE STERCK

and will be improved in this cycle and subsequent cycles. We call the singular vectors
of these triplets the boot (singular) vectors, and use the subscript b to refer to them.
(We distinguish these from the initially random test vectors in U; and V;, which are
used to get the process going and sustain it, but do not directly lead to the desired ny
singular triplets themselves.) Note that we denote by o}, a vector with n;, components
that holds approximations for the dominant singular values sought.

In the upward phase of the first BAMG V-cycle, starting from the coarsest level,
we recursively interpolate the boot singular vectors U, and V;, up to the next finer
level, using the interpolation operators P and) of the current level, according to
multiplicative update formulas Egs. (2.2). On each finer level, we first relax on the
boot vectors using Eqs. (2.5) with the singular values in o} fixed, and then update
the elements of o, by recalculating the Rayleigh quotient for each pair of boot vectors
(see below). Note that the test vectors U; and V; are not used in the upward phase
of the V-cycle.

This initial BAMG multiplicative V-cycle can be followed by several additional
multiplicative V-cycles. In the numerical results to be reported below, we execute a
fixed small number of multiplicative V-cycles (we normally choose 5); alternatively,
it is also possible to implement an automatic mechanism that executes multiplicative
V-cycles until stalling convergence is detected. In the downward sweep of each of
these additional cycles, one relaxes U; and V; as in the first V-cycle. In addition, one
also relaxes the U, and V3, and improves the o on each level, as in the upward sweep
of the first cycle. At each level, the vectors in both U; and U, are used to fit P, and
the vectors in both V; and V}, to fit Q. Then A., B. and C, are also rebuilt using the
new P and Q). The upward sweeps of the additional multiplicative cycles are the same
as in the initial multiplicative cycle. At the end of every V-cycle, we optionally also
apply a collective Ritz projection step (see below) to improve the boot vectors Uy, V4,
and singular value approximations o,. We do so for the numerical tests reported in
Sec. 5.

Note that in this paper we use only the simplest type of multilevel cycles, namely,
V-cycles. More sophisticated cycles including W-cycles and full multigrid (FMG)
cycles [18, 6, 25, 31, 28, 12] can be considered and may lead to improved results, but
for simplicity we only use V-cycles here. In the following sections we will give the
details of the relaxation schemes, coarsest-level solve, coarsening and interpolation
used in our BAMG cycles.

2.4. Relaxation Scheme for the Test Vectors. Seeking dominant singular
triplets, we base relaxation for the initially random test vectors on the power method
applied to Eq. (2.6). On any level, given an initial u;, we solve for v; from

At u; =Cv; and v; = ij/(r,j;C@j)l/27 (2.16)
and then for u; from
Av;j=Ba; and u; =u;/(atBuj)">. (2.17)

This can be repeated p; times on each level. By applying the power method, we damp
the components corresponding to small singular values and obtain initial iterates
that are rich in the desired dominant singular vectors and are then used to fit the
interpolation operators. In practice, we solve for the new v; and u; in an inexact
way, by performing p ; inner iteration steps of weighted Jacobi with weight w ;. For

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 9

example, for Eq. (2.16) we iterate on:

ot =5 —w; Dgt (OB — At uy) (2.18)

with 1750) = v; initially and with the iteration index of the weighted Jacobi procedure
indicated in superscript. Here, D¢ is a diagonal matrix with the diagonal of the SPD
matrix C on its diagonal. In the numerical results reported in Sec. 5, we use wy = 0.7
and pg 5 = 1.

2.5. Relaxation Scheme for the Boot Vectors and Update Formulas for
the Singular Values. For the boot vectors, we relax on

Av=0cBu+ks, (2.19)
Atu=cCvo+r. (2.20)

(Note that in the multiplicative phase k = 0 and 7 = 0 on all levels, but the additive
phase will require nonvanishing x and 7, so we already include them in the formulation
here.) On any level, given an initial o;, u; and v;, we solve for a new u; from Eq.
(2.19), and then for a new v; from Eq. (2.20). This amounts to a block Gauss-Seidel
(GS) scheme for equation system (2.19)-(2.20). For dominant os, Egs. (2.19)-(2.20)

(X —0oY) [u' V') = [&"), (2.21)

may be close to diagonally dominant, so this will work well in many cases. For some
problems or on coarser levels, the block GS approach may not converge well, and
Kaczmarz relaxation [41, 31, 28, 12] (see also below) on Eq. (2.21) or its blocks may
be preferable. In our block GS approach, we again approximate the solutions of Egs.
(2.19)-(2.20) in an inexact way, by performing s, ; inner iteration steps of weighted
Jacobi. For example, for Eq. (2.19) we iterate on:

Wt =l —w; DEN (B — (Av; — k) /0). (2.22)

In the numerical results reported in Sec. 5, we use pp 7 = 1. In the multiplicative
phase, with k = 0, 7 = 0 on all levels, we also update the os after every outer
relaxation iteration on each level. The easiest way to do this is to use Rayleigh
quotient formula

ut Av
o= (@ Bu) 2 (01 Cu)I 2 (2.23)

for each boot singular triplet, which is what we do in the numerical results presented
in Sec. 5.

2.6. Coarsest-grid Solution. Each time the coarsest level is reached, we de-
termine new approximations for the n; coarsest-level boot triplets by direct compu-
tation of the coarsest-level generalized SVD, Eq. (2.7). The n; singular triplets with
the largest singular values are selected as the new boot singular triplets. In our imple-
mentation, we choose to solve generalized eigenproblem (2.13) of Theorem 2.3 using
a direct eigendecomposition algorithm.

10 H. DE STERCK

2.7. Building P and @Q): Coarsening and Sparsity Patterns. In order to
build interpolation operators P and @, at each level, we first coarsen the sets of
unknowns in « € IR™ and v € IR" by choosing a set of m. coarse-grid variables,
Cy, out of the m fine-level variables for u, and by choosing a set of n. coarse-grid
variables, C,, out of the n fine-level variables for v. The coarse variables are called
coarse-grid points or C-points. The fine-level u-variables that are not selected as C-
points are called F-points and are denoted by the set F,. Similarly, the F-points of
the fine-level v-variables are denoted by F,. Well-known algorithms from AMG are
used to determine C,, and C, and the sparsity patterns of P and () on each level,
based on the idea of strength of connection in the operator matrices A. After this
coarsening process, the matrix elements of P and @) are determined using a least-
squares approach in such a way that the test vectors U, and V; (and, after the initial
cycle, also the boot vectors U, and V},) lie approximately in the ranges of P and @,
respectively.

For the coarsening process for the u-variables, we propose to apply standard AMG
coarsening methods to matrix AA?, and we base coarsening of the v-variables on A'A.
(If A is square or square and symmetric, other choices can be made, see below.)

We implement coarsening as follows. For the u-variables we employ the standard
one-pass Ruge-Stueben coarsening algorithm [36] on N = AA? using strength of
connection condition

variable 7 is strongly influenced by variable j

2 (2.24)
nisl >0 |nix|
k

with 0 < 8 < 1 a fixed strength parameter that may be chosen dependent on the
problem. (The (7, j) matrix element of IV is denoted by n; ;.) For diagonally dominant
PDE discretizations, strength is often determined relative to the largest off-diagonal
element in row ¢, using condition |n; ;| > 6 maxgz; |n;r|. We, however, target a
broader class of problem matrices, and opt for strength condition (2.24), which is
somewhat more general. Note, however, that the magnitude of strength parameter 6
typically needs to be chosen differently in the two approaches. For the v-variables,
we determine strong connections in the same way, for matrix A*A. Once the strong
connections are determined, coarsening can be performed: one-pass Ruge-Stueben
coarsening is executed to determine sets of C-points and F-points for the u-variables
and the v-variables. Note that devising a strength of connection measure that works
for a broad set of matrices is notoriously difficult (see, e.g., [9, 10, 11, 35]). The
measure in Eq. (2.24) appears to work reasonably well for the numerical tests we
perform below, but it is certain that problems can be found for which it will fail.

In a next step, first for the u-variables, we determine, for each F-point ¢ in F,,, a
coarse interpolatory set C? which contains all C-points (points in C,,) that strongly
influence point i according to condition (2.24) in AA?. The coarse interpolatory sets
C! of the v-variable F-points are determined in the same way based on A'A. This
defines the sparsity patterns of the interpolation operators P and (). We explain this
for P, and it is analogous for). For each C-point in C\,, with fine-level index i, we
let (i) be the index of point ¢ on the coarse level. For all points i in Cy,, row ¢ in P
is zero, except for p; ;) = 1. For all F-points 7 in F, , row ¢ in P is zero, except for
matrix elements p; ,(x) where k is an element of i’s coarse interpolatory set Cy,. The

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 11

matrix elements p; ; of interpolation operator P are thus given by

ifieCy: piy=1 1if j=ali), and p;; =0 otherwise,
ific F,: pi;#0 ifj=a(k) with ke C, and p;; =0 otherwise.

Basing coarsening of the u-variables and the v-variables on AA! and A A, respectively,
can be motivated by the observation that, on the finest level, the left singular vec-
tors are eigenvectors of AA?, and the right singular vectors are eigenvectors of A*A.
Moreover, AA* and A*A are symmetric matrices, and AMG was built for that type
of matrices. In that sense, using AA? is a natural choice for measuring connection
strength between wu-variables. Also, forming AA" can be done in O(m) (assuming
m > n) time for large classes of sparse matrices, so it does not overly add to the cost
of our method. Note also that we only use AA? for coarsening, and not in the rest
of the algorithm, so there is no deterioration in terms of condition numbers, which
is a reason to avoid calculating the left singular vectors as the eigenvectors of AAY,
and the right singular vectors from A*A. Note also that Eqgs. (2.15) suggest basing
coarsening on A Bt A and AC~! A? on coarser levels rather than A*A and AA?,
but we normally choose to ignore the B~! and C'~' mass matrix factors to avoid the
extra matrix inversion and matrix product.

For some applications, however, it may be possible to devise good coarsening
schemes for v and v directly from the rectangular matrix A, by considering its rows
and columns (and it may be required for performance reasons). We expect, however,
that the details and success of such strategies may be highly dependent on the type
of problem, and direct coarsening methods for row-variables and column-variables of
rectangular matrices is kept as an interesting topic of further research.

2.8. Building P and @): Least-Squares Determination of Interpolation
Weights. We use a least-squares (LS) process to determine the interpolation weights
in the rows of P and @ that correspond to F-points, following the approach in [10, 31,
28, 12]. Again, we explain the process for matrix P, and it is analogous for Q). We want
to fit the interpolation weights of P such that the n; current fine-level test vectors U;
and the ny, current boot vectors U, (except in the first cycle) lie approximately in the
range of P. Let Uy hold in its columns the ny = n;+ny vectors to be fitted. Let uy be
the kth vector in Uy. Let uy . be the coarse-level version of u;, obtained by injection,
and let ufﬂ)c be its value in coarse-level point j. Also, let uf be the value of uy in
fine-level point 7. The weights of each F-point row in P are determined consecutively
using independent LS fits. Consider a fixed F-point with fine-level index ¢ (the row
index of P). Its coarse interpolatory set is C?, and we assume now that the points
in C¢ are labeled by their coarse-level indices (the column indices of P). Let n.; be
the number of elements of C’,. For each F-point i we solve the following least-squares
problem to determine the unknown interpolation weights p; ;:

ul, = Z pmuiﬁc (k=1,...,ny). (2.25)
jecCi

This is a system of n¢ equations in n.; unknowns. We make this system overdeter-
mined in all cases by choosing the number of initially random test vectors, n;, larger
than the expected largest interpolation stencil size n.; for any ¢ on any level. (This
is one of the criteria guiding the choice of n, and, in our implementation, estimating
ng too small initially may require a restart of the method with a larger n;). Since
we would like the dominant boot vectors to be fitted preferentially as soon as they

12 H. DE STERCK

become reasonable approximations, we weight the kth equation in Eq. (2.25) by the
Rayleigh quotient, (2.23), of the pair (uk, vk), see also [31, 28, 12]. In our implemen-
tation, we solve the LS problem using a standard normal equation approach. Finally,
we mention that we use a modification of Eq. (2.25) for the case of minimal singu-
lar triplets or eigenpairs, as proposed in [34]. For these cases, interpolation weights
and convergence can be improved significantly by applying an extra fine-level Jacobi
relaxation (using the operator we base strength on) to the F-point values u} in Eq.
(2.25) (but not the C-point values ufg), see [34] for further details. We have found in
our numerical experiments that this modification is not useful when seeking dominant
singular triplets or eigenpairs.

3. AMG SVD Algorithm: Additive Phase. In the additive (solve) phase
of our algorithm, we use fixed interpolation and coarse-level operators, namely, the
operators P, @, A., B. and C, as they were determined on all levels in the last
mutiplicative cycle, and use an additive correction scheme to improve the n; boot
singular triplets that came out of the multiplicative (setup) cycle at the finest level. In
each iteration of the additive phase, for each of the finest-level ;, u;, v; (1 < j < ny)
in oy, Uy, V3, we first improve u; and v; in a classical-type additive AMG V-cycle
with o; fixed in the whole cycle. Then, after all the u; and v; have been updated
using one V-cycle for each pair, we collectively improve all the o;, u; and v; in oy,
Uy, V3 using a Ritz projection step on the finest level. These multigrid-Ritz iterations
are repeated until the desired accuracy is reached. Our solve phase is similar to the
approach described by Borzi and Borzi in [6] for calculating minimal eigenpairs of
an SPD matrix using standard AMG interpolation operators (it is also described in
[31], but not combined with a multiplicative phase). We now extend this approach
to the calculation of dominant SVD triplets using the self-learned operators from
the multiplicative phase of the algorithm. Algorithm 2 gives a high-level algorithmic
description of one additive cycle, and Algorithm 3 describes the AMG V-cycle that
improves u; and v; for each j.

Algorithm 2: AMG_SVD_add additive cycle
Uy, Vi, o) =AMG_SVD_add(Uy, Vs, 03
input/output variables: n; boot singular triplets stored in U, V4 and oy
(note: it is also assumed that the hierarchy of matrices {4;},{B;},{C;} and
interpolation operators {P;},{Q;} for all multigrid levels [that was generated
in the last multiplicative cycle is available on levels 1)

for j=1:n4 do

(Uj,’Uj) = AMG_V(’UJJ',UJ', 0j,Rj = O, T; = O,l = 1, Al, Bl, Cl, Pl, Ql),
end
do a Ritz projection to update Uy, V3, oy (Sec. 3.3);

3.1. Coarse-level Equations. In the additive correction scheme, the equations
for triplet (o, u;,v;) on the current level are given by

Avj —ojBuj = K, and Aluj—ojCuvj; =74, (3.1)

where x; and 7; are the residuals restricted down from the next finer level. (So k; =0
and 7; = 0 on the finest level.)

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 13

Algorithm 3: AMG_V additive V-cycle for updating (u;,v;) (recursive)
(’U,j, ’Uj) ZAMG_V(Uj, Vj,045,Kj,Tj, l, A, B7 C, P, Q)
input/output variables: vectors u;,v; and fixed singular value o;;
right-hand side vectors «;, 7;; multigrid level [; operators A, B, C, P, Q

if not on coarsest level then
relax on uj,v; with fixed o; and right-hand sides x;, 7; (Sec. 2.5), up times;
compute residual vectors r;,s; (Sec. 3.1);
restrict residual vectors to the coarse level to obtain k., 7j. (Sec. 3.1);
recursively solve for coarse-grid error vectors:
(ijc, Uj.,c) = AMG_V(UJ‘@ == O, Vjc = O, 0jyRj.cyTjcy l + 1, Al+1, Bl+1, OlJrl,
Pii1,Qi41)
update uj,v; via coarse-grid correction (Sec. 3.1);
relax on uj,v; with fixed o; and right-hand sides &, 7; (Sec. 2.5), up, times;
else
compute the solutions u;, v; of the coarsest-level error equations by a
direct solve (Secs. 3.1, 3.2)
end

The equations on the next coarser level are then
Acvje—0jBeuj = pt Tj and Al Uje — 05 Cevje = Q! 55, (3.2)

where r; and s; are the residual vectors of the first and second fine-level equations,
respectively, and the coarse-grid correction equations are given by

W Pue w1 Que (33)

where the superscript (7) means the ith iterate. Note that u; . and v; . now represent
coarse-level additive errors of the fine-level quantities u; and v;. Rather than using
new variable names to distinguish original variables an their coarse-level errors, we
follow the convention that is common in the multigrid literature [18] to refer to vari-
ables and their coarse-level errors with the same letter from the alphabet, which aids
in presenting the algorithm in a recursive way.

Note that for the eigenvalue solvers in [6, 31| the additive method is described in
the framework of the full approximation scheme (FAS), like in the paper in which the
general ideas of this approach were originally proposed [7], where the FAS framework
was required because eigenvalue approximations were modified on the coarsest level
of each cycle. However, in the additive methods in [6, 31], eigenvalues remain fixed
for the entire additive cycle, so there is no need to use the FAS, and the simpler error
equation formulation that is common in multigrid for linear operators can be used
instead, which is what we do in our discussion here.

3.2. Additive V-cycles to Improve the Left and Right Singular Vectors.
For each of the finest-level 0, u;, v; (1 < j <ny) in oy, Uy, V3, we fix ; and perform
an additive V-cycle as follows. We relax the singular vectors u; and v; using Eq. (3.1)
on the finest level, with the relaxation method that was described in Sec. 2.5. We
calculate the residuals x; and 75, and restrict them to the next coarser level. We then
choose a zero initial guess for u; . and v; . and relax them using coarse equations (3.2),

14 H. DE STERCK

we calculate the coarse residuals, restrict them to the next coarser level, etc. This is
repeated recursively up to some coarse level where the problem is small enough for
a direct solve. On the coarsest level, we solve Eq. (3.2) exactly for vector [uf v J*
(as in Eq. (2.21)). To make the coarsest-level solve somewhat more robust when the
operator is close to singular, one can optionally use the pseudo-inverse (calculated via
the SVD) of X — ¢ Y without including the component corresponding to its smallest
singular value, as suggested in [43]. We do so in the numerical results presented in
Sec. 5. We then interpolate the coarsest-grid solution up, correct using Egs. (3.3),

relax the corrected vectors, interpolate up again, etc., recursively until the finest level.

3.3. Ritz Projection Step on the Finest Level to Improve the Boot
Singular Triplets. After carrying out one V-cycle for each of the n; boot singular
triplets, we perform a Ritz projection step, as in [6, 31]. An alternative would be to
update each o; in o} using Rayleigh quotient formula (2.23). However, a collective
Ritz step leads to faster overall convergence, and has other important advantages. For
singular values with multiplicity larger than one, it provides orthogonal singular vec-
tors, and it precludes convergence of some of the triplets in the finest-level oy, U, and
V, to spurious duplicate triplets, which may occur with the os updated individually
according to Eq. (2.23).

The Ritz step proceeds as follows. We first orthogonalize the columns of U, with
respect to B using the QR decomposition, and we orthogonalize the columns of V},
with respect to C'. (Note that B = I,,, and C' = I,, on the finest level, but, in the
multiplicative phase, the Ritz procedure can in principle also be employed on coarser
levels, so we prefer to give the more general equations here.) Let U and V be the
orthogonalizations of U, and Vj, and let ¢ = span(U) and V = span(V). We seek
new u; € U, v; € V, and o; (1 < j < ny) such that

(u,Avj —0jBuj), =0 VYuel,
(v,A'uj — o, C'vj>c =0 Yvel. (3.4)

These equations express that the residuals are desired to be orthogonal (B-orthogonal
and C-orthogonal, respectively) to the spaces U and V in which we seek an improved
approximation. Eq. (3.4) can be expressed in terms of new variables y,y; € IR™* and
z,2j € IR" with u = ﬁy, v="Vz, u; = ij and v; = sz, as

<y,UtAsz —UjUtBij> =0 VyelR™,
(2 VA Uy =0, VIOV 2) =0 Vze R™. (3.5)

The following generalized eigenvalue problem of size 21, X 2ny results

0 UtAV [U'BU 0 yi |
Lok 707 [[0 ven D[5]-0 0o
According to Theorem 2.3, the eigenvalues of Eq. (3.6) occur in pairs symmetrically
about zero, and it is sufficient to consider the ny tr1plets (0j,y;,2;) with the largest
values for o; to generate new approximations (o, U Yj 1% zj) for the dominant singular
triplets on the finest level.
Note finally that, unlike the multiplicative cycles, the multigrid-Ritz additive it-

erations can converge to any required accuracy, even though, on each level, the u; are
not exactly in the range of the Ps, and the v;s are not exactly in the range of the Qs.

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 15

In practice, as demonstrated in the numerical tests below, the hybrid multiplicative-
additive scheme converges up to machine accuracy if desired.

Algorithm 4: AMG_SVD main algorithm
(Ub, Vb, Ub) ZAMG_SVD(A, Ny, nt)
input variables: matrix A; desired number of singular triplets n,; number of
test vectors ny
output variables: n;, boot singular triplets stored in Uy, V;, and o3

initialize U, V; by generating n; random test vector pairs;

initialize Uy, V3, 0 to np to dummy singular triplets (they are not used in the
downward part of the first multiplicative cycle);

initialize B and C to identity matrices;

// multiplicative cycles
repeat
(Uy, Vo, 0p, Uz, Vi) =AMG _SVD_mult(Uy, V3, o3, U, V35 A, B, C)

for a fixed number of times, or until convergence stagnates;

// note: the hierarchy of matrices {A;},{B;},{Ci} and
interpolation operators {P},{Q;} for all multigrid levels I
generated in the last multiplicative cycle is stored for use
in the additive cycles below

// additive cycles
repeat

(Uy, Vo, 00) =AMG_SVD_add (U, Vj, 0p)
until desired convergence;

3.4. Combined Algorithm with Multiplicative and Additive Cycles. Al-
gorithm 4 describes how the multiplicative and additive cycles are combined in the
overall AMG_SVD algorithm for computing singular triplets.

We briefly discuss the cost of the various cycles. In terms of relaxations, the first
multiplicative cycle requires 2 (n; pus + np pp) vector relaxations on each level, and the
subsequent multiplicative cycles require 2 (n; uy + 2np up) vector relaxations. The
additive cycles require 4 n;, pp vector relaxations on each level. In the multiplicative
cycles, however, the additional cost of forming the coarse-level matrices A., B, and
C., and determining the interpolation operators P and @), is significantly larger than
the relaxation cost, which makes the multiplicative cycles significantly more expensive
than the additive cycles.

We conclude this section by briefly discussing the relationship of the algorithmic
framework of Algorithm 4 to other methods in the literature. Most traditional multi-
grid schemes for linear systems Au = f use additive cycles, with fixed interpolation
operators P determined either with the use of geometric grid information, or with the
use of a-priori information about smooth error components (so-called standard AMG
interpolation, see [8, 18]).

Recently, hybrid multiplicative-additive methods have been developed for linear
systems Au = f that follow the general framework of Algorithm 4, and extend the

16 H. DE STERCK

applicability of AMG methods to systems for which the smooth error components do
not satisfy the standard AMG interpolation assumptions. These methods include the
adaptive AMG and adaptive smoothed aggregation methods of [13, 14], which develop
self-learning interpolation operators in an initial multiplicative set-up phase. Another
class of methods for linear systems Au = f that follow a similar hybrid multiplicative-
additive approach are the bootstrap AMG methods [10, 12]. Extending and improving
these methods is an active area of research [15, 16, 34].

Stand-alone multiplicative schemes have been used extensively in the context of
Markov chains [26, 21, 22, 42], and recently these multiplicative schemes have been
combined with additive cycles [5, 43, 23] in a way similar to Algorithm 4.

For SPD eigenvalue problems, most existing multigrid methods use additive schemes,
with interpolation operators P determined geometrically or by the standard AMG
approach [7, 6, 31]. Other approaches use multiplicative schemes [8, 10, 31, 28, 12].
Combining multiplicative and additive cycles for SPD eigenvalue problems has not
been explored before, and is a contribution of this paper, along with applying this
approach to finding dominant and minimal singular triplets.

4. AMG SVD Algorithm: Specialization and Extension. In this section
we discuss the specialization of the dominant singular triplet algorithm for rectangular
matrices to the case of square matrices and symmetric matrices (dominant eigenpairs),
and its extension to the case of minimal singular triplets (and eigenpairs).

4.1. Singular Triplets of Square Matrices. A possible simplification for
square, nonsymmetric matrices is that interpolation operators P and @ could po-
tentially be based on A and/or A!; it does not appear to be necessary to form AA?!
and A'A, so that cost may be saved. Interestingly, if one wants to keep square matri-
ces on all levels, coarsening and sparsity patterns for P and ¢ should both be based
on either A or A?, because coarsening of A and A? may lead to different numbers of
coarse grid points (except if a coarsening method is used that is symmetric). If the
left and right singular vectors are expected to be very similar such that they can all
be fitted with reasonable accuracy by one interpolation operator, P and @ could even
be taken the same on all levels ; in that case it would also hold that B. = C. on all
levels, which can be exploited for further cost savings.

4.2. Eigenpairs of Symmetric Matrices. In the case of symmetric matrices,
the whole algorithm simplifies significantly, and becomes a combination of the min-
imal SPD eigenpair algorithms of [6], and [31] and [28, 12], extended to dominant
eigenpairs. The resulting algorithm can be formulated in terms of operators A, B and
P on all levels. This combination of a multiplicative and an additive scheme into a
hybrid method for eigenpairs has the advantages that it can converge up to machine
accuracy for multiple eigenvectors with one P, and that it is self-learning.

4.3. Minimal Singular Triplets and Minimal Eigenpairs. With just a few
small modifications, the hybrid multiplicative-additive dominant singular triplet al-
gorithm described above can also be used to compute the n;, singular triplets with
smallest singular values. All that is required is to modify the relaxation schemes, and
to select the smallest singular triplets as new boot singular triplets in the coarsest-level
solve of the multiplicative phase. The weights in the LS fitting of the test and boot
vectors is taken as the inverse of the Rayleigh quotient, see also [31, 28, 12, 5]. For the
relaxation of the n, initially random test vectors in U; and V;, we iterate on Egs. (2.6)
with o = 0 using Kaczmarz relaxation (see [41, 31, 28, 12]). Richardson iteration as
in [15] can be considered as another option for relaxation. For the relaxation of the ny

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 17

boot vectors in Uy, and V3, we iterate on Eqs. (2.19)-(2.20) (with the small os from o)
in a block GS fashion using Kaczmarz relaxation [41, 31] for the blocks. Numerical
tests show that these Kaczmarz relaxations may sometimes result in singular vector
pairs that produce a negative Rayleigh quotient. We test for this and reverse the sign
of one of the singular vectors if this happens. In the case of minimal eigenpairs of
symmetric matrices, GS relaxation on Az = 0 can be used, with Kaczmarz on coarser
levels, see [31, 28, 12]. In the numerical results reported below, we use Kaczmarz re-
laxation on all levels when seeking minimal singular triplets or eigenpairs. Note also
that, since our method is self-learning, the minimal SPD eigenpair problem can in
principle also be solved simply by shifting the operator such that the spectrum ends
up at the other side of the origin, and then the algorithm for dominant eigenpairs can
be used (and vice versa).

5. Numerical results. In this section, we present numerical results illustrating
how our proposed method performs. We discuss four different test problems that
cover the different cases of rectangular matrices, square nonsymmetric matrices, and
symmetric matrices.

5.1. High-Order Finite Volume Element Laplacian on Unit Square. In
the first test problem, we seek a few extremal singular triplets of a square, nonsym-
metric matrix that results from a finite volume element (FVE) discretization with
quadratic polynomials of the standard Laplacian operator on the unit square with
Dirichlet boundary conditions, see [44, 1]. The operator is discretized on a structured
triangular grid. For this problem, the FVE method with linear polynomials gives a
discretization that is exactly the same as the Galerkin finite element discretization
with linear polynomials. For higher orders, however, the FVE discretization is slightly
non-symmetric.

ot % -1 ot -* -1}
-+-2 -2
-3] -3
ot g5y —21 &) H
‘&% -v-4 R -v-4
,Qg -%-5 =N -»-5
_ab 23 Y _al i
o Pagitrire. O B
= -e-7 . \, -e-7
- % el 1)
8 x 5 By ™
o *Q\ o A&y LN
£ -8 \ \Q\xx 1 £ -8 RS A 1
Ky ¥\ © N .
2 \‘5%@\ 2 B[R W
—10f %gvz\b\ XX - -10} W& % 5. 4
\ \kqgw X \\?\‘\ \ay\ AN
Eyhoy X ALY ¥,
-12p WRRem T 1 -12f AN e g
X‘f\\m LA X RS %
-14f AR tn I "o dips s binapires
\ Y - N = = &
ettt o iaiiiitiaii e i
_16 . . . P N A2 LS _16 v
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30
V-cycles V-cycles

Fi1c. 5.1. Largest (left panel) and Smallest (right panel) Singular Values for High-Order Finite
Volume Element Laplacian on Unit Square (square, nonsymmetric matriz). Convergence plots for
the eight largest and smallest singular values (base-10 logarithm of relative error in singular values
as a function of number of V-cycle iterations). In the left panel, singular values are labeled with
decreasing magnitude (label 1 denotes the largest singular value). In the right panel, singular values
are labeled with increasing magnitude (label 1 denotes the smallest singular value). The V-cycles to
the left of the vertical lines are multiplicative, and the V-cycles to the right of the vertical lines are
additive. For the left panel, we have executed 15 multiplicative cycles to clearly illustrate the stalling
convergence of the multiplicative cycles. For practical application of the method, a smaller number
of multiplicative cycles (for example, 5 or so) would suffice, as in the right panel.

Fig. 5.1 shows convergence results for approximating the largest and smallest

18 H. DE STERCK

singular values for a matrix with m = n = 961 (31 x 31 internal grid points). We
show the base-10 logarithm of the relative error in the calculated singular values

error = |Tezact — U“pp“m', (5.1)

Oezact

as a function of the number of V-cycles. Here, the values o¢y 40t are high-accuracy
approximations obtained by Matlab’s built-in SVD algorithms. In the left panel of
Fig. 5.1 (largest singular values), there are 15 multiplicative (setup) cycles followed
by 25 additive (solve) cycles. Note that, for this simulation, we have executed 15
multiplicative cycles to clearly illustrate the stalling convergence of the multiplicative
cycles. For practical application of the method, a smaller number of multiplicative
cycles would suffice, as in the right panel of Fig. 5.1 (smallest singular values) where 5
multiplicative cycles are employed. We have calculated n, = 8 dominant or minimal
singular triplets, using n; = 5 initially random test vectors. We used u; = 4 relax-
ations on the test vectors, and u, = 4 relaxations on the boot vectors, on all levels.
The coarsening strength parameter was chosen as 6 = 0.05. Coarsening and sparsity
patterns for both P and @ are determined using A, thus guaranteeing square matrices
A on all levels.

The figures show that the extremal singular triplet algorithm carries out the task
that it was designed for: it collectively calculates several singular values up to machine
accuracy in a modest number of multigrid V-cycles, and this both for the dominant
triplet and the minimal triplet case. The initial, multiplicative phase approximately
determines singular triplets starting from initially random test vectors, but conver-
gence stagnates after a few operations because it is limited by the accuracy by which
the singular vectors are represented collectively by single interpolation operators. A
second, additive phase succeeds in driving the error to machine accuracy, using the
(fixed) interpolation operators that were derived in the last multiplicative iteration.
This shows that the approach is able to fit interpolation to the relevant vectors both
for the cases of dominant and minimal triplets.

For conciseness, we will limit ourselves to plot the relative errors in singular
values or eigenvalues in this paper. Convergence of these properties goes along with
high-accuracy convergence of other quantities like residuals, angles between exact and
approximate singular vectors, orthogonality measures between singular vectors, etc.
All these quantities also converge with high accuracy in our numerical tests, but they
are not shown for conciseness. Since our code is implemented in Matlab and is not
optimized, we do not directly compare with other, optimized codes in terms of CPU
time, but instead focus on reporting convergence numbers as a function of numbers
of V-cycle iterations, which gives valuable insight in the effectiveness of our method,
since the cost of a V-cycle is approximately linear in the number of unknowns, m 4+ n.

For the case of dominant singular triplets (left panel of Fig. 5.1), the calculation
uses four levels, with coarsest size 45 x 45. For the case of minimal singular triplets,
five levels were obtained, with a coarsest grid of size 51 x 51. See Table 5.1 for
approximations of the singular values calculated. It can be seen that the singular
values lie very close to each other, which makes this a difficult type of problem for
many iterative singular value decomposition algorithms. Nevertheless, our algorithm
converges to machine accuracy in a moderate number of V-cycles. Note also that
the non-symmetry of the triangulation has lifted the degeneracy of the continuous
operator, which has eigenvalues with multiplicity larger than one; no singular values
with multiplicity larger than one arise.

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 19

An important measure for cost and scalability of AMG methods is the operator
complexity. For our SVD algorithm, we define operator complexity as the sum of the
number of nonzeros in operators A, B and C' on all levels, divided by the number of
nonzeros in A, B and C on the finest level. (For square symmetric A, we only count
the nonzeros in operators A and B.) The operator complexity for the simulations
of Fig. 5.1 are 3.35 (left panel) and 4.72 (right panel). Only counting the nonzeros
in operators A gives complexity values of 2.51 and 3.19, respectively, so it is clear
that the need to consider matrices B and C' increases the operator complexity in
our SVD algorithm compared to standard AMG operator complexity numbers (which
only involve A).

FVE lge FVE sm FD lge FD sm Graph lge | Graph sm | Term-Doc
7.9791546 | 0.01924183 | 7.9818877 | 0.01811231 | 13.509036 | 0.01000000 | 84.148337
7.9491729 | 0.04794913 | 7.9548012 | 0.04519876 | 13.352613 | 0.03456116 | 64.707532
7.9468326 | 0.04801773 | 7.9548012 | 0.04519876 | 13.350454 | 0.03901593 | 55.976437
7.9172573 | 0.07655365 | 7.9277148 | 0.07228521 | 12.472837 | 0.07966567 | 50.265499
7.8965349 | 0.09557904 | 7.9099298 | 0.09007021 | 12.416200 | 0.09490793 | 49.265360
7.8960066 | 0.09558103 | 7.9099298 | 0.09007021 | 11.874669 | 0.09918138 | 45.242034
7.8692955 | 0.12359047 | 7.8828433 | 0.11715666 44.400811
7.8616683 | 0.12415144 | 7.8828433 | 0.11715666 41.772394
TABLE 5.1

Singular values and eigenvalues sought for each problem (high-accuracy approzimations).

ot -*-1| ot -+-1Y
—+-2 —+-2
ol -8-3 1 ol -8-3 i
2 ‘Q -v-4 2 § -v-4
I g%g o5 | Bpd: -+ 5|
-+ ¢M B e o
o BRY o -e-7 . x —e-7
2 -6 SR X _.-gf £ -6f A —_—
: D e 2 W 8
Q > o A ON
2 -8 X’K Eg, So ©og *ox. 2 -8f ARAYSS
;_'; **i VV:GQQ T . % *\ﬁ\\g\s\é\
= _anl o oV &, Fox = _aal RRNAY X
1 L R
R, 8 vote, Soq. VAR
-12r xv_ 9%y V\;V&Q . -121 N h\ NN
MM MY Y ° WA m QR
o e LN AN \
14t Nk, el TRege 14t Vi S ;& §iseE 4
S . SeT
Y*F Lk % A .
Xw*%%%ﬁ Z!%?%W \:’fzg*a/sg(%% é %:é\ ggh ,
-16 . . . L ~16 . Y . ¥ Ly
0 5 10 15 20 25 30 35 40 45 () 5 10 15 20 25 30 35
V-cycles V-cycles
Fic. 5.2. Largest (left panel) and smallest (right panel) Eigenvalues for Finite Difference

Laplacian on Unit Square (square, symmetric matriz). In the left panel, eigenvalues are labeled with
decreasing magnitude (label 1 denotes the largest eigenvalue). In the right panel, eigenvalues are
labeled with increasing magnitude (label 1 denotes the smallest eigenvalue). The V-cycles to the left
of the vertical lines are multiplicative, and the V-cycles to the right of the vertical lines are additive.

5.2. Finite Difference Laplacian on Unit Square. We now consider the
case of a simple finite-difference (FD) Laplacian with Dirichlet boundary conditions
discretized with a 5-point stencil on a unit square with a Cartesian grid. This leads to
a symmetric matrix (it is SPD), and we seek minimal and dominant eigenpairs. We
use strength of connection 6 = 0.06 and seek n, = 8 minimal or dominant eigenpairs,
using ny = 6 initially random test vectors. We use u; = 8 relaxations on the test
vectors, and pp = 4 relaxations on the boot vectors. We perform 5 multiplicative

20 H. DE STERCK

cycles. The problem size is m = n = 1024 (32 x 32 internal grid points). Table 5.1
shows that there are eigenvalues with multiplicity larger than one for this symmetric
discretization.

The right panel of Fig. 5.2 shows convergence results for the case of minimal
eigenpairs. Five levels are used and the coarsest grid is of size 64 x 64. These results
can be compared with the results of the additive-only eigenvalue method of [6] and
the multiplicative-only eigenvalue methods of [31] and [28, 12]. Our additive phase
is like the method in [6], but in that paper standard AMG interpolation is used. We
appear to get similar results, but our method is more general and can also be applied
to seeking dominant eigenpairs and to a wider set of problems due to its self-learning
capacity. Our multiplicative phase is like the methods in [31] and [28, 12]. We see
that convergence stagnates at the level of accuracy by which interpolation collectively
represents the desired eigenvectors. In [31] interpolation is made more accurate to
improve the accuracy level at which the collective multiplicative phase stagnates.
As explained in that paper, the accuracy that can be obtained in this way may be
sufficient for some applications, for example, due to unavoidable discretization errors
in PDE problems, or due to data and model uncertainties in data analysis tasks. In our
approach, we show that, if desired, higher accuracy can be obtained by combining the
multiplicative and additive approaches, resulting in a method that is flexible enough
to deal efficiently with a variety of problems due to its self-learning capabilities. The
left panel of Fig. 5.2 gives convergence results for the case of dominant eigenpairs.
Four levels are used and the coarsest grid is of size 52 x 52. The results show that
our hybrid multiplicative-additive method can also compute dominant eigenpairs,
extending the approaches for minimal eigenpairs from [6, 31, 28, 12] to dominant
eigenpairs. Convergence in the additive phase appears somewhat slower than for the
minimal eigenpairs case. This may be due to the fact that we employ Kaczmarz
relaxation for the minimal eigenpairs, which is more efficient but also more expensive
than the inexact power method relaxation used for the dominant eigenpairs case
(Sec. 2.5), or it may be due to differences in the LS weighting. It is interesting
to note that the approach in [6] which uses standard AMG interpolation, can also
be extended to calculating dominant eigenpairs simply by changing the signs of all
interpolation weights for the F-points. The resulting interpolation operators turn out
to be good fits for the most oscillatory modes, and can be used in an additive scheme to
approximate the dominant eigenpairs. Also, in our experience, applying our algorithm
with adaptive interpolation operators P to find minimal eigenpairs of the standard
FD Laplacian leads to interpolation operators P and multigrid convergence behaviour
that are almost identical to the AMG eigensolver methods of [6] with standard AMG
interpolation operators. Since our method requires a few initial multiplicative V-
cycles to compute the interpolation matrices which are relatively expensive, it is more
efficient for this particular problem to use only additive V-cycles with standard AMG
interpolation, as in [6]. Operator complexities for the simulations of Fig. Fig. 5.2
when taking A and B into account are 3.13 (left panel) and 5.38 (right panel). (They
are 2.29 and 3.64 when taking only A into account.)

Finally, Fig. 5.3 gives convergence results for a modification of the finite-difference
Laplacian test problem, namely, the advection-diffusion problem

—Au+o7-Vu=f, (5.2)

with @ = (1,2) and parameter o controlling the strength of advection. Note that the
advection velocity is not aligned to the grid. We discretize (5.2) with finite differences

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 21
ol ‘ ‘ ‘ ‘ ‘ ‘ 1] ol ‘ ‘ ‘ ‘ ‘ ‘ 1]l
2 2
L -=-3] ol -=-3]
- . o 2 ea
~s-5 —s-5
_4—%} e _al B
% o7 o7
I N . gl B -ef gl

relative error
| |
I =)
N o @

I
i
S

relative error

I
1N
o

I
LN
N

I
i
S

: e g *
16 : 2 16 Y gg{i‘ggt#
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
V-cycles V-cycles
o -* -1} o —* -1}
-2 -2
L -=-3 ix -5-3
—2r Q[x i -2r i
L e e v -4
a ~ -+-5 PN -¢-5
_al b ~ i _al % i
o Op T -¢-6 hip -¢-6
_ S . B _ B
5 \\\\\ \g wk x o WQ
o t Q > x o
% -8r ‘\b; % % x“x 12 -8f
© RN © ~ K<}
] by % N Yo]
-10 ANy %a “x 1 -10f
\ S x
8 kY “o *x
_12+ 3 \ o, *s =
12 Y ‘{9 \R 2a > 12
sy %o
-14f X § % o 1 -l4p
¥k Rk B L w]
TPecE e 2 & %gfwgé
_16 . . L2t Canadh ARSI R _16
0 5 10 15 20 25 30 35 40 5 10 15 20 25 35 40

V-cycles

V-cycles

Fi1c. 5.3. Smallest Singular Values for Finite Difference Advection-Diffusion on Square (square,
nonsymmetric matrices). The advection vector is not grid-aligned, and the parameter controlling
the strength of advection in (5.2), o, s varied as follows: o = 0.01 (top left panel), o = 0.1 (top
right), o = 1 (bottom left), and o = 10 (bottom right). Convergence plots are shown for the eight
smallest singular values. Singular values are labeled with increasing magnitude (label 1 denotes the
smallest singular value). In each plot, the 8 V-cycles to the left of the vertical line are multiplicative,
and the 37 V-cycles to the right of the vertical line are additive.

on a square Cartesian grid with 16 x 16 interior points and grid size parameter h = 1.
The advection terms are discretized using the standard first-order accurate upwind
discretization. This test problem is interesting, because for relatively large o it leads
to highly non-symmetric matrices that are a challenge for many multigrid algorithms.
In Fig. 5.3 we show convergence plots for computing minimal singular triplets of
the operator of test problem (5.2) for varying parameter o, obtained with the same
algorithm settings as for the finite-difference Laplacian problem. The results show
that our proposed method is able to efficiently compute minimal singular triplets for
this non-grid-aligned advection-diffusion problem, also for the strongly non-symmetric
matrices that are associated with strong advection. For these simulations (in order of
increasing o = 0.01, 0.1, 1, 10), operator complexities are 4.54, 4.18, 3.80 and 2.71
when taking A, B and C' into account. They are 2.68, 2.50, 2.33 and 2.48 when only
counting the nonzeros in A.

5.3. Planar Random Triangulation Graph Laplacian. The next test prob-
lem is the graph Laplacian operator of a planar random graph that is obtained by
placing points uniformly random in the unit square and determining their Delauney
triangulation graph. With A the adjacency matrix of the graph, the graph Laplacian,

22 H. DE STERCK

or -1y of & 1l
S %y i
3 S Y o3|
NEN s 7, o
RN B I
ab v eooq DY —4r N Y _s-6]
alm&g%ﬁ%w@ ©-6 %, Vg, °-6
. o = N
§ -o RS TIN 1 8 -6 fy oiey 1
T s Vg 51 R A S W
g I 66699 g Y Vvs’s\§9x>
Z -8 %‘l\a O”*ow 2 -8 *:m Vg ‘u\ax:&() 1
© ‘W\ ¢ ° R AN SE M
-10f W * 1 —10t W W o
By, * 8 W s\o$
LR N = N
-12r R 1 -12 % g v]
W X SR -
W *, ¥s Yy
_14} k —14} AN \(*E‘gflﬂ{l—D—D*E»EFI
é\g e s R
16 . \$+.,v ¥ R n SN Wi%‘giﬁ‘ . ‘ ‘ ‘ ‘ ‘ **T x
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
V-cycles V-cycles

FiG. 5.4. Largest (left panel) and Smallest (right panel) Eigenvalues for Planar Random Tri-
angulation Graph Laplacian (square, symmetric matriz). In the left panel, eigenvalues are labeled
with decreasing magnitude (label 1 denotes the largest eigenvalue). In the right panel, eigenvalues
are labeled with increasing magnitude (label 1 denotes the smallest eigenvalue). The V-cycles to
the left of the vertical lines are multiplicative, and the V-cycles to the right of the vertical lines are
additive.

of -1
Y
—2t g«: * -=-3
4 %Y -v-4
Wk \‘v‘m ~+-5
=4 Ny Ree e 00
5. -0-6
_ hw%@:&vg%bﬁa
e -6r ! %o
5 e o
.g -8 \g‘\ A
g g)
3 i %
[|
-10 W s
A N
_12, ? \\\ &
NN &Q
! *Z\a
-14p ‘ L L e &H»w}se
&ﬁﬁm&xihﬂﬁﬂﬂf
_16 . .
0 5 10 15 20 25 30 35
V-cycles

Fia. 5.5. Same as Fig. 5.4 left panel, but during the additive phase, whenever one or more of
the eigenvalues reach a relative error converge tolerance of le-14, the interpolation operators are
redetermined and preferentially fitted to the unconverged eigenpairs. This improves the convergence
of the eigenpair that is slow to converge in the left panel of Fig. 5.4.

A, can be constructed by setting A = —A and placing the row sums of A on the diago-
nal. This results in a symmetric semi-definite matrix (it has one vanishing eigenvalue),
and we seek dominant and minimal eigenpairs. This problem is interesting as a test
case because it is unstructured, contrary to the previous two problems which derive
from structured grids. Graph Laplacian matrices are of interest in data analysis tasks
[31]. We use strength of connection § = 0.05 and seek n, = 6 dominant or minimal
eigenpairs, using n; = 6 initially random test vectors. We use u; = 1 relaxations on
the test vectors, and up = 8 relaxations on the boot vectors. The problem size is
m =n = 1024.

The right panel of Fig. 5.4 shows convergence results for the case of minimal
eigenpairs. Three levels are used and the coarsest grid is of size 59 x 59. The operator
is shifted by 0.01 to avoid problems in representing the relative error in the small-
est eigenvalue (which vanishes for the unshifted operator). Convergence behavior is

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 23

satisfactory, but convergence in the additive phase is not as good as for the finite
difference Laplacian on a structured grid (Fig. 5.2 right panel), even though we dou-
bled pup to 8. This is most likely due to the fact that the minimal eigenvectors of the
unstructured problem are less regular and less similar to each other, such that they
are not represented as well by the collective interpolation operators. For this reason,
we only sought six eigenpairs for this problem. We reduced the number of test vector
relaxations because the eigenvalues are less clustered for this problem, and too many
test vector relaxations quickly make the set of test vectors too linearly independent
for the LS fits. The operator complexity for this simulation when taking A and B
into account is 1.60, and it is 1.41 when taking only A into account.

The left panel of Fig. 5.4 gives convergence results for the case of dominant eigen-
pairs. Three levels are used and the coarsest grid is of size 77 x 77. The operator
complexity for this simulation when taking A and B into account is 1.65, and it is 1.45
when taking only A into account. It can be seen that the algorithm converges slowly
for the sixth eigenpair. When one or more of the eigenpairs sought converge signifi-
cantly more slowly than the others, the following strategy can be followed to improve
their convergence. In the additive phase, once some eigenpairs have converged beyond
a pre-specified tolerance, one can redetermine the interpolation operators in a way to
preferentially fit the eigenpairs that have not converged yet. Fig. 5.5 shows that this
can improve the convergence of lagging eigenpairs. For the convergence curves shown
in Fig. 5.5, whenever one or more of the singular values reach a relative error converge
tolerance of le-14, we redetermine the interpolation operators (basically, by executing
one downward sweep of the multiplicative phase), and reduce the weight of the al-
ready converged boot vectors and the test vectors by a factor of 1000 in the LS fitting
process. This can speed up the convergence of the remaining eigenpairs, as shown in
Fig. 5.5. (Note that we executed 10 multiplicative cycles for this problem because
redetermining the interpolation operators in the case of just 5 initial multiplicative
cycles did not lead to significant improvement.)

5.4. Medline Term-document Matrix. The final test matrix is a real term-
document matrix, namely, the MEDLINE data set downloaded from the Text to
Matrix Generator website (http://scgroup20.ceid.upatras.gr:8000/tmg). The rows of
this matrix represent terms and the columns represent documents. Matrix element
(4,7) counts how many times term ¢ occurs in document j. The matrix is sparse
(less than 1% nonzeros). Latent semantic indexing determines concepts in documents
by calculating dominant singular triplets of term-document matrices [19], so we seek
to compute dominant singular triplets. The matrix has size m = 5735, n = 1033.
We use strength of connection § = 0.03 and seek n, = 8 dominant singular triplets,
using n; = 14 initially random test vectors. We used p; = 1 relaxations on the test
vectors, and pp = 4 relaxations on the boot vectors. We perform 3 multiplicative
cycles followed by 32 additive cycles.

Fig. 5.6 shows convergence results for approximating the eight dominant singular
triplets. The calculation uses four levels, and the coarsest grid is of size 415 x198. The
figure shows that our method is successful in calculating the eight dominant singular
triplets, with good convergence and high accuracy. The operator complexity for this
simulation when taking A, B and C into account is 2.73, and it is 2.64 when taking
only A into account. The importance of this proof-of-concept calculation is that it
indicates that our approach is flexible enough to deal with this kind of problem that
is new to multigrid (as far as we are aware). The self-learning feature of our method
is able to adapt to the singular vectors that are relevant in this application, which

24 H. DE STERCK

is interesting by itself, since our development is an extension of algebraic multigrid
concepts that were developed for PDEs, in which the relevant vectors are of a different
nature. Similarly, we have obtained the result in Fig. 5.6 using a standard PDE-
oriented AMG coarsening approach, and obtain results that appear to converge quite
satisfactorily. It has to be noted, though, that the dominant singular values of term-
document matrices may have larger gaps (see Table 5.1), especially for the very largest
ones, which may make these problems somewhat easier for iterative methods than, for
example, the FVE problem of Sec. 5.1, which has small gaps between the dominant
(and minimal) singular values that decrease with increasing problem size. While we
expect our method to be competitive for the latter type of problems, it remains to be
investigated in future work how competitive our general approach can be made for
problems like term-document matrices. For one, it would require to consider dedicated
special-purpose coarsening methods. Forming AA? and A*A is unacceptable in terms
of cost for most term-document matrices and more research needs to be done to
coarsen these matrices effectively. (We have already developed such special-purpose
coarsening mechanisms for certain scale-free graphs, see [20], and see also [11, 35] for
promising more general approaches.) In the case of rectangular matrices, it may be
possible to come up with methods to coarsen the row and column variables based on
A and A? directly (rather than using A A* and A A), which may be feasible for some
applications, guided by the application-dependent interpretation of the variables and
operator matrix coefficients, and is kept for future work. Nevertheless, the proof-of-
concept results presented here already show promise and illustrate the versatility of
our general approach to calculating singular triplets.

—v-1l)
4o
—
-v-4
_e-5
-o-6|
= -e-7
2 ---8]]
(LV
[
2
8
[
\(\
x
' 1
e FEt g ,//é ' 3
|
_16 . . X . . !
0 5 10 15 20 25 30 35

V-cycles

F1G. 5.6. Largest Singular Values for Medline Term-document Matriz (rectangular). Singular
values are labeled with decreasing magnitude (label 1 denotes the largest singular value). The 3
V-cycles to the left of the vertical line are multiplicative, and the 32 V-cycles to the right of the
vertical line are additive.

5.5. Discussion. The above numerical results show that the proposed combined
multiplicative-additive approach is successful in calculating extremal singular triplets
and eigenpairs, with high accuracy obtained in a modest number of V-cycles for a
variety of problems. However, more research needs to be done to make the method
more black-box and robust. There are quite a few parameters to be chosen, and
success is sometimes sensitive to careful choice of these parameters.

For example, in the multiplicative phase, it is not always easy to find a good
choice for the number of relaxations to be done on the test vectors. Too many re-

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 25

laxations may lead to linear dependence (and how many is too many depends on
the a priori not necessarily known gaps in the extrema of the spectrum), and not
enough relaxations may lead to coarse-level problems that do not identify the correct
singular triplets. Similarly, the choice of the weight factors in the LS fitting is also
not straightforward and results may depend on it significantly. These aspects need
to be improved. Similarly, in the additive phase, the V-cycles may not converge for
some of the tentative triplets, and there is no guarantee that no triplets are missed
(even though we have only rarely observed this). The current multigrid-Ritz addi-
tive phase could be replaced by methods of preconditioned inverse iteration, locally
optimal block preconditioned conjugate gradient, or Rayleigh quotient multigrid type
[6, 29, 25]. Also, compatible relaxation processes may be considered for coarsening
[11, 35).

6. Conclusion. We have described a new algebraic multilevel framework for
computing dominant and minimal singular triplets. As far as we are aware, this is
the first algebraic multigrid method that directly tackles the SVD problem, without
working on A! A or the augmented symmetric system. We combine a multiplicative
phase with an additive phase to obtain a self-learning method that can converge to
machine accuracy for multiple singular vectors represented collectively using single
interpolation operators. The self-learning capability of the algorithm makes it appli-
cable to many types of problems, both for dominant and minimal triplets. We have
identified a generalized SVD decomposition of a matrix A relative to two SPD matri-
ces B and C of compatible dimensions as the problem to be solved on the coarse levels
of our multilevel method, and have stated its existence and uniqueness properties and
discussed relevant solution methods. Our multiplicative phase follows the BAMG
framework, as in [31, 28, 12] for SPD eigenproblems, and our additive phase follows
a multigrid-Ritz strategy, as in [6] for SPD eigenproblems. The specialization of our
combined method to SPD matrices offers a new extension of those existing AMG
eigensolvers, that allows for highly accurate convergence and is flexible due to its self-
learning nature. Ongoing work is aimed at improving the parameter-independence
and robustness of components of the algorithm, and alternative building blocks can
be considered [13, 14, 6, 29, 25, 11, 35] for some of the components in the algorithmic
framework. Numerical tests using our current implementation showed that conver-
gence to high accuracy can be obtained in a modest number of V-cycles, and the
versatility of the approach was illustrated by applying it to problems from different
domains.

Acknowledgments. This work was supported by NSERC of Canada and was
performed in part under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344. Yasunori Aoki
is acknowledged for providing the FVE test matrices. The research was conducted
during a sabbatical visit at the Algorithms and Complexity Department of the Max
Planck Institute for Informatics in Saarbruecken, whose hospitality is greatly acknowl-
edged.

REFERENCES

(1] Y. Aoki AND H. DE STERCK, Augmented High Order Finite Volume FElement Method for
Elliptic PDEs in Non-smooth Domains: Convergence Study, Journal of Computational
and Applied Mathematics, 235 (2011), pp. 5177-5187.

26

[3]

[4]

[11]
[12]
[13]
[14]

[15]

[17]

[18]

[19]

[20]

21]

22]
23]
[24]

[25]

H. DE STERCK

P. ArBENZ, U.L. HETMANIUK, R.B. LEHOUCQ, R.S. TUMINARO, A Comparison of Eigensolvers
for Large-scale 3D Modal Analysis using AMG-Preconditioned Iterative Methods, Interna-
tional Journal for Numerical Methods in Engineering, 64 (2005), pp. 204-236.

J. BAGLAMA AND L. REICHEL, Augmented tmplicitly restarted Lanczos bidiagonalization meth-
ods, SIAM J. Sci. Comput., 27 (2006), pp. 19-42.

C.G. BAKER, U.L. HETMANIUK, R.B. LEHOUCQ, AND H.K. THORNQUIST, Anasazi Software for
the Numerical Solution of Large-Scale Eigenvalue Problems, ACM Trans. Math. Softw.,
36 (2009), pp. 13:1-13:23.

M. BOLTEN, A. BRANDT, J. BRANNICK, A. FROMMER, K. KAHL, I. LivsHITS, A Bootstrap Al-
gebraic Multilevel method for Markov Chains, STAM J. Sci. Comput., 33 (2011), pp. 3425—
3446.

A. Borzl AND G. Borzi, Algebraic multigrid methods for solving generalized eigenvalue prob-
lems, International Journal for Numerical Methods in Engineering, 65 (2006), pp. 1186
1196.

A. BrRANDT, S. MCCORMICK, AND J. RUGE, Multigrid methods for differential eigenproblems,
SIAM J. Sci. Stat. Comp., 4 (1983), pp. 244-260.

A. BRANDT, S. F. McCORMICK, AND J. W. RUGE, Algebraic multigrid (AMG) for sparse matriz
equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, 1984.

A. BRANDT AND D. RON, Multigrid solvers and multilevel optimization strategies, in Multilevel
Optimization and VLSICAD, J. Cong and J. R. Shinnerl, eds., Kluwer, Boston, 2003,
pp. 1-69.

A. BRANDT, Multiscale scientific computation: review 2000, in Multiscale and Multiresolution
Methods: Theory and Applications, T.J. Barth, T.F. Chan, and R. Haimes, eds., Springer
Verlag, Heidelberg, 2001, pp. 1-96.

A. BRANDT, General highly accurate algebraic coarsening, Electronic Trans. Num. Anal., 10
(2000), pp. 1-20.

A. BRANDT, J. BRANNICK, K. KAHL, AND I. LivsHITS, Bootstrap AMG, SIAM J. Sci. Comput.,
33 (2011), pp. 612-632.

M. BRrREZINA, R. FALGOUT, S. MACLACHLAN, T. MANTEUFFEL, S. MCCORMICK, AND J. RUGE,
Adaptive smoothed aggregation (aSA) multigrid, STAM Review, 47 (2005), pp. 317-346.

M. BREZINA, R. D. FALcouT, S. MACLACHLAN, T. A. MANTEUFFEL, S. F. MCCORMICK, AND J.
W. RUGE, Adaptive algebraic multigrid, SIAM J. Sci. Comput., 27 (2006), pp. 1261-1286.

M. BREZINA, T. MANTEUFFEL, S. MCCORMICK, J. RUGE, AND G. SANDERS, Towards adaptive
smoothed aggregation (aSA) for nonsymmetric problems, SIAM J. Sci. Comput., 32 (2010),
pp. 14-39.

M. BREZINA, T. MANTEUFFEL, S. MCCORMICK, J. RUGE, G. SANDERS, AND P. VASSILEVSKI, A
generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed
aggregation (SA) multigrid, Numerical Linear Algebra with Applications, 15 (2008),
pp. 249-269.

V. HERNANDEZ, J.E. ROMAN, A. ToMmAs, AND V. VIDAL, A Survey of Software for Sparse
FEigenvalue Problems, SLEPc Technical Report STR-6, Universidad Politecnica de Valencia,
2009.

W. L. BriagGs, V. EMDEN HENSON, AND S. F. McCORMICK, A Multigrid Tutorial, SIAM,
Philadelphia, 2000.

S. DEERWESTER, S.T. Dumals, G.W. FurNAs, T.K. LANDAUER, AND R. HARSHMAN, Indexing
by latent semantic analysis, Journal of the American Society for Information Science, 41
(1990), pp. 391-407.

H. DE STErRCK, V.E. HENSON, AND G. SANDERS, Multilevel Aggregation Methods for Small-
World Graphs with Application to Random-Walk Ranking, Computing and Informatics,
30 (2011), pp. 1001-1022.

H. DE STERCK, T. A. MANTEUFFEL, S. F. McCorMICK, K. MILLER, J. PEARSON, J. RUGE, AND
G. SANDERS, Smoothed aggregation multigrid for Markov chains, STAM J. Sci. Comput.,
32 (2010), pp. 40-61.

H. DE STERCK, T.A. MANTEUFFEL, S.F. McCorMICK, K. MILLER, J. RUGE, AND G. SANDERS,
Algebraic Multigrid for Markov Chains, SIAM J. Sci. Comput. 32, (2010), pp. 544-562.

H. DE STERCK, K. MILLER, E. TREISTER, AND I. YAVNEH, Fast multilevel methods for Markov
chains, Numerical Linear Algebra with Applications, 18 (2011), pp. 961-980.

G.H. GorLuB AND C.F. VAN LOAN, Matriz Computations, Johns Hopkins University Press,
Baltimore, Second Edition, 1989.

U. HETMANIUK, A Rayleigh quotient minimization algorithm based on algebraic multigrid, Nu-
mer. Linear Algebra Appl., 14 (2007), pp. 563-580.

ALGEBRAIC MULTIGRID FOR SINGULAR TRIPLETS 27

[26] G. HORTON AND S.T. LEUTENEGGER, A multi-level solution algorithm for steady-state
Markov chains, in ACM SIGMETRICS Performance Evaluation Review 22, http://portal.
acm.org/citation.cfm?id=183019.183040.

[27] L1.T. JOLLIFFE, Principal Component Analysis, Springer, Berlin, 2002.

(28] K. KaHL, Adaptive Algebraic Multigrid for Lattice QCD Computations, PhD thesis, University
of Wuppertal, 2009.

[29] A.V. KNYAZEV, Toward the optimal preconditioned eigensolver: Locally optimal block precon-
ditioned conjugate gradient method, STAM J. Sci. Comput., 23 (2002), pp. 517-541.

[30] E. KokiopourLou, C. BEkAS, AND E. GALLOPOULOS, Computing smallest singular triplets with
implicitly restarted Lanczos bidiagonalization, Applied Num. Math., 49 (2004), pp. 39-61.

[31] D. KUsHNIR, M. GALUN, AND A. BRANDT, Efficient multilevel eigensolvers with applications
to data analysis tasks, IEEE Trans. Pattern Anal. and Machine Intelligence, 32 (2010),
pp. 1377-1391.

[32] R.M. LARSEN, Lanczos Bidiagonalization With Partial Reorthogonalization, Technical Report
ISSN 0105-8517, Department of Computer Science, University of Aarhus, 1998.

[33] 1. LivsHITS, One-Dimensional Algorithm for Finding Eigenbasis of the Schrdinger Operator,
SIAM J. Sci. Comput., 30 (2008), pp. 416-440.

[34] T. MANTEUFFEL, S. McCORMICK, M. PARK, AND J. RUGE, Operator-based interpolation for
bootstrap algebraic multigrid, J. Num. Lin. Alg. Appl., 17 (2010), pp. 519-537.

[35] D. RON, R. SAFRO, AND A. BRANDT, Relazation based coarsening and multiscale graph orga-
nization, manuscript.

[36] J. W. RUGE AND K. STUEBEN, Algebraic Multigrid (AMG), in Multigrid Methods Frontiers
Appl. Math., S. F. McCormick, ed., STAM, Philadelphia, 1987, pp. 73—130.

[37] A. StatHOPOULOS AND J.R. McCowmBS, PRIMME: preconditioned iterative multimethod eigen-
solver methods and software description, ACM Trans. Math. Softw., 37 (2010), pp. 21:1—
21:30.

[38] W. J. STEWART, An Introduction to the Numerical Solution of Markov Chains, Princeton
University Press, Princeton, NJ, 1994.

[39] K. STUBEN, Algebraic multigrid (AMG): an introduction with applications, in : U. Trottenberg,
C. Oosterlee and A. Schiiller, eds., Multigrid, Academic Press, 2001.

[40] Y. Taxkanasui, A Lumping Method for Numerical Calculations of Stationary Distributions of
Markov Chains, Research report B-18, Department of Information Sciences, Tokyo Insti-
tute of Technology, 1975.

[41] K. TANABE, Projection method for solving a singular system of linear equations and its appli-
cations, Numerische Mathematik, 17 (1971), pp. 203-214.

[42] E. TREISTER AND I. YAVNEH, Square and stretch multigrid for stochastic matriz eigenproblems,
Numer. Linear Algebra Appl., 17 (2010), pp. 229-251.

[43] E. TREISTER AND I. YAVNEH, On-the-fly adaptive smoothed aggregation multigrid applied to
Markov chains, STAM J. Sci. Comput., 33 (2011), pp. 2927-2949.

[44] A. VoOGEL, J. XU AND G. WITTUM, A generalization of the vertez-centered finite volume scheme
to arbitrary high order, Computing and Visualization in Science, 13 (2010), pp. 221-228.

