
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Iterant Recombination with One-norm Minimization for
Multilevel Markov Chain Algorithms via the Ellipsoid Method

Hans De Sterck · Killian Miller · Geoffrey Sanders

Received: date / Accepted: date

Abstract Recently, it was shown how the convergence

of a class of multigrid methods for computing the sta-

tionary distribution of sparse, irreducible Markov chains

can be accelerated by the addition of an outer iteration
based on iterant recombination. The acceleration was

performed by selecting a linear combination of previous

fine-level iterates with probability constraints to min-
imize the two-norm of the residual using a quadratic

programming method. In this paper we investigate the

alternative of minimizing the one-norm of the residual.
This gives rise to a nonlinear convex program which

must be solved at each acceleration step. To solve this

minimization problem we propose to use a deep-cuts

ellipsoid method for nonlinear convex programs. The
main purpose of this paper is to investigate whether an

iterant recombination approach can be obtained in this

way that is competitive in terms of execution time and
robustness. We derive formulas for subgradients of the

one-norm objective function and the constraint func-

tions, and show how an initial ellipsoid can be con-
structed that is guaranteed to contain the exact solution

and give conditions for its existence. We also investigate

using the ellipsoid method to minimize the two-norm.

Numerical tests show that the one-norm and two-norm

Hans De Sterck
Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada
E-mail: hdesterck@uwaterloo.ca

Killian Miller
Department of Applied Mathematics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada
E-mail: k7miller@uwaterloo.ca

Geoffrey Sanders
Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, PO Box 808, Livermore, CA 94551
E-mail: sanders29@llnl.gov

acceleration procedures yield a similar reduction in the

number of multigrid cycles. The tests also indicate that

one-norm ellipsoid acceleration is competitive with two-

norm quadratic programming acceleration in terms of
running time with improved robustness.

Keywords Markov chain · iterant recombination ·

ellipsoid algorithm · multigrid · convex programming

1 Introduction

This paper deals with the numerical computation of the

stationary distribution of large, sparse and irreducible
Markov chains. In previous work [14], we showed how

algebraic multigrid (AMG) methods for Markov chains

can be accelerated by constrained minimization of the
two-norm of linear combinations of iterants on the top

level, using a quadratic programming solver. In this pa-

per we explore the alternative of minimizing the one-
norm with positivity constraints for iterant recombina-

tion acceleration. Our main motivation is to investigate

whether a one-norm minimization method can be ob-

tained that is competitive with the constrained two-
norm minimization method of [14] in terms of compute

time and robustness with regard to sign constraints. To

do so, we develop a constrained one-norm iterant re-
combination minimization approach for Markov chains

based on the ellipsoid method. We also show how the el-

lipsoid method can be used to solve the two-norm min-
imization problem. We consider the ellipsoid algorithm

because it easy to understand and implement efficiently,

it is a robust solver for nonlinear programming prob-

lems [18], and at some levels of solution error it is com-
petitive with other general-purpose solvers [18]. There

are two additional but smaller motivations for consid-

ering one-norm minimization via the ellipsoid method

2 Hans De Sterck et al.

in this paper. First, in probability theory, the one-norm

is normally used to measure distances between proba-
bility vectors (for example, in the context of the theory

of convergence speeds of Markov chains), which is nat-

ural since probability vectors are unit vectors in the
one-norm. It is then only natural to also consider mini-

mization in the one-norm in our algorithm. And second,

one-norm minimization methods have recently raised
significant interest in emerging fields such as compres-

sive sensing, sparse representation, and sparse factoriza-

tion. Consequently the question of whether one-norm

minimization can be done efficiently as compared to
two-norm minimization is receiving greater attention,

and the current paper shows how this can be done for

the Markov chain multigrid application at hand.
For a Markov chain with a finite state space, the

problem of finding the stationary distribution may be

stated as follows. We seek the vector x ∈ R
n that sat-

isfies

Bx = x, 1T x = 1, xi ≥ 0 ∀i, (1)

where B ∈ R
n×n is column-stochastic (i.e., each col-

umn is a probability distribution) and 1 is the vector

of all ones. The matrix B corresponds to the transition
probability matrix of the Markov chain, and the con-

straints ensure that x is a probability distribution. If the

Markov chain is irreducible, then there exists a unique
solution to (1), which has strictly positive components.

This is a result of the Perron-Frobenius theorem for

irreducible nonnegative matrices [3,23]. Recall that a

square matrix A is irreducible if for any two distinct
nodes i and j in the directed graph of A, there exists

a directed path from i to j [23]. In our work we find it

beneficial to work in terms of the equivalent formulation
of (1)

Ax = 0, 1T x = 1, xi ≥ 0 ∀i, (2)

where A = I−B is an irreducible singular M-matrix.

Horton and Leutenegger were among the first to

consider numerical methods for Markov chains with
more than two levels [24,30], see also [28]. Their mul-

tilevel aggregation method, which we call AGG in this

paper, is a direct extension of the two-level iterative
aggregation/disaggregation (IAD) method for Markov

chains due to Takahashi [40], which makes use of the ag-

gregated equations proposed by Simon and Ando [38].
Since the pioneering work of Takahashi, two-level meth-

ods for Markov chains have been considered widely in

the Markov chain literature [10,31,27,9,22,29,32,33].

Two-level IAD methods have been shown to be par-
ticularly effective at solving nearly completely decom-

posable (NCD) Markov chains, where the known struc-

ture of the problem can be exploited by the aggre-

gation process, which typically results in fast conver-

gence. Historically, multilevel methods were largely dis-
regarded for Markov chain problems; however, recent

work has resulted in new multilevel methods with sig-

nificantly improved convergence behavior that is of-
ten nearly linear in the number of unknowns, even for

difficult, slowly mixing Markov chains [8,13,11,12,14,

15,42,41]. The methods in [11,12,14,15,42,41] are ba-
sically extensions of Horton and Leutenegger’s AGG

method from [24,30], with convergence properties that

are often significantly improved, especially for the case

of so-called slowly mixing Markov chains, in which the
subdominant eigenvalues approach one as the size of the

Markov chain increases. This improvement can be ob-

tained by techniques from algebraic multigrid or smoothed
aggregation, see, for example, [12,11] for detailed expla-

nations and numerical illustrations. While theoretical

convergence results are very difficult to obtain for any
of these methods, especially for general nonsymmetric

problems, in many cases empirical evidence has demon-

strated good convergence properties and robustness.

The rest of this paper is organized as follows. In
Section 2 we briefly discuss the multilevel algorithms

we will consider in this paper, and outline the con-

strained iterant recombination acceleration algorithm
from [14]. In Section 3 we give a brief description of

the ellipsoid method for nonlinear convex programs.

In Section 4 we develop a constrained one-norm iter-

ant recombination minimization approach for Markov
chains using the ellipsoid method. In particular, we de-

rive formulas for subgradients of the objective function

and the constraint functions, and as our main techni-
cal contribution we show how an initial ellipsoid can

be constructed that is guaranteed to contain the exact

solution, and give conditions for its existence. In Sec-
tion 5 numerical tests are used to investigate whether

the resulting one-norm minimization method is com-

petitive with the two-norm minimization method from

[14]. Section 6 contains concluding remarks.

2 Background

2.1 Standalone multigrid solver

Iterative solvers tend to perform poorly for slowly mix-
ing Markov chains, which are characterized by their sub-

dominant eigenvalue approaching unity in modulus as

the size of their state space increases. A subdominant

eigenvalue of a stochastic matrix B is any eigenvalue µ
of B for which

|µ| = max{|λ| : λ ∈ Λ(B), |λ| 6= 1},

Iterant Recombination for Markov Chains via the Ellipsoid Method 3

where Λ(B) is the spectrum of B. Traditional itera-

tive methods for computing the stationary probability
vector such as the power method, may be unaccept-

ably slow to converge for slowly mixing problems due to

poor damping of the error component associated with
the subdominant eigenvalue [35,39]. Multilevel meth-

ods aim to accelerate convergence for this type of prob-

lem by reducing error components with different scales
on progressively coarser levels. However, Horton and

Leutenegger’s original AGG method from [24,30] may

still perform poorly for these types of Markov chains

(see [11,12]), and large gains can often be made by the
improvements considered in [11,12,14,15,42,41].

While iterant recombination acceleration can be ap-

plied to various classes of multilevel Markov chain al-
gorithms [14], we limit the scope of this paper to two

specific multigrid methods. First, we apply iterant re-

combination to the original multilevel aggregation algo-
rithm (AGG) of [24], in which aggregates do not over-

lap. We use the neighborhood-based aggregation from

[14] in this algorithm. We primarily consider the AGG

algorithm since we want to illustrate that its perfor-
mance can be significantly improved by iterant recom-

bination, as an alternative to the more sophisticated

improvements of [11,12,14,15,42,41]. For a few of our
test problems, we also apply iterant recombination to

one of those more sophisticated algorithms, namely, the

MCAMG algorithm developed in [12]. MCAMG tends
to perform in a scalable way for many test problems,

but for those problems where it does not, we will show

that iterant recombination can be useful. The frame-

work of the MCAMG algorithm is similar to that of the
multilevel method proposed by Horton and Leuteneg-

ger [24]; however, MCAMG uses an algebraic multigrid

approach [7,43] to compute the interpolation and re-
striction operators and to define the coarse-level prob-

lem, see [12] for details.

2.2 Constrained iterant recombination acceleration

This paper considers acceleration of the convergence of

multigrid methods for Markov chains by iterant recom-

bination [6,43,44]. This process constructs an improved
approximation as a linear combination of successive ap-

proximations from previous multigrid cycles, where the

linear combination is chosen in such a way that the
residual is minimized with respect to some norm. In

this respect multigrid acceleration by iterant recom-

bination is closely related to multigrid-preconditioned

Krylov subspace iterations. For example, restarted GM-
RES with multigrid preconditioning is theoretically equiv-

alent to multigrid acceleration by iterant recombination

with a fixed number of previous iterates and two-norm

x
⋆
k

xk+1 x
⋆
k+1 xk+2 x

⋆
k+2 xk+3

· · ·

Fig. 1 Accelerated multigrid V-cycles. The black dots (•)
represent relaxation operations on their respective levels and
the open dots (◦) represent coarse-level solves. An acceler-
ation step, represented by a grey box, occurs after each V-
cycle.

residual minimization [43]. As such, the distinction be-

tween multigrid as a preconditioner and multigrid ac-
celerated by iterant recombination depends largely on

one’s perspective. In this paper we find it natural to

adopt the viewpoint of multigrid accelerated by iterant
recombination.

Suppose we have a sequence of successive fine-level

approximations {xi}i≥1 from previous multigrid cycles.
In order to find an improved approximation x⋆, we con-

sider a linear combination of the m most recent approx-

imations xk,xk−1, . . . ,xk−m+1, where m is the window

size. Let X be the n×m matrix

X = [xk−m+1, . . . ,xk−1,xk],

where xk is the most recent approximation, and assume

that each column of X is a probability distribution with

strictly positive entries (this is a property of the stan-

dalone multigrid solvers considered here). Then the im-
proved approximation is given by x⋆ = Xz⋆ for some

z⋆ ∈ R
m. This is repeated after each multilevel cycle

where x⋆ serves as the initial guess for the next cycle.
This process is illustrated in Figure 1 for multigrid V-

cycles. Now we need some criteria on which to base our

choice of z⋆, and hence x⋆. In [14] we computed z⋆ by
solving the following constrained minimization problem

minimize F(Xz) (3)

subject to Xz ≥ 0

1T z = 1

with F(x) = ‖Ax‖2. We note that the constraints in
(3) ensure that x⋆ = Xz⋆ is a probability vector. The

constraint Xz ≥ 0 is necessary to maintain nonnega-

tive signs throughout the computations, not only be-
cause this is desired for probability vectors, but also

because our multilevel cycles may become ill-posed if

iterates with negative signs occur (see [11,12]). This

two-norm minimization leads to a quadratic program-
ming problem that can be solved with standard tech-

niques [14]. In this paper we explore solving (3) with

F(x) = ‖Ax‖1. We minimize the one-norm using the

4 Hans De Sterck et al.

ellipsoid method, and investigate whether the resulting

one-norm minimization scheme is competitive with the
two-norm minimization approach from [14]. The iter-

ant recombination procedure is given by Algorithm 1

below. We note that in line 7 of Algorithm 1 the im-
proved approximation is rejected if it does not yield a

smaller residual then the current approximation.

Algorithm 1: Iterant recombination (window size

m)

1. Set k ← 1 and choose an initial guess x⋆
0

2. Set τ ← τrel ‖Ax⋆
0‖1

3. Obtain the next multigrid iterate xk, with x⋆
k−1

as the initial guess
4. Set j ← min{k,m}

5. Set X← [xk−j+1, . . . ,xk−1,xk]

6. Solve (3) for z⋆, and set x⋆
k ← Xz⋆

7. if ‖Ax⋆
k‖1 > ‖Axk‖1 then

x⋆
k ← xk

end

8. Check convergence, ‖Ax⋆
k‖1 < τ , otherwise set

k ← k + 1 and go to 3

3 The ellipsoid method

In this section we give a brief description of the ellipsoid

method for nonlinear convex programs. For an excellent
overview of the development of the ellipsoid method we

recommend the survey paper [5]. The book on linear op-

timization by Bertsimas and Tsitsiklis [4], and the pa-

pers [17,16,18] contain further useful information. The
ellipsoid method was first described by Iudin and Ne-

mirovskii in 1976 [25], and was later explicitly stated

as we know it today by Shor in 1977 [37]. It gained
notoriety in the early 1980s when Khachiyan showed

that an ellipsoid method for linear optimization could

be implemented with polynomial time complexity [26].
Although the ellipsoid method was not competitive in

practice for linear optimization, it has shown itself to be

a robust solver for nonlinear convex programs, which at

some levels of solution error is competitive with other
more mainstream solvers [18].

The ellipsoid method was originally intended as a

solver for nonlinear convex optimization problems of

the form

minimize f0(x) (4)

subject to x ∈ S = {y ∈ R
m : fi(y) ≤ 0, i = 1, . . . , n},

where each fi : R
m → R, i = 0, . . . , n is a finite convex

function on R
m. Here, the function f0 is referred to

as the objective function and the functions f1, . . . , fn

are referred to as constraint functions. The set S of

all points that satisfy the n inequality constraints is
called the feasible set. Hence, any point belonging to

S is called feasible, and any point not belonging to S

is called infeasible. We assume that the feasible set is
nonempty and that there exists an optimal solution x⋆

to (4).

An m-dimensional ellipsoid is a subset of R
m defined

as follows.

Definition 1 (Ellipsoid) Let D be an m × m sym-

metric positive definite (SPD) matrix and let z be any
point in R

m. Then the set

E(z,D) = {x ∈ R
n : (x− z)T D−1(x− z) ≤ 1}

is an ellipsoid with center z.

Suppose that we have an initial ellipsoid E0 that con-

tains x⋆. The ellipsoid method iteratively constructs

a sequence of successively “smaller” ellipsoids each of
which contains x⋆. By smaller, we mean that the vol-

ume of the next ellipsoid is strictly smaller than the vol-

ume of the previous ellipsoid. Suppose now that Ek =
E(xk,Dk) is the kth ellipsoid in this sequence. Then we

can build Ek+1 as follows. Construct a hyperplane Hk

that passes through xk. Then x⋆ is contained in one of
the halfspaces generated by Hk, call it Hk. Now define

Ek+1 = E(xk+1,Dk+1) as the minimum volume ellip-

soid that contains the intersection of Ek with Hk. Since

x⋆ ∈ (Ek∩Hk), it follows that x⋆ ∈ Ek+1. Furthermore,
if the center point xk+1 is feasible, then it is the (k+1)th

approximation of x⋆. This procedure is illustrated in

Figure 2. By choosing Hk to pass through xk and then

Ek

Ek+1

gk

xk

Hk

Ek ∩Hk

x
⋆

xk+1

Fig. 2 Construction of the minimum volume ellipsoid Ek+1

(in grey) from the ellipsoid Ek and hyperplane Hk. Here gk

is the normal vector to Hk.

building Ek+1, we have constructed a center-cut ellip-
soid. If instead the hyperplane Hk passes between xk

and x⋆, then Ek+1 is a deep-cut ellipsoid [17]. Intu-

itively, it is clear that Ek+1 constructed by deep cuts

Iterant Recombination for Markov Chains via the Ellipsoid Method 5

contains x⋆, but less than half of Ek. For the remainder

of this section our focus is on the center-cut algorithm;
we give only a few details regarding the deep-cuts vari-

ant.

We next describe how to construct the hyperplane

Hk = {y ∈ R
m : gT

k (y− xk) = 0}, i.e., how to choose a
normal vector gk. The normal vector is chosen in such

a way that it is easy to decide on which side of the

hyperplane x⋆ is located. First, we require the definition
of a subgradient and subdifferential.

Definition 2 (Subgradient, Subdifferential) Let f :

C → R be a convex function whose domain is a convex

set C ⊂ R
m, and let z ∈ C. Then the vector g is a

subgradient of f at z if

f(z) + gT (x− z) ≤ f(x), ∀x ∈ C.

The set of all subgradients of f at z is denoted by ∂f(z)

and is called the subdifferential of f at z. If f convex
and differentiable at z then ∂f(z) = {∇f(z)}.

There are two possibilities to consider for the center-

cut algorithm. If the current approximation xk is in-
feasible, i.e., there exists an index j > 0 such that

fj(xk) > 0, then we choose gk ∈ ∂fj(xk). Otherwise, if

xk is feasible, then we choose gk ∈ ∂f0(xk). In either
case it is easy to verify that x⋆ ∈ Hk = {y ∈ R

m :

gT
k (y − xk) ≤ 0}. In order to define a hyperplane it

is necessary to find a nonzero subgradient vector. To
show that the subgradient exists is nonzero, we start

with the fact that since each fi is convex on R
m, it has

a nonempty subdifferential at any point in R
m [2]. Now

it is still possible that the subdifferential of fi at some
point in R

m contains only the zero vector. By the def-

inition of the subgradient, for any iterate xk we have

that

gT
k (x− xk) ≤ fi(x)− fi(xk) ∀x ∈ R

m, gk ∈ ∂fi(xk).

(5)

In the infeasible case, fi(xk) > 0 for some i ∈ {1, . . . , n},

and it follows from (5) that a nonzero subgradient ex-

ists. In the feasible case, if ∂f0(xk) = {0}, then it fol-
lows from (5) that xk is optimal. Therefore, if xk is

feasible but not optimal a nonzero subgradient must

exist.

It remains to describe the update equations for Ek+1.

Given Ek = E(xk,Dk) ∈ R
m (m > 1) and the subgra-

dient vector gk defining the halfspace Hk, the center-

cut minimum volume ellipsoid Ek+1 = E(xk+1,Dk+1)

that contains the region Ek∩Hk is constructed accord-

ing to

xk+1 = xk −
1

m + 1

Dkgk
√

gT
k Dkgk

,

Dk+1 =
m2

m2 − 1

(

Dk −
2

m + 1

Dkgk gT
k Dk

gT
k Dkgk

)

. (6)

Indeed, it can be verified that Dk+1 is SPD and the
volume of Ek+1 is strictly less than the volume of Ek.

For a derivation of these results we refer to [4] (see also

[5]). In the one-dimensional case (m = 1) the update
formulas are given by

xk+1 = xk −
1

2
sgn(gk)

√

Dk, Dk+1 =
Dk

4
, (7)

where sgn(·) is the signum function and all quantities

are scalar. In this case one can show that the ellipsoid

method reduces to the bisection method.

The update formulas for an ellipsoid method con-
structed using deep cuts are very similar to those given

in (6). Since we make use of deep cuts in our numeri-

cal tests, we briefly describe them below. Let E(x,D)
be an ellipsoid in R

m. It was shown in [18] that any

hyperplane H = {y ∈ R
m : gT y = β} with β =

gT x−α
√

gT Dg and −1 ≤ α ≤ 1 has a nonempty inter-
section with E(x,D). Furthermore, for −1/m ≤ α ≤ 1

it is possible to construct a minimum volume ellipsoid

that contains E(x,D) ∩ H, where H is the halfspace

H =
{

y ∈ R
m : gT (y − x) ≤ −α

√

gT Dg
}

. For m > 1
define the parameters:

τ :=
1 + αm

m + 1
, σ :=

2(1 + αm)

(m + 1)(1 + α)
, δ :=

m2(1− α2)

m2 − 1
.

(8)

Then according to [5] the deep-cut ellipsoid Ek+1 =
E(xk+1,Dk+1) with volume strictly less than Ek =

E(xk,Dk) is given by the formulas:

xk+1 = xk − τ
Dkgk

√

gT
k Dkgk

,

Dk+1 = δ

(

Dk − σ
Dkgk gT

kDk

gT
k Dk gk

)

. (9)

In the one-dimensional case these formulas simplify to

xk+1 = xk −
(1 + α)

2
sgn(gk)

√

Dk,

Dk+1 =
(1− α)2

4
Dk. (10)

The parameter α in the equations above determines the
depth of the cut. For −1/m ≤ α < 0 we refer to Ek+1

as a shallow-cut ellipsoid [5], and for α = 0 we recover

the formulas for the center-cut ellipsoid in (6) and (7).

6 Hans De Sterck et al.

If 0 < α ≤ 1, then Ek+1 is a deep-cut ellipsoid. In our

implementation we compute αk (the depth of cut on
the kth iteration) as follows. If xk is feasible, then

αk = (f0(xk)− uk)/
√

gT
k Dkgk,

uk = min{f0(xi) : i ≤ k, xi ∈ S}. (11)

Otherwise, if fj(xk) > 0 for some index j > 0, then

αk = fj(xk)/
√

gT
k Dkgk . (12)

It was shown in [18] that computing αk according to

formulas (11) and (12) always yields a valid cut. For

further details regarding deep cuts as well as examples

of their use in deep-cut ellipsoid methods we refer to
[16,18].

A high-level description of the center-cut ellipsoid

method is given below in Algorithm 2. For further de-
tails regarding the numerical stability and the computer

implementation of the ellipsoid method we refer to [5,

19] and references therein.

Algorithm 2: Center-cut ellipsoid method

1. Let E0 = E(x0,D0) be an initial ellipsoid such
that x⋆ ∈ E0

2. Set k ← 0

while k < K do
3. Depending on the feasibility of xk, find a

subgradient vector gk such that

x⋆ ∈ Hk = {y ∈ R
m : gT

k (y − xk) ≤ 0}

4. If xk is feasible, check the stopping criterion

with tolerance ε > 0

5. Construct a new ellipsoid

Ek+1 = E(xk+1,Dk+1) according to (6)–(7).
6. Set k ← k + 1

end

In this paper we make use of the following stop-

ping criterion. We keep track of the current best up-
per and lower bounds for the optimal objective value,

lk ≤ f0(x
⋆) ≤ uk, and iterate until uk− lk < ε for some

tolerance ε > 0. The bounds uk and lk are defined as

uk := min{f0(xi) : i ≤ k, xi ∈ S},

lk := max
{

f0(xi)−
√

gT
i Di gi : i ≤ k, xi ∈ S

}

.

The lower bound lk can be derived as follows. For any

feasible iterate xk, it follows by the subgradient inequal-

ity that

f0(x
⋆) ≥ f0(xk) + gT

k (x⋆ − xk)

≥ f0(xk) + inf
z∈Ek

gT
k (z− xk). (13)

Since Ek is a compact subset of R
m, the continuity of

gT
k (z− xk) implies that the infimum is attained on the

boundary of Ek. The minimizer can then be obtained

through a straightforward application of Lagrange mul-

tipliers. At convergence we have that 0 ≤ uk−f0(x
⋆) ≤

uk− lk < ε, and we return the feasible iterate xbest that

satisfies f0(xbest) = uk. We note that since the ellipsoid

method is not a descent method it is necessary to keep
track of the best feasible iterate found so far.

We conclude this section with a brief discussion re-
garding convergence of the ellipsoid algorithm. Conver-

gence of Algorithm 2 for convex programming problems

of the form in (4) was proved in [21] using an approach

based on variational inequalities. It was shown in The-
orem 2.3.2 of [18] that a center-cut and deep-cut ver-

sion of the ellipsoid method are guaranteed to converge

when applied to the convex program (4). Here, conver-
gence is understood in the following sense,

lim
k→∞

uk = f0(x
⋆).

Furthermore, convergence was shown to be geometric

with a rate that asymptotically approaches 1 as m→∞

[18]. In the next section we provide detailed per itera-
tion complexity estimates for our implementation and

outline the overhead costs of using iterant recombina-

tion in conjunction with the ellipsoid method.

4 Ellipsoid method for Markov acceleration

In this section we discuss how the ellipsoid algorithm
can be applied as a solver for the iterant recombination

problem. Specifically, we give the formulas for the sub-

gradients of the objective function and the constraint
functions, we present an equivalent formulation of (3)

with the equality constraint removed, and we show how

an initial ellipsoid E0 can be constructed that is guar-

anteed to contain the exact solution.

We are interested in solving the following convex

optimization problem:

minimize ‖AXz‖1 (14)

subject to Xz ≥ 0

1T z = 1,

where X ∈ R
n×m is the matrix of previous fine-level

iterates and m is the window size. Due to the single

equality constraint, there are only m − 1 degrees of

freedom. Thus, we can obtain an equivalent inequality-

form problem with m − 1 unknowns by removing one
of the variables. Eliminating the variable z1 and letting

ẑ = (z2, . . . , zm)T , the equality constraint implies that

z = (1 − 1T ẑ, ẑ)T . Using Matlab notation we define

Iterant Recombination for Markov Chains via the Ellipsoid Method 7

X̂ = −X(: , 2 :m) + x11
T and Â = −AX̂, where x1 is

the first column of X and a1 = Ax1. The equivalent
problem can now be stated as:

minimize ‖Â ẑ + a1‖1 (15)

subject to X̂ẑ− x1 ≤ 0.

This formulation is obtained by substituting z = (1 −

1T ẑ, ẑ)T into (14) and then simplifying. Note that once

the solution to (15) has been computed (call it ẑ⋆),
the solution to the original problem (14) is given by

z⋆ = (1− 1T ẑ⋆, ẑ⋆)T .

It is obvious from (15) that the objective function

is

f0(ẑ) = ‖Â ẑ + a1‖1

and the constraint functions are

fi(ẑ) = x̂T
i ẑ− (x1)i, i = 1, . . . , n

where x̂i is the ith row of X̂ in column format. Since the

constraint functions are convex and differentiable with
respect to z, the subdifferential ∂fi(ẑ) = {∇fi(ẑ)} =

{x̂i} for all ẑ ∈ R
m−1. The objective function is not

differentiable, however it can be written as a compo-

sition of functions, f0(ẑ) = h(Â ẑ + a1), where h(·) =
‖ · ‖1. Application of the chain rule [36] gives ∂f0(ẑ) =

Â
T
∂h(Â ẑ + a1). Since the vector function q ∈ R

n de-

fined by

qi(x) =

{

1 if xi ≥ 0

−1 if xi < 0
(16)

is a subgradient for h(x), it follows that Â
T
q(Â ẑ+a1)

is a subgradient for f0(ẑ).

The main computational costs of Algorithm 2 are
the subgradient vector construction (line 3), and the

ellipsoid update (line 5). Construction of the subgra-

dient vector consists of four steps: (1) Perform a fea-
sibility check, (2) compute Â ẑ + a1, (3) build q, (4)

compute Â
T
q. The feasibility check consists of eval-

uating X̂ẑ − x1 and then searching for a positive en-

try, which requires O(mn) flops. The order in which
the feasibility constraints are examined is discussed in

[16], where the authors advocate a cyclical order since it

yields slightly better efficiency. In this paper, however,
we use a straightforward top-down sequential search

f1, . . . , fn, which for the test problems considered yields

an efficient and robust method. Steps (2) and (4) each

require O(mn) flops, and step (3) requires only O(n)
flops. A slightly more detailed analysis reveals that con-

struction of the subgradient vector requires 2mn flops

when the current iterate is infeasible, and (6m + 2)n

flops when it is feasible. Here we have assumed that a

sequential search of a length n array requires n flops.
Referring to the equations in (6) the ellipsoid update

requires approximately 5m2 flops. Given that m ≪ n

this is negligible compared to the subgradient vector
construction. Therefore, we can conclude that each iter-

ation requires O(n) flops. We note that these estimates

apply to both the center-cut and deep-cut algorithms.
We now proceed with our main technical contri-

bution, namely, the construction of an initial ellipsoid

E0 = E(ẑ0,D0) that is guaranteed to contain the ex-

act solution. Additionally, we state necessary and suffi-
cient conditions for its existence. We begin by deriving

a formula for an initial ellipsoid E0 = E(ẑ0,D0) that is

guaranteed to contain the exact solution z⋆. Intuitively,
we expect that most of the weight in the optimal linear

combination x⋆ = Xz⋆ will be associated with the most

recent fine-level approximation xk, which is the right-
most column of X. This assumption was confirmed by

numerical tests. Therefore, we use ẑ0 = (0, . . . , 0, 1)T as

the center point for the initial ellipsoid. We now derive

the matrix D0.
For any feasible point z of (14), the corresponding

point ẑ is feasible for (15) and AXz = Â ẑ+a1. There-

fore, given some feasible point z it follows that

ẑ⋆ ∈ {y ∈ R
m−1 : ‖Â y + a1‖1 ≤ α},

α = ‖AXz‖1 = ‖Â ẑ + a1‖1.

For example, z = ei, the ith canonical basis vector in

R
m is a feasible point for (15). In practice we choose α

according to

α = min
i=1,...,m

‖AXei‖1,

which is equal to the minimum absolute column sum of

AX. Since Â y + a1 = Â(y− ẑ0) + (Â ẑ0 + a1) for any

y ∈ R
m−1, it is clear that

ẑ⋆ ∈ {y ∈ R
m−1 : ‖Â(y − ẑ0) + (Â ẑ0 + a1)‖1 ≤ α}.

Applying the reverse triangle inequality, |‖u‖1−‖v‖1| ≤
‖u± v‖1, we obtain

ẑ⋆ ∈ {y ∈ R
m−1 : ‖Â(y − ẑ0)‖1 ≤ r},

r = α + ‖Â ẑ0 + a1‖1.

Using the vector norm inequality ‖·‖2 ≤ ‖·‖1, we arrive
at the desired result that

‖Â(ẑ⋆ − ẑ0)‖2 ≤ r ⇔ (ẑ⋆ − ẑ0)
T D−1

0 (ẑ⋆ − ẑ0) ≤ 1,

(17)

where D0 = r2(Â
T
Â)−1. Therefore, it follows by (17)

that the optimal solution ẑ⋆ belongs to the ellipsoid

E0 = E(ẑ0,D0).

8 Hans De Sterck et al.

The ellipsoid method can also be used to solve the

two-norm minimization problem, which is equivalent to
(15) with the objective function given by

f0(ẑ) = 〈Â ẑ + a1, Â ẑ + a1〉.

Since in this case the objective function is convex and

differentiable, its subdifferential is equal to its gradient

∇f0(ẑ) = 2Â
T
(Â ẑ + a1). An initial ellipsoid E0 =

E(ẑ0,D0) that contains the optimal solution can be
similarly defined with

r = ‖Â ẑ0 + a1‖2 + min
i=1,...,m

‖AXei‖2.

Given the form of the subgradient it is clear that the

cost per iteration of the ellipsoid method for two-norm

minimization is approximately equal to the cost per it-

eration for one-norm minimization.

It is necessary to consider whether D0 exists, i.e.,

if Â
T
Â is invertible. It is clear that Â

T
Â is an (m −

1) × (m − 1) symmetric positive-semidefinite matrix,

and provided that Â is of full rank, D0 exists and is

symmetric positive-definite. The following proposition

establishes necessary and sufficient conditions for the
existence of D0.

Proposition 1 The matrix Â has full rank if and only

if X̂ has full rank and the exact solution of (2) is not

in the range of X̂.

Proof We prove the contrapositive statement: Â is rank

deficient if and only if X̂ is rank deficient or x ∈ range(X̂).
Recall that Â = −AX̂. If X̂ is rank deficient, then X̂

has a nontrivial nullspace, and hence Â must also have a

nontrivial nullspace. If x ∈ range(X̂), then there exists
a nonzero vector y such that x = X̂y. Since Ax = 0, it

follows that y ∈ null(Â). In either case it is clear that

Â must be rank deficient. Now suppose that Â is rank

deficient. Then there exists a nonzero vector y such
that Ây = 0, which implies that X̂y ∈ null(A). Since

null(A) = span(x), this implies that either X̂y = x or

X̂y = 0. This is equivalent to the statement that either
x ∈ range(X̂) or X̂ is rank deficient. ⊓⊔

We can now use Proposition 1 to identify two possi-
ble but exclusive cases under which Â is rank deficient

and our proposed initial ellipsoid does not exist:

Proposition 2 Let Xk−1 be the matrix of fine-level it-
erates after k − 1 multigrid cycles with iterant recom-

bination, and suppose that x 6∈ range(Xk−1) and Xk−1

has full rank. Moreover, let Xk be the corresponding

matrix after the kth multigrid cycle with iterant re-
combination. If Âk is rank deficient, then either x ∈

range(X̂k) or X̂k is rank deficient, but not both.

Proof Since Âk is rank deficient, it follows by Proposi-

tion 1 that either X̂k is rank deficient or x ∈ range(X̂k).
Without restricting generality suppose that X̂k is rank

deficient. This implies that Xk is also rank deficient,

and by the full rank assumption on Xk−1 it follows that
xk ∈ range(Xk−1). Thus, range(Xk) ⊂ range(Xk−1),

and hence x 6∈ range(Xk). The desired result now fol-

lows by the fact that range(X̂k) ⊂ range(Xk). ⊓⊔

Now suppose we run the iterant recombination al-

gorithm until at some point Â is rank deficient and our
proposed initial ellipsoid does not exist (note that in

practice this may never occur, see below). Then Propo-

sition 2 implies that only one of the following two cases
is possible, and we give a strategy for handling each

case in our iterant recombination algorithm:

Case 1: If X̂ is rank deficient, then X is also rank de-
ficient. Here, the most obvious approach is to

drop all the columns of X except for xk, and to

skip the kth iterant recombination step. Doing
so implies that X = [xk] has full rank (since

xk 6= 0) and x 6∈ range(X). Therefore, the re-

sults of Proposition 2 may be applied to future
iterant recombination iterations.

Case 2: If X̂ has full rank, then it must be true that x ∈

range(X̂). Thus, one can solve the following full

rank overdetermined system of equations for y

(AX̂)y = 0

and then compute the exact solution according
to x = X̂y/‖X̂y‖1.

In practice, rank deficiency of Â is typically not an
issue. In fact, rank deficiency of Â was not observed

for any of the iterant recombination numerical tests.

This is most likely due to the nonlinear nature of the
underlying multilevel algorithm, i.e., the range of the

multilevel operator changes with each iteration.

As one final note we mention some overhead costs
of using iterant recombination in conjunction with one-

norm or two-norm minimization. These costs are in ad-

dition to those described above, however they repre-

sent only a small part of the overall ellipsoid method
cost per multigrid cycle. After each multigrid cycle it

is necessary to update AX with the new approxima-

tion, build Â and build Â
T
Â. To leading order this re-

quires 2 nnz(A)+m2n flops, where nnz(A) is the num-

ber of nonzero entries in the sparse matrix A. To ini-
tialize the ellipsoid method it is necessary to compute

D0 = r2(Â
T
Â)−1. For window sizes m ≤ 4 there exist

analytic formulas for the inverse that require 32 flops
when m = 4 and 7 flops when m = 3 (in general for

m > 4 computing the inverse requires (8/3)m3 flops).

The computation of r requires (m + 1)n flops.

Iterant Recombination for Markov Chains via the Ellipsoid Method 9

5 Numerical results

In this section we perform numerical tests of the iter-
ant recombination acceleration algorithm for a variety

of test problems that appear in [12,14]. Two of these

test problems are standard Markov chain tests from

[39] and [24]. Each of the test problems is slowly mix-
ing (see Section 2.1) and has a complex spectrum. The

code was implemented and executed in Matlab 7.5.0 on

a 2.50 GHz Intel Core 2 Duo CPU with 4GB of RAM.
Tests are conducted for window sizes m = 1, 2, 3, 4. We

consider both the one-norm and two-norm minimiza-

tion problems, where the former is solved by the ellip-
soid method, and the latter is solved by the ellipsoid

method and also by Matlab’s built-in quadratic pro-

gramming solver quadprog, as in [14]. In particular, the

medium-scale quadprog algorithm which employs an ac-
tive set method is used, since only a few of the inequal-

ity constraints may be relevant. Also, instead of using

quadprog to solve the two-norm minimization problem
with window size 2 we use the efficient algorithm em-

ployed in [14,15]. We note that in some cases the solu-

tion generated by quadprog may have negative entries
even though positivity constraints were enforced. If this

robustness problem occurs, then at most ten additional

relaxations are performed (see also Theorem 5.1 in [14]).

If after ten relaxations the improved approximation still
does not have strictly positive entries, it is discarded,

and the most recent fine-level iterate is used. We note

that the time to perform extra relaxations is added to
the overall solve time. Entries in the tables for which

extra relaxations were necessary are indicated by a su-

perscript asterisk.

As the primary standalone solver to be accelerated

we consider the unsmoothed multilevel aggregation al-
gorithm (AGG) of [24] with neighborhood-based ag-

gregation [14]. We also compare AGG with the more

sophisticated MCAMG algorithm from [12]. Weighted
Jacobi relaxation is used on all levels, except on the

coarsest level where a direct solve is performed via the

GTH algorithm [20]. For the MCAMG algorithm we

use V-cycles, and for the AGG algorithm we experi-
ment with F-cycles and W-cycles, since this gave the

most favorable results. We note that for both AGG

and MCAMG the transfer operators are frozen after 10
multigrid cycles, however, the coarse-level operators are

always rebuilt on each level. Furthermore, in order to

obtain competitive operator complexities for MCAMG
we use the first pass only of the classical Ruge-Stüben

AMG coarsening algorithm (see [12]). As our stopping

criterion we use

stop if k > maxit or ‖Axk‖1 < 10−8‖Ax0‖1,

Table 1 MCAMG and AGG parameters.

Parameter Value

Number of pre-relaxations ν1 1
Number of post-relaxations ν2 1
Strength of connection parameter θ 0.25
Lumping parameter η (MCAMG only) 0.01
Weighted Jacobi relaxation parameter ω 0.7
Max number of points on coarsest level ncoarse 12
Max number of iterations maxit 700

where k is the iteration count and maxit is the maxi-

mum number of iterations the algorithm will be allowed

to perform. The initial guess x0 is uniformly randomly
generated; it has strictly positive entries and unit one-

norm. We note that all iterates have strictly positive

entries and are normalized to have unit one-norm. The
parameters for the AGG and MCAMG algorithms are

given in Table 1.

The ellipsoid method with deep cuts is given by Al-

gorithm 2 with Ek+1 updated according to (8)–(12).

The stopping criterion parameters are maxit = 300

with convergence tolerances ε1 = 10−8 for one-norm
minimization and ε2 = 10−21 for two-norm minimiza-

tion. These values were determined experimentally to

give good results for a wide range of test problems.

In the tables below we report the total number of

iterations required by the iterant recombination accel-
erated MCAMG and AGG algorithms to converge for

window size m. For tests without iterant recombina-

tion acceleration we report the number of levels, lvls,
the number of iterations, it, and the operator complex-

ity on the last cycle, Cop. The operator complexity is

defined as the sum of the number of nonzero elements

in all operators, A, on all levels divided by the num-
ber of nonzero elements in the fine-level operator. This

number gives a good indication of the amount of work

required for a cycle and, for a scalable (or optimal)
method, it should be bounded by a constant not too

much larger than one as the problem size increases. In

what follows we refer to the iterant recombination ac-
celeration with two-norm minimization as “two-norm

acceleration” and in the one-norm case we say “one-

norm acceleration”.

5.1 Tandem queue

The first test problem we consider is the tandem queue-

ing network from [39], where two finite queues with

single servers are placed in tandem. Customers arrive
according to a Poisson distribution with rate µ, and

the service time distribution at the two single-server

stations is Poisson with rates µ1 and µ2. This is illus-

10 Hans De Sterck et al.

Table 2 Tandem queue. Iteration counts for various window sizes for one-norm and two-norm minimization strategies applied
to the AGG algorithm. The number of levels lvls, the operator complexities Cop, and the iteration counts it are given for the
unaccelerated AGG algorithm.

AGG F-cycles
Ellipsoid Ellipsoid Quadprog

(one-norm) (two-norm) (two-norm)
Window Size Window Size Window Size

n lvls Cop it 2 3 4 2 3 4 2 3 4
1024 4 1.45 136 50 46 42 52 56 44 52 56 44
4096 4 1.47 173 57 50 51 64 60 59 63 61 59

16384 5 1.47 328 83 72 66 77 68 71 77 67 68
65536 6 1.47 395 100 79 92 106 77 89 106 80 85

262144 6 1.46 629 135 112 146 131 116 132 130 116 129
AGG W-cycles

Ellipsoid Ellipsoid Quadprog
(one-norm) (two-norm) (two-norm)

Window Size Window Size Window Size
n lvls Cop it 2 3 4 2 3 4 2 3 4

1024 4 1.47 121 47 44 42 49 53 43 49 53 43
4096 4 1.50 143 55 46 45 54 53 52 54 53 52

16384 5 1.51 210 66 61 55 66 56 52 67 57 54
65536 6 1.50 231 71 61 65 66 63 64 66 63 63

262144 6 1.50 315 94 81 86 86 80 85 86 77 117

µ2µ µ1

Fig. 3 Tandem queueing network.

trated in Figure 3. The states of the system can be

represented by tuples (n1, n2), where ni is the num-
ber of customers waiting in the ith queue. We choose

(µ, µ1, µ2) = (10, 11, 10) for the weights, which leads

to a case of slow mixing.

The results of applying the acceleration schemes to

AGG F-cycles and W-cycles are given in Table 2. We
note that MCAMG was not considered for this test

problem since it produces scalable results without accel-

eration. From the table it is clear that W-cycles outper-
form F-cycles, and that iterant recombination acceler-

ation is able to significantly reduce the iteration counts

and make the method more scalable. For n = 262144

there is an 83% reduction in the iteration count for
F-cycles and a 74% reduction for W-cycles. We also

observe a roughly equivalent decrease in iterations be-

tween the one-norm and two-norm acceleration routines
for each window size, where it is evident that window

sizes 2 and 3 give the most significant reduction. We

note that in the window size 4 column for quadprog
with W-cycles the iteration count is significantly higher

for n = 262144 than for the other methods. This is due

to the fact that quadprog failed to converge a large

number of times for this problem. In fact over all the
numerical tests the ellipsoid method demonstrated ro-

bustness in terms of iteration counts that is comparable

or superior to quadprog.

Figures 4 and 5 show the total execution times for

accelerated AGG F-cycles and W-cycles as well as for

unaccelerated AGG cycles. We note that total execu-
tion time refers to the multigrid solve time plus the

iterant recombination time. The figures clearly demon-

strate that AGG with window size 2 acceleration gives
the best overall solve times, while window size 4 ac-

celeration results in slower overall performance. The

best results are achieved by the efficient algorithm for

two-norm minimization with window size 2 from [14,
15], which is very hard to compete with. In fact, for

n = 262144 we obtain a 62% iterant recombination

speedup for F-cycles and a 48% speedup for W-cycles.
The figure also shows that the ellipsoid method for one-

norm minimization tends to be a bit faster than the

ellipsoid method for two-norm minimization. An exam-
ination of the data shows that in general the ellipsoid

method for two-norm minimization requires more iter-

ations per multigrid cycle to converge, which explains

its performance given that the per iteration cost of the
two methods is roughly equivalent.

5.2 Directed random planar graph (DRPG)

In this test problem we consider a random walk on
an unstructured, directed planar graph. To construct

the directed planar graph D we begin by randomly dis-

tributing n points in the unit square (0, 1)×(0, 1). These

points are then connected via Delaunay triangulation,
which yields an undirected planar graph G. To obtain

a directed graph D, we randomly select a set of edges

from G and make them uni-directional. This is done

Iterant Recombination for Markov Chains via the Ellipsoid Method 11

 0 1e5 2e5 3e5
0

50

100

150

200

250

300

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 2

AGG F−cycle

Ellipsoid 1−norm

Ellipsoid 2−norm

Quadprog

 0 1e5 2e5 3e5
0

50

100

150

200

250

300

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 3

 0 1e5 2e5 3e5
0

50

100

150

200

250

300

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 4

Fig. 4 Total execution time for accelerated AGG F-cycles applied to the tandem queue problem. The solid gray line with
cross triangle ‘△’ is for unaccelerated AGG F-cycles.

 0 1e5 2e5 3e5
0

50

100

150

200

250

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 2

AGG W−cycle

Ellipsoid 1−norm

Ellipsoid 2−norm

Quadprog

 0 1e5 2e5 3e5
0

50

100

150

200

250

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 3

 0 1e5 2e5 3e5
0

50

100

150

200

250

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 4

Fig. 5 Total execution time for accelerated AGG W-cycles applied to the tandem queue problem. The solid gray line with
cross triangle ‘△’ is for unaccelerated AGG W-cycles.

in such a way that irreducibility is preserved (see [14]

for further details regarding the construction of D). A
Markov chain is then obtained by performing a ran-

dom walk on D, where the probability of transitioning

from node i to node j is given by the reciprocal of the
number of outward arcs from node i. It is clear by the

construction of D that the resulting Markov chain has a

nonsymmetric sparsity structure. Furthermore, numer-

ical computations of the transition matrices’ spectra
confirms that this is a slowly mixing problem.

The results of applying the acceleration schemes to

MCAMG V-cycles and AGG W-cycles are given in Ta-
ble 3. We note that although MCAMG with two-pass

coarsening performs quite well for this problem in terms

of iteration counts, its operator complexity is high (see
[12,14]). For this reason, we consider one-pass coarsen-

ing here, which reduces the operator complexity (and

thus memory usage) but increases the iteration counts.

The results in Table 3 show that by applying iterant re-
combination acceleration with one-pass coarsening we

12 Hans De Sterck et al.

can improve the iteration counts with good operator

complexity. We observe a significant reduction in it-
eration counts with comparable performance between

one-norm and two-norm acceleration. For n = 262144

there is a 63% reduction for MCAMG V-cycles and a
90% reduction for AGG W-cycles.

Figures 6 and 7 show the execution time results for

MCAMG V-cycles and AGG W-cycles, respectively. It
is evident that the fastest solve times are again given

by window size 2 acceleration. For MCAMG we ob-

serve similar execution times for the ellipsoid method

one-norm and two-norm minimization approaches with
a 36% speedup for n = 262144 and window size 2. In

the case of AGG W-cycles ellipsoid method two-norm

minimization slightly outperforms the one-norm mini-
mization. For n = 262144 we obtain an impressive 56%

speedup with window size 2 acceleration. It is also in-

teresting to note that in tandem queue problem window
size 4 acceleration lead to a much slower solver, whereas

here we obtained some improvement. However, the nu-

merical results still imply that window size 4 accelera-

tion is unnecessary in the context of AGG F-cycles and
W-cycles.

5.3 Stochastic Petri net

The final test problem we consider was previously con-

sidered in [24], and is derived from a stochastic Petri

net (SPN). Petri nets are a formalism for the description

of concurrency and synchronization in distributed sys-
tems. They consist of: places, which model conditions

or objects; tokens, which represent the specific value of

the condition or object; transitions, which model ac-
tivities that change the value of conditions or objects;

and arcs, which specify interconnection between places

and transitions. A stochastic Petri net is a standard
Petri net together with a tuple λ = (r1, . . . , rn) of ex-

ponentially distributed transition firing rates. We know

from [34] that a finite place, finite transition, marked

stochastic Petri net is isomorphic to a one-dimensional
discrete-space Markov process. For an in-depth discus-

sion of Petri Nets we refer to [1,34].

The results of applying the acceleration schemes to
AGG F-cycles and W-cycles are given in Table 4. We

note that MCAMG was not considered for this test

problem since it produces scalable results without ac-
celeration. In this case we observe scalable performance

with AGG W-cycles. As before there is little difference

between one-norm and two-norm acceleration except in

the case of quadprog where extra relaxations were nec-
essary to obtain a strictly positive solution. The aster-

isks in the table show that, for this test problem, quad-

prog is less robust than the ellipsoid methods in terms

of maintaining the sign constraints. For n = 121836 we

obtain a 75% reduction in iterations for F-cycles and a
61% reduction for W-cycles.

Figure 8 shows the execution times for AGG W-

cycles. For n = 121836 the fastest solve time is given

by window size 2 acceleration with a modest but still
relevant 16% speedup over the unaccelerated cycles. We

observe that in this case the ellipsoid method with one-

norm minimization outperforms the two-norm method.

We also observe that the quadprog execution times are
quite high for window sizes 3 and 4, which is due to the

extra relaxations.

6 Concluding remarks

In this paper we proposed a one-norm minimization

method for the constrained iterant recombination accel-
eration approach for Markov chains developed in [14].

We formulated a nonlinear convex optimization prob-

lem and proposed a solution via the ellipsoid algorithm.
We showed how an initial ellipsoid can be constructed

that is guaranteed to contain the exact solution, and

how rank deficiencies can be addressed. We also showed

how the ellipsoid method could be used to minimize the
constrained two-norm problem.

The numerical tests indicated that in terms of the

reduction of iterations, there is little difference between

the one-norm or two-norm variants. Furthermore, as

was demonstrated in [14], it was confirmed that win-
dow sizes of 2 or 3 are sufficient to reduce the itera-

tion count, and that the number of iterations is not

further significantly reduced for larger window sizes. In
fact, for window sizes larger than 3, the added overhead

of solving a larger minimization problem lead to in-

creasing execution times. The execution time data also
showed that for window size 2, the one-norm and two-

norm acceleration procedures were comparable, while

for window size 3, the one-norm acceleration was typi-

cally faster. Our numerical tests illustrated that iterant
recombination can make the simple aggregation method

from [24] competitive with the more advanced methods

from, for example, [11,12]. It was also shown how it-
erant recombination acceleration could provide signifi-

cant speedup when MCAMG does not scale well (i.e.,

iterations increase with the problem size). Overall, the
tests indicated that one-norm acceleration with the el-

lipsoid method is competitive with two-norm accelera-

tion in terms of running time. It is interesting that we

see a similar reduction in multigrid iterations for the
one-norm and two-norm minimization. Also, the ellip-

soid method is more robust than quadprog in terms of

maintaining the sign constraints.

Iterant Recombination for Markov Chains via the Ellipsoid Method 13

Table 3 Directed random planar graph. Iteration counts for various window sizes for one-norm and two-norm minimization
strategies applied to the AGG and MCAMG algorithms. The number of levels lvls, the operator complexities Cop, and the
iteration counts it are given for the unaccelerated AGG and MCAMG algorithms.

MCAMG V-cycles
Ellipsoid Ellipsoid Quadprog

(one-norm) (two-norm) (two-norm)
Window Size Window Size Window Size

n lvls Cop it 2 3 4 2 3 4 2 3 4
1024 5 1.56 37 19 16 16 23 18 17 23 18 17
4096 6 1.56 37 19 18 17 21 18 17 21 18 17

16384 7 1.59 46 23 22 22 25 21 20 25 21 20
65536 8 1.59 62 26 24 24 29 25 23 29 25 23

262144 9 1.59 65 32 27 24 34 28 26 34 28 26
AGG W-cycles

Ellipsoid Ellipsoid Quadprog
(one-norm) (two-norm) (two-norm)

Window Size Window Size Window Size
n lvls Cop it 2 3 4 2 3 4 2 3 4

1024 4 1.32 113 41 58 64 49 38 37 35 45 50
4096 4 1.34 166 62 28 37 42 37 39 49 42 57

16384 5 1.36 231 62 71 38 57 42 39 58 37 39
65536 6 1.37 316 39 45 47 62 54 45 61 69 38

262144 6 1.37 373 36 42 51 71 58 47 39 46 48

 0 1e5 2e5 3e5
0

10

20

30

40

50

60

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 2

MCAMG V−cycle

Ellipsoid 1−norm

Ellipsoid 2−norm

Quadprog

 0 1e5 2e5 3e5
0

10

20

30

40

50

60

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 3

 0 1e5 2e5 3e5
0

10

20

30

40

50

60

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 4

Fig. 6 Total execution time for accelerated MCAMG V-cycles applied to the directed random planar graph problem. The
solid gray line with triangle ‘△’ markings is for unaccelerated MCAMG V-cycles.

There is another approach to iterant recombination
acceleration with one-norm minimization that we did

not consider. Instead of solving a nonlinear convex op-

timization problem, we could have instead formulated
the equivalent linear programming problem from (14)

and used the simplex method to obtain the solution. It

is possible that this approach could result in a faster
accelerated solver, and we will consider it in the future.

Acknowledgements The authors would like to thank Steve
Vavasis for his insightful comments and suggestions.

References

1. Bause, F., Kritzinger, P.: Stochastic Petri Nets. Verlag,
Germany (1996)

2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear
Programming: Theory and Algorithms, third edn. Wi-
ley, New Jersey (2006)

14 Hans De Sterck et al.

 0 1e5 2e5 3e5
0

20

40

60

80

100

120

140

160

180

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 2

AGG W−cycle

Ellipsoid 1−norm

Ellipsoid 2−norm

Quadprog

 0 1e5 2e5 3e5
0

20

40

60

80

100

120

140

160

180

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 3

 0 1e5 2e5 3e5
0

20

40

60

80

100

120

140

160

180

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Window size 4

Fig. 7 Total execution time for accelerated AGG W-cycles applied to the directed random planar graph problem. The solid
gray line with triangle ‘△’ markings is for unaccelerated AGG W-cycles.

Table 4 Stochastic Petri net. Iteration counts for various window sizes for one-norm and two-norm minimization strategies
applied to the AGG algorithm. The number of levels lvls, the operator complexities Cop, and the iteration counts it are given
for the unaccelerated AGG algorithm. The superscript asterisks (∗) indicate that extra relaxations were necessary to obtain a
strictly positive solution.

MCAMG V-cycles
Ellipsoid Ellipsoid Quadprog

(one-norm) (two-norm) (two-norm)
Window Size Window Size Window Size

n lvls Cop it 2 3 4 2 3 4 2 3 4
2470 5 1.75 78 33 33 35 41 49 35 33 47∗ 41∗

10416 5 1.67 87 36 30 30 37 33 51 31 34∗ 34∗

23821 5 1.56 75 45 46 31 38 41 38 46 28∗ 31∗

45526 6 1.51 86 39 32 35 31 34 34 45 46∗ 28∗

121836 6 1.46 106 30 31 36 36 27 31 33 55∗ 52∗

AGG W-cycles
Ellipsoid Ellipsoid Quadprog

(one-norm) (two-norm) (two-norm)
Window Size Window Size Window Size

n lvls Cop it 2 3 4 2 3 4 2 3 4
2470 5 1.83 65 29 30 30 34 36 29 33 37∗ 33∗

10416 6 1.88 66 30 26 36 35 31 34 30 30∗ 32∗

23821 6 1.77 65 35 39 29 34 34 35 34 25∗ 28∗

45526 6 1.67 66 33 34 33 30 30 32 35 39∗ 27∗

121836 6 1.58 66 29 28 29 32 26 29 31 38∗ 29∗

3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in
the Mathematical Sciences. SIAM, Philadelphia, PA
(1987)

4. Bertsimas, D., Tsitisklis, J.N.: Introduction to Linear Op-
timization. Athena Scientific, Belmont, MA (1997)

5. Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid
method: A survey. Oper. Res. 29(6), 1039–1091 (1981)

6. Brandt, A., Mikulinsky, V.: On recombining iterants in
multigrid algorithms and problems with small islands.
SIAM J. Sci. Comput. 16, 20–28 (1995)

7. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multi-
grid Tutorial, second edn. SIAM, Philadelphia, PA (2000)

8. Buchholz, P.: Multilevel solutions for structured Markov
chains. SIAM J. Matrix Anal. Appl. 22(2), 342–357
(2000)

9. Cao, W.L., Stewart, W.J.: Iterative aggrega-
tion/disaggregation techniques for nearly uncoupled
Markov chains. JACM 32(3), 702–719 (1985)

10. Chatelin, F., Miranker, W.L.: Acceleration by aggrega-
tion of successive approximation methods. Linear Alge-
bra Appl. 43, 17–47 (1982)

11. De Sterck, H., Manteuffel, T., McCormick, S.F., Miller,
K., Pearson, J., Ruge, J., Sanders, G.: Smoothed aggrega-
tion multigrid for Markov chains. SIAM J. Sci. Comput.
32, 40–61 (2010)

Iterant Recombination for Markov Chains via the Ellipsoid Method 15

 0 1e5 2e5 3e5
0

5

10

15

20

25

30

35

40

45

50

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
)

Window size 2

AGG W−cycle

Ellipsoid 1−norm

Ellipsoid 2−norm

Quadprog

 0 1e5 2e5 3e5
0

5

10

15

20

25

30

35

40

45

50

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
)

Window size 3

 0 1e5 2e5 3e5
0

5

10

15

20

25

30

35

40

45

50

Problem size

T
o
ta

l
e
x
e
c
u
ti
o
n
 t

im
e
 (

s
e
c
)

Window size 4

Fig. 8 Total execution time for accelerated AGG W-cycles applied to the stochastic Petri net problem. The solid gray line
with triangle ‘△’ markings is for unaccelerated AGG W-cycles.

12. De Sterck, H., Manteuffel, T., McCormick, S.F., Miller,
K., Ruge, J., Sanders, G.: Algebraic multigrid for Markov
chains. SIAM J. Sci. Comput. 32, 544–562 (2010)

13. De Sterck, H., Manteuffel, T., McCormick, S.F., Nguyen,
Q., Ruge, J.: Multilevel adaptive aggregation for Markov
chains, with application to web ranking. SIAM J. Sci.
Comput. 30, 2235–2262 (2008)

14. De Sterck, H., Manteuffel, T., Miller, K., Sanders, G.:
Top-level acceleration of adaptive algebraic multilevel
methods for steady-state solution to Markov chains. Adv.
Comput. Math. (2010). Accepted for publication

15. De Sterck, H., Miller, K., Sanders, G., Winlaw, M.: Re-
cursively accelerated multilevel aggregation for Markov
chains. SIAM J. Sci. Comput. 32(3), 1652–1671 (2010)

16. Dziuban, S.T., Ecker, J.G., Kupferschmid, M.: Using
deep cuts in an ellipsoid algorithm for nonlinear program-
ming. Math. Program. Stud. 25, 93–107 (1985)

17. Ecker, J.G., Kupferschmid, M.: An ellipsoid algorithm
for nonlinear programming. Math. Program. 27, 83–106
(1983)

18. Frenk, J.B.G., Gromicho, J., Zhang, S.: A deep cut el-
lipsoid algorithm for convex programming: Theory and
applications. Math. Program. 63, 83–108 (1994)

19. Goldfarb, D., Todd, M.J.: Modifications and implemen-
tation of the ellipsoid algorithm for linear programming.
Math. Program. 23, 1–19 (1982)

20. Grassmann, W., Taksar, M., Heyman, D.: Regenerative
analysis and steady-state distributions for Markov chains.
Oper. Res. 33(5), 1107–1116 (1985)

21. H.-J. Lüthi: On the solution of variational inequalities by
the ellipsoid method. Math. Oper. Res. 10(3), 515–522
(1985)

22. Haviv, M.: Aggregation/disaggregation methods for com-
puting the stationary distribution of Markov chains.
SIAM J. Numer. Anal. 24(4), 952–966 (1987)

23. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge
University Press, New York, NY (1985)

24. Horton, G., Leutenegger, S.T.: A multi-level solution al-
gorithm for steady-state Markov chains. In: Proceedings

of the 1994 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pp. 191–200
(1994)

25. Iudin, D.B., Nemirovskii, A.S.: Informational complex-
ity and effective methods of solution for convex extremal
problems. Matekon: Translations of Russian and East
European Math. Economics 13, 3–25 (1976)

26. Khachiyan, L.G.: A polynomial algorithm in linear pro-
gramming. Soviet Mathematics Doklady 20, 191–194
(1976)

27. Koury, J.R., McAllister, D.F., Stewart, W.J.: Iterative
methods for computing stationary distributions of nearly
completely decomposable Markov chains. SIAM J. Alg.
Disc. Meth. 5(2), 164–186 (1984)

28. Krieger, U.R.: Numerical solution of large finite Markov
chains by algebraic multigrid techniques. In: W. Stewart
(ed.) Numerical solution of Markov chains, pp. 403–424.
Kluwer (1995)

29. Krieger, U.R.: On a two-level multigrid solution method
for Markov chains. Linear Algebra Appl. 223–224, 415–
438 (1995)

30. Leutenegger, S.T., Horton, G.: On the utility of the multi-
level algorithm for the solution of nearly completely de-
composable Markov chains. Tech. Rep. 94-44, ICASE
(1994)

31. Mandel, J., Sekerka, B.: A local convergence proof for the
iterative aggregation method. Linear Algebra Appl. 51,
163–172 (1983)

32. Marek, I., Mayer, P.: Convergence analysis of an iter-
ative aggregation/disaggregation method for computing
stationary probability vectors of stochastic matrices. Nu-
mer. Linear Algebra Appl. 5, 253–274 (1998)

33. Marek, I., Mayer, P.: Convergence theory of some classes
of iterative aggregation/disaggregation methods for com-
puting stationary probability vectors of stochastic matri-
ces. Linear Algebra Appl. 363, 177–200 (2003)

34. Molloy, M.K.: Performance analysis using stochastic
Petri nets. IEEE Trans. Comput. C-31, 913–917 (1982)

16 Hans De Sterck et al.

35. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods
in Markov chain modeling. Oper. Res. 40(6), 1156–1179
(1992)

36. Rockafellar, R.T.: Convex Analysis. Princeton University
Press, New Jersey (1970)

37. Shor, N.Z.: Cut-off method with space extension in con-
vex programming problems. Cybernetics 13, 94–96
(1977)

38. Simon, H.A., Ando, A.: Aggregation of variables in dy-
namic systems. Econometrica 29, 111–138 (1961)

39. Stewart, W.J.: An Introduction to the Numerical So-
lution of Markov Chains. Princeton University Press,
Princeton, NJ (1994)

40. Takahashi, Y.: A lumping method for numerical calcula-
tions of stationary distributions of Markov chains. Tech.
Rep. B-18, Department of Information Sciences, Tokyo
Institute of Technology (1975)

41. Treister, E., Yavneh, I.: On-the-fly adaptive smoothed
aggregation multigrid applied to Markov chains. SISC
(2010). Currently in revision

42. Treister, E., Yavneh, I.: Square and stretch multigrid for
stochastic matrix eigenproblems. Numer. Linear Algebr.
17, 229–251 (2010)

43. U. Trottenberg and C. W. Oosterlee and A. Schüller:
Multigrid. Elsevier Academic Press, San Diego, Califor-
nia (2001)

44. Washio, T., Oosterlee, C.W.: Krylov subspace accelera-
tion for nonlinear multigrid schemes. Electron. Trans.
Numer. Anal. 6, 271–290 (1997)

