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Abstract. In many application areas, including information retrieval and networking systems,
finding the steady-state distribution vector of an irreducible Markov chain is of interest and it is
often difficult to compute efficiently. The steady-state vector is the solution to a nonsymmetric
eigenproblem with known eigenvalue, Bx = x, subject to probability constraints ‖x‖1 = 1 and x > 0,
where B is column stochastic, that is, B ≥ O and 1tB = 1t. Recently, scalable methods involving
Smoothed Aggregation (SA) and Algebraic Multigrid (AMG) were proposed to solve such eigenvalue
problems. These methods use multiplicative iterate updates versus the additive error corrections
that are typically used in nonsingular linear solvers. This paper discusses an outer iteration that
accelerates convergence of multiplicative update methods, similar in principle to a preconditioned
flexible Krylov wrapper applied to an additive iteration for a nonsingular linear problem. The
acceleration is performed by selecting a linear combination of old iterates to minimize a functional
within the space of probability vectors. Two different implementations of this idea are considered
and the effectiveness of these approaches is demonstrated with representative examples.
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1. Introduction. This work develops a technique to accelerate multiplicative
multilevel methods that calculate the stationary probability vector of large, sparse,
irreducible, slowly-mixing Markov chains. Large sparse Markov chains are of interest
in a wide range of applications, including information retrieval and web ranking,
performance modelling of computer and communication systems, dependability and
security analysis, and analysis of biological systems [18].

A Markov chain with n states is represented by an n×n non-negative matrix, B,
that is column-stochastic, 1tB = 1t. The stationary vector that we seek, x, satisfies
the following eigenproblem with known eigenvalue:

Bx = x, ‖x‖1 = 1, x ≥ 0, (1.1)

where the normalization constraint and the non-negativity constraint make x a proba-
bility vector. If any state in the chain is connected to any other state through a series
of directed arcs, then the matrix B is called irreducible. We assume this property,
which guarantees that there is a unique solution to (1.1), which is strictly positive
(x > 0), by the Perron Frobenius theorem (see [1, 15] for details).

The power method converges to x when B is aperiodic, meaning the length of
all directed cycles on the graph of B have greatest common denominator equal to
one. However, the rate of convergence of the power method, and similar one-level
iterative methods like Jacobi and Gauss-Seidel, is dependent on the magnitude of the
subdominant eigenvalue(s), which we denote

|λ2| := max |λ| for λ ∈ Σ(B) \ {1}.
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When |λ2| ≈ 1, B is called slowly-mixing, and the convergence rates of classical it-
erative techniques are unacceptably close to 1 as well. For many Markov chains of
interest, |λ2| → 1 as the problem size increases and theses classical iterative techniques
are not algorithmically scalable for such problems. An algorithmically scalable algo-
rithm would achieve approximate solutions up to a given tolerance with an amount of
work proportionate to the amount of information in the problem matrix B (which for
the problems we consider is proportional to the number of unknowns). For many of
these problems, applying Krylov acceleration (such as preconditioned GMRES [12]) to
classical iterative methods does not mend the scalability. This is because the inherent
local influence of these techniques requires a high number of iterations to properly
realize the desired global distribution from a poorly distributed initial guess.

Eigenproblem (1.1) is equivalent to the following singular linear problem:

Ax = 0, ‖x‖1 = 1, x ≥ 0, (1.2)

where A := I − B. This formulation has some specific advantages. First, the vector
we seek, x, is the right eigenvector of A corresponding to eigenvalue 0, and also is a
right singular vector of A corresponding to singular value 0. Vector x, however, is not
necessarily a right singular vector corresponding to B. Advantages of working with
the singular value decomposition of A are given in Section 3, where we discuss how
to form minimization principles for accelerating multilevel methods.

Another important advantage of working with problem (1.2) is that the M-matrix
structure of A (which implies aii > 0 and aij ≤ 0 for i 6= j) is amenable to additive
Algebraic Multigrid (AMG) solvers designed for nonsingular linear problems [4, 3].
See [20, 7] for an introduction to AMG. Here, a fixed multigrid hierarchy is first
built and then applied to find a nontrivial solution to the linear problem Ax = 0.
In [22], AMG-preconditoned Krylov acceleration was employed. These standalone
and accelerated versions of AMG rely on the fixed multigrid hierarchy being able
to adequately approximate any vector e that is near-kernel ‖Ae‖ << ‖e‖. If this
assumption is not met, then algorithmic scalability of the method is not achieved.

Many techniques designed to adaptively create multigrid hierarchies for solving
nonsingular linear systems are based on standard variants [6] and smoothed aggrega-
tion (SA) variants of AMG [5]. The setup phases of these methods essentially adjust
the multilevel hierarchies so that near-kernel vectors of A are adequately approxi-
mated by coarse grids.

Several closely related adaptive multiplicative techniques have been designed
to solve (1.2) directly. In an unsmoothed aggregation form (also called aggrega-
tion/disaggregation) [13, 9, 18, 15], algorithmic scalability is not achieved for many
problems due to poor approximation of the kernel of A by unsmoothed intergrid
operators. More recent multiplicative methods employ hierarchies with richer repre-
sentation of the kernel and demonstrate scalability. These include a method using
SA hierarchies [16], one using AMG hierarchies [14], and a newer method that uses
an unsmoothed aggregation hierarchy on a variant of the squared problem, B2x = x
[19].

These multiplicative schemes use multilevel hierarchies that adapt with every cy-
cle. Therefore, a standard Krylov acceleration technique cannot be applied, because
the spaces involved are not related by a fixed preconditioner applied to residual vec-
tors. However, flexible acceleration is possible for methods with changing hierarchies
or nonstationary preconditioners (FGMRES [11] is a common example of this). In
this paper, we do not use flexible GMRES or flexible CG, but we present two accel-
eration techniques that are customized to solve problem (1.2). The first technique
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Fig. 1.1. Diagram of standalone V-cycles and Accelerated V-cycles. On the left is the stan-
dalone algorithm, which proceeds from left to right. Fine-grid operations are represented at the top
of the diagram, coarse-grid operations are on the bottom, and intermediate-grid operations are in
between. The black dots (•) represent relaxation operations on their respective grids and the open
dots (◦) represent coarse-level solves. On the right is a diagram of an accelerated V-Cycle, where
an acceleration step, represented by a gray box, is added at the end of each cycle.

employs an unconstrained minimization problem and the second technique employs a
constrained minimization problem. We briefly show that both minimization problems
have a unique probability solution that is the stationary probability vector. This work
demonstrates the application of the acceleration techniques to versions of the classi-
cal unsmoothed aggregation algorithm[9, 15], the SA algorithm given in [16], and the
AMG algorithm in [14].

Similar accelerators have been designed for other nonlinear iterations. In [23], an
accelerator is developed for the multilevel Fast Approximation Scheme (FAS [2], see
[7] for an introduction), which is used to solve nonlinear PDEs. A key difference is that
the accelerator for Markov problems must produce probability vectors, a feature not
required for general nonlinear problems. Another difference is that the acceleration
of FAS for nonlinear problems requires linearization of target functionals, but our
multiplicative approach does not rely on linearization. The FAS accelerator does
share many characteristics of the accelerators we develop here, including use of similar
minimization functionals.

This paper is organized as follows. Section 2 provides some background on the
two methods we consider accelerating [16, 14] and some minor enhancements to these
methods. Section 3 describes a framework for accelerating nonlinear iterative meth-
ods that solve (1.2). Section 4 describes a specific approach to acceleration that
uses an unconstrained minimization problem. Section 5 describes another approach
to acceleration that uses a constrained minimization problem. Section 6 contains
numerical results that highlight the performance of the acceleration and Section 7
provides concluding remarks.

2. Background: Adaptive Multiplicative Multilevel Methods. In this
section, we first present a general framework for the class of multilevel methods for
which the acceleration techniques developed in this paper apply. In the subsections
that follow, we mention the specific methods in this class that are tested in this work.

Consider relaxation techniques of the form x← (I −M−1A)x, where M−1 is an
inexpensive and locally computable preconditioner. Many classical iterative methods
fit into this category; the power, Jacobi, and Gauss-Seidel methods are all examples.
In this paper, we use weighted-Jacobi iteration for relaxation,

x←− (I − αD−1A)x, (2.1)

with α = 0.7. Such relaxation techniques are cheap per iteration but quickly stall,
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having little effect on the right near-kernel of M−1A, defined to be any vector e such
that

‖M−1Ae‖2 << ‖e‖2.

These techniques have no effect on the actual kernel of M−1A, as is desired to solve
problem (1.2). However, for many example problems, there is a rich class of vectors
y 6= x that are also near-kernel, or vectors that the relaxation alone does not effi-
ciently remove. Such vectors are referred to as algebraically smooth within the AMG
literature. Essentially, these iterative schemes quickly produce vectors with the local
character of the solution, x, but take many iterations before the iterates have the
global character. In this situation, multilevel techniques are commonly employed to
complement the relaxation method by efficiently producing iterates that have both
local and global qualities of the solution vector.

We consider multilevel techniques designed in the algebraic multigrid (AMG)
framework, where a hierarchy of coarse grids is developed based only on the size and
structure of the entries of the matrix A, instead of relying on the geometry of the
original problem. This is appropriate for problems that arise from Markov chains, as
there is typically no underlying geometry, or it is sufficiently complicated to warrant
a more automatic coarsening routine.

A multilevel hierarchy is a data structure containing problem matrices, intergrid
transfer operators, relaxation techniques, usually stored in the form of preconditioners,
and a coarsest-level solver. The level of the hierarchy is an integer l = 1, 2..., L, where
the coarsest level is l = L and the finest level is l = 1. The problem matrices, Al, are
singular M-matrices of size nl×nl and the size of these matrices decreases rapidly per
level, nl > nl+1. Note that the finest-level problem matrix, A1, is the matrix from the
original problem (1.2) and the coarsest-level problem matrix, AL, is a small nL × nL

matrix. There are two types of intergrid transfer operators: restriction, Rl+1
l , which

maps vectors from the fine level R
nl to the coarse level R

nl+1 , and interpolation, P l
l+1,

which maps vectors from the coarse level to the fine level. The relaxation technique
for a certain level is typically represented by a simple preconditioner based on the
problem matrix of that level. Additionally, a solver for the coarsest-level problem,
ALxL = 0L is specified. In summary, the full mulilevel hierarchy is the following set,

{

Al, Rl+1
l , P l

l+1, M−1
l

}L−1

l=1
∪ {a solver for ALxL = 0L}. (2.2)

See the left part of Figure 1.1 for a visual representation of when various levels are
employed in the typical multigrid V-cycle.

For a method in the class of adaptive multiplicative multilevel methods, this hi-
erarchy is not static. (It typically is static after the initial setup of AMG applied to
a nonsingular linear system of equations). Instead, as the algorithm progresses, the
members of the multilevel hierarchy are adapted to achieve a more and more accurate
representation of the near kernel of A1. Each cycle is also multiplicative, meaning
the iterates that the method produces come directly from the range of the changing
interpolation operators (as opposed to an additive error correction coming from the
range of interpolation).

For the rest of this section we use two-level notation to describe the interaction
of only two grids at a time. Generally, the problem matrix on the current level, Al, is
represented by A and the matrix on the next coarser level, Al+1, is represented by Ac.
The notation is the same for several other types of objects: those objects that pertain
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to the current grid have no subscript or the subscript f and those that pertain to the
next coarser level have the subscript c. The symbols representing intergrid transfer
operators involved in levels l and l + 1, restriction, R, and interpolation, P , have
neither subscripts nor superscripts.

Intergrid transfer operators are designed to create a coarse-grid problem that
accurately represents left and right near kernel components of A. The actual left-
kernel vector of A is known to be the constant vector, 1, so R can be chosen such that
representation of actual left kernel within the range of Rt is fully accurate. Ideally, the
range of P contains the actual right kernel as well. However, the right-kernel vector,
x, is not known (it is the target of the method) and a fully accurate representation
of x is not guaranteed. Heuristically, the intergrid transfer operators are formed to
have properties

1 ∈ R(Rt) and x ∈̃R(P ), (2.3)

where ∈̃ is to be interpreted loosely as is approximately in the range of. The additional
requirement of sparsity is necessary as well. The strategy for forming P is based on
the idea that a low number (one or two) of relaxations produces a vector xk that is
locally similar to the right kernel of A. Then, an interpolation operator is formed
that exactly represents the relaxed vector at the kth iteration, xk ∈ R(P ). In
practice, P is constructed such that xk = P1c, where 1c is the constant vector on
the coarse grid. The global character of the approximate right-kernel vector may be
adjusted on a coarser (and therefore cheaper) grid, x ≈ Pxc, where xc is some coarse-
grid representation of the actual right kernel of the coarse-level problem (which is a
representation of the multiplicative error on the coarse level). Two specific approaches
for choosing the structure of R and P are presented in Subsections 2.1 and 2.2.

When R and P have been formed, we have the following coarse-grid problem

Acxc = 0c, ‖xc‖1 = 1, xc > 0, (2.4)

where the coarse-grid problem matrix Ac = RAP , and 0c is the vector of all zeros on
the coarse grid. Under this construction, the following properties are preserved on all
grids,

1t
cAc = 0c ∀xk,

Ac1c = 0c for xk = x.
(2.5)

Additionally, we require that the M-matrix structure and irreducibility are preserved
on all grids. Section 2.3 introduces a lumping strategy that is used to ensure these
properties.
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Algorithm 1: Algebraic Multilevel Method for Markov chains (γ-cycle)
x←−AMMM(A, x, ν1, ν2, γ)

1. Pre-relax, x←− (I −M−1A)ν1x.
2. Choose R and P to satisfy (2.3).
3. Form Ac = RAP . If necessary, form Âc by lumping (see Section 2.3).
4. If nc is small enough then solve Âcxc = 0 directly, otherwise solve it
approximately by initializing xc ← 1c and then doing the following γ times:

xc ←− AMMM(Âc,xc, ν1, ν2, γ)

5. Interpolate, x← Pxc.
6. Post-relax, x← (I −M−1A)ν

2x
7. Normalize, x← x/‖x‖1

In the following two subsections, we briefly discuss the versions of Algorithm 1
that are accelerated in this paper. The algorithm presented in [19] fits into a closely
related framework where no lumping step is necessary. Although no tests were done
here, similar acceleration techniques should be applicable.

The next two subsections describe particular choices of R, P , and Ac used by the
algebraic multilevel methods that are accelerated in this work.

2.1. Aggregation Multigrid Methods for Markov Chains. This section
describes the first class of methods we consider , where the structure of our intergrid
transfer operators is given by an aggregation, a grouping of deegres of freedom based
on a strength of connection measure [15, 16]. For the aggregation methods, we use a
measure that node i is considered to be strongly connected to node j in the graph of
Adiag(xk) if

−aijxj ≥ θ max
p6=i
{−aipxp} or − ajixi ≥ θ max

p6=j
{−ajpxp}, (2.6)

where xp denotes the pth entry of the current iterate xk. Note that this is a sym-
metrized strength of connection measure that is weighted by the current iterate. For
a given strength of connection parameter, θ, define Ni to be the strong neighborhood
of i, which contains i and any j 6= i such that at least one of the relationships in
(2.6) is satisfied. We believe that some improvements could be made to our definition
of strength of connection, especially for matrices with highly nonsymmetric entries
and sparsity patterns. However, we use this symmetrized definition in our current
implementation.

An aggregation is a disjoint partition of unity that is represented by an n × nc

binary matrix, Q. Each column of this matrix corresponds to an aggregate and each
row corresponds to a fine-level degree of freedom. If entry qij = 1, then fine-grid
degree of freedom i belongs to aggregate j.

In this paper, matrix Q is computed using strength of connection measure (2.6)
and a neighborhood-based aggregation technique given in [21]. Note that this aggrega-
tion is related to common versions of aggregation in the AMG literature and differs
from the aggregation techniques used in [15, 16], called distance-1 and distance-2 ag-
gregation. See Figure 2.1 for a visual example of neighborhood-based aggregation
versus distance-2 aggregation. The distance-d aggregation techniques do not ensure
that a proper strongly-connected neighborhood of points is contained in each aggre-
gate, leading to aggregates that vary greatly in size (aggregate sizes vary from 1 to
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12 points in the example in Figure 2.1). This discrepancy in aggregate size leads to
poorer coarse-grid approximation properties and larger coarse-grid stencil sizes, par-
ticularly in the smoothed aggregation case. Alternatively, the neighborhood-based
aggregation ensures that each aggregate contains at least a proper neighborhood and
the size of each aggregate is much closer to the stencil sizes involved in the graph
of A (aggregate sizes vary from 3 to 7 points in the example in Figure 2.1). This
enforces a more regular coarsening throughout the domain, which provides better
sparsity on coarse grids without losing approximation accuracy of near-kernel vectors.

Algorithm 2: Neighborhood-Based Aggregation, {Qj}Jj=1 ←−Agg(A, x, θ)

Set R← {1, ..., n} and J ← 0.
/* 1st pass: assign entire neighborhoods to aggregates */

for i ∈ {1, ..., n} do
Define Ni based on (2.6).
if Ni ⊂ R then /* if entire n’hood is unassigned */

J ← J + 1.
Q̂J = Ni. /* assign n’hood to a new aggregate */

R← R \Ni.
end

end

for j = 1, ..., J do Qj ← Q̂j .
/* 2nd pass: put remaining pts in most connected aggregates */

while R 6= ∅ do

Pick i ∈ R and set j = argmaxk=1,...,J card(Ni ∩ Q̂k).
Set Qj ← Qj ∪ {i} and R← R \ {i}.

end

For an unsmoothed aggregation method, the intergrid transfer operators are set
to R = Qt and P = diag(x̃)Q, where x̃ is the most recent approximate solution that
has been relaxed.

2.1.1. Smoothing Integrid Transfer Operators. The representation of the
left near kernel and right near kernel within the range of Qt and diag(x)Q, respectively,
is often greatly improved by applying a smoothing operator to these intergrid transfer
operators. Additionally, the representation of the algebraically oscillatory vectors is
reduced by smoothing. In the context of an additive solver for a nonsingular problem,
the latter is arguably the greater impact of smoothing, as it greatly increases the
efficiency of relaxation on each coarse grid.

If the error propagation operator of the relaxation process is sparse, then some ver-
sion of it is used for smoothing the intergrid transfer operators. Although this typically
causes the multigrid hierarchy to have more computational complexity, smoothing the
intergrid transfer operators often makes the aggregation method scalable. This has
been observed both for nonsingular linear problems in [21] and steady-state Markov
eigenproblems in [16]. For aggregation methods, the intergrid transfer operators are
set to

R = Qt(I − αRAD−1) and P = (I − αP D−1A)diag(x̃)Q, (2.7)

where (αR, αP ) are smoothing parameters. The following choices for (αR, αP ) give
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NB Aggregation, Unsmoothed D2 Aggregation, Unsmoothed

NB Aggregation, Smoothed D2 Aggregation, Smoothed

Fig. 2.1. Neighborhood-based aggregation versus distance-2 aggregation. In each diagram above,
aggregations were performed on a standard 2D graph laplacian of a 16x16 mesh with a 5-point stencil
at each interior node. The left column shows neighborhood-based aggregations and the right column
shows distance 2 aggregations. The groups involved in each aggregation are displayed as sets of gray
dots connected by gray lines. Additionally, a coarse-grid stencil of largest size is displayed with black
dots connected by thick black lines. Stencils for unsmoothed aggregation are displayed in the top row
and stencils for smoothed aggregation are displayed in the bottom row.

the various intergrid transfer operators smoothing used in this work:

smoothed aggregation, smooth P only, unsmoothed aggregation.
(αR, αP ) = (0.7, 0.7) (αR, αP ) = (0, 0.7) (αR, αP ) = (0, 0)

(2.8)

2.2. Algebraic Multigrid for Markov Chains. In the second class of method
we consider accelerating, MCAMG [14], the intergrid transfer operators are based on
the principles of classical additive AMG for nonsingular linear systems.

We first perform a variant of the AMG coarsening routine described in [7], which
determines the structure of the intergrid transfer operators. Strength of connection
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is based on the scaled fine-level operator,

−aijxj ≥ θ max
k 6=i
{−aikxk}, (2.9)

with strength of connection parameter θ ∈ (0, 1). Note that the symmetric strength
of connection measure we use for aggregation methods, (2.6), differs from the non-
symmetric one we use here, (2.9). Define Ni to be the directed strong neighborhood
of point i, which contains any j 6= i such that the relationship in (2.9) is satisfied.
Notice that Ni differs from the Ni defined in the previous section.

Using this strength of connection measure, the fine set of degrees of freedom,
H = {1, 2, ..., nf} is partitioned into two sets using two-pass Ruge-Stuben coarse-fine
splitting. Formally, this means H = C ∪ F , where the set of nc coarse points is C
and the set of (nf − nc) fine points is F . See [14, 7] for the exact coarse-fine splitting
algorithm.

After the splitting is performed, we define the structure of intergrid transfer op-
erators using a variant of the classical AMG interpolation formula. Instead of an
aggregation matrix, for Q we use an overlapping partition of unity, with the proper-
ties 1 ≥ Q ≥ 0 and 1f = Q1c. For any i ∈ F , define Ci to be the set of C-points
strongly influencing point i, in the sense of (2.9). The structure of the entries in Q is

(Qec)i =

{

(ec)i if i ∈ C,
∑

j∈Ci
wij(ec)j if i ∈ F.

, (2.10)

where ec is any coarse-level vector of size nc and Qec is its image, a vector of size
nf . Coefficients wij are interpolation weights that are determined by the following
formula:

wij =
aijxj +

∑

m∈Ds
i

(

aimxmamjxj
P

k∈Ciamkxk

)

∑

j∈Ci
aijxj +

∑

r∈Ds
i
airxr

, (2.11)

with decomposition Ni = Ci ∪ Ds
i ∪ Dw

i , where Ds
i is the set of points in Ni that

strongly influence i, and Dw
i is the set of points in Ni that do not strongly influence i.

Under this construction and the assumptions on aij , we are guaranteed nonnegative
interpolation weights, wij . Again, see [14] regarding the motivation for (2.11). After
Q is computed we specify restriction and interpolation to be

R = Qt and P = diag(x̃)Q.

2.3. Lumping Coarse Operators. In order to guarantee that coarse-grid prob-
lem (2.4) has a unique and positive solution, we may have to perturb Ac by small
amounts. We use a result from [1] (presented in this context in [16]) that uses singular
M-matrix results from Perron-Frobenius theory. Matrix A is singular M-matrix if and
only if there is a non-negative matrix B such that A = ρ(B)I − B, where ρ(B) is
the spectral radius of B. The fine-grid matrix fits this definition by construction. We
use two results to ensure that the coars-grid matrices fit this definition as well. First,
if a coarse-grid matrix has non-positive off-diagonal elements and a strictly positive
left-kernel vector then it is a singular M-matrix. Second, if a coarse-grid matrix is an
irreducible singular M-matrix, then there exists a strictly positive vector, unique up
to a scaling, in the right kernel of this matrix.

We use the lumping technique from [16, 14] to ensure that correct sign structure
and irreducibility are both maintained for the coarse-grid matrices. Matrix A is a
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singular M-matrix, so it has the splitting A = D − C, where D ≥ 0 is the diagonal
part of A and C ≥ 0 is the off-diagonal part. Operators R and P are also non-negative,
so

Ac = RAP = RDP −RCP =: S −G, (2.12)

where S ≥ 0 and G ≥ 0. For the R and P selected by unsmoothed aggregation, S
is diagonal and strictly positive on the diagonal, so it cannot produce positive off-
diagonal elements in Ac. Coarse-level operator Ac has a strictly positive left-kernel
vector:

1cAc = 1cRAP = 1fAP = 0.

The irreducibility of Ac is automatic for unsmoothed R and P (see [16]). This,
combined with the correct sign structure of Ac and the positive left-kernel vector,
implies that Ac is a singular M-matrix, and thus has a unique and strictly positive
right-kernel vector as well, as summarized from [1] in the beginning of this section.

For the R and P selected by SA or AMG, matrix S is generally not diagonal,
so there is no guarantee that sij − gij ≤ 0 whenever i 6= j. Also, zeros can be
produced in Ac where G is nonzero (thus possibly making Ac reducible, see [16]). To
ensure our coarse-grid operator is irreducible and has the appropriate sign structure,
small perturbations are added to S for any offending pair {i, j} where gij 6= 0 and

sij − gij ≥ 0, or gji 6= 0 and sji− gji ≥ 0. Initially, set Ŝ ← S. Then, a first offending
pair is found, and value β{i,j} ≥ 0 is chosen to satisfy

ŝij − gij − β{i,j} ≤ −ηgij , and
ŝji − gji − β{i,j} ≤ −ηgji,

(2.13)

with a small lumping parameter, η > 0. The perturbation is given as

S{i,j} =



















i j

. . .
...

...
i · · · β{i,j} · · · −β{i,j} · · ·

...
...

j · · · −β{i,j} · · · β{i,j} · · ·
...

...



















, (2.14)

The update is made, Ŝ ← Ŝ + S{i,j}, and the process is repeated for next offending

pair in the updated Ŝ. Then, the lumped coarse-grid matrix is used as the coarse-grid
operator,

Âc ← Ŝ −G, (2.15)

instead of Ac = RAP . The positivity of η guarantees that no new zeros are introduced,
thus preserving irreduciblility in Âc. Note that this process does not change the left
kernel of Ac and, at convergence of the multilevel method, the right kernel is unaltered
as well.
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3. Recombination Framework. Assume we have some version of Algorithm 1
that produces a sequence of iterates, {xi}∞i=1, designed to approximate the solution
of problem (1.1). At the k-th iteration, let the last m iterates be columns of an n×m
matrix,

X = [xk, xk−1, ... ,xk−m+2,xk−m+1], (3.1)

with xk being the newest, or best, iterate. We call m the window size. All columns
of X are assumed to have the following properties:

xi > 0 and ‖xi‖1 = 1, i = 1, ..., n. (3.2)

The natural question arises: is there a linear combination of these m iterates that
is optimal in some sense? If the method that produces iterates {xi}∞i=1 is a stationary,
preconditioned residual correction, such as the weighted-Jacobi iteration or a fixed and
additive multigrid correction, the standard answer to this question is to use a Krylov
acceleration technique. The approaches in [16, 14], however, are nonlinear update
schemes, where the multigrid hierarchy is changing with each iteration. Nevertheless,
we take a fairly standard type of approach, similar to the approach given in [23] applied
to FAS on nonlinear PDE problems. Both approaches are essentially generalized
versions of Krylov acceleration that attempt to minimize the (nonlinear) residual of
a linear combination of iterates, each modified for their respective problems.

We define the subset of probability vectors in n-dimensional space to be

P := {w ∈ R
n such that ‖w‖1 = 1, and w ≥ 0}. (3.3)

The framework requires a functional F(w) that is uniquely minimal in P at the
solution to (1.1). The aim is to minimize this functional within a subset, V ⊂ R(X),
with the additional constraint equations ‖w‖1 = 1 and w ≥ 0, which are used to
ensure that w is a probability vector. Formally, this is

minimize F(w) within V := P ∩R(X) (3.4)

We label the constraints imposed on set V in the following way:

(C1) (Normalization Constraint) ‖w‖1 = 1
(C2) (Nonnegativity Constraints) w ≥ 0
(C3) (Subspace Constraint) w ∈ R(X)

Note that (C1) is a single equality constraint while (C2) is a set of inequality
constraints. Also, (C3) is technically a set of equality constraints which determine a
linear subspace of R

n:

for i = 1, . . . , n−m, 〈yi,w〉 = 0 where span{y1, . . . ,yn−m} = R(X)⊥.

However, because m << n and dim(R(X)⊥) ≈ n, it is more convenient (and equiva-
lent) to use the fact that there exists a vector z such that w = Xz for any w satisfying
(C3). This approach is preferred versus explicitly addressing the constraint equations,
which are less accessible and inefficient to deal with.

The target functional, F(w), must be designed to have several properties on the
constrained subset: (i) the probability vector from P that minimizes F is unique
and the solution to (1.1); and (ii) it is possible to approximate the minimizing vector
within P in an efficient way. Due to the significance of the one-norm in the application,
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one expects that a functional involving this norm is ideal. Functionals involving the
one-norm easily address property (i), but using the one-norm causes difficulty for
property (ii), due to the non-differentiability of the functional. Instead, the squared
two-norm is exploited to address both of these properties. The following result shows
that property (i) is upheld by using two standard functionals involving the squared
two norm. Discussion in Sections 3 and 4 addresses how these functionals also address
property (ii).

Theorem 3.1 (Functional Minimization). A vector x ∈ P attains the minimum
in both

F1(w) :=
〈Aw, Aw〉

〈w, w〉
and F2(w) := 〈Aw, Aw〉 , (3.5)

if and only if x is the steady-state solution to Equation (1.2).
Proof. Clearly, F1(w) and F2(w) are greater to or equal to zero, ∀w ∈ P , with

zero given only by w ∈ null(A). By the Perron-Frobenius theorem there is a unique
null vector of A such that x > 0 and ‖x‖1 = 1.

Remark 3.1. The choice of applying the minimization to solve problem, (1.2),
is critical. For example, it will not work to attempt to maximize 〈Bw, Bw〉, as the
maximizing vector in P is the right singular vector corresponding to the maximal
singular value of B, which is not necessarily x. Consider the simple example matrix

B =
1

4

[

3 2
1 2

]

.

For this example, the steady-state solution is x = [2/3, 1/3]t, but the direction
that maximizes 〈Bw, Bw〉 is given by the normalized maximal singular vector, w ≈
[0.53, 0.47]t. However, the steady-state solution is a right eigenvector of A with eigen-
value 0, so it is necessarily a right singular vector with singular value 0 as well.

The following two sections present two different acceleration approaches: the first
employs unconstrained minimization of F1 within subspace R(X) and the second
employs constrained minimization of F2 within constrained space V .

4. Unconstrained Minimization Approach. The first approach we consider
is to ignore constraints (C1) and (C2) and minimize F1 within R(X). That is, we
pick any vector, x∗, such that

x∗ = argmin
w∈R(X)

〈Aw, Aw〉

〈w,w〉
. (4.1)

Then, we check if x∗ violates the positivity constraint, (C2). If so, we perform a
backup, meaning we decrease the window size by redefining X to contain the last m−1
iterates, and then repeat the minimization of F1 within the smaller subspace. This
process is repeated until x∗ satisfies (C2). Lastly, we enforce (C1) by normalizing
in the one-norm, x∗ ← x∗/‖x∗‖1. The details of this unconstrained minimization
approach are presented in this section.

Remark 4.1. This process is guaranteed to eventually satisfy (C2) because when
m = 1, the optimal vector is merely set to xk, which is a probability vector. The
process of backing up is further explained in Section 4.1. Using this unconstrained
approach, we assume that x∗ is very unlikely to violate (C2) and the validity of this
assumption is reinforced by many numerical tests where these violations were mon-
itored. For problems where backup is more frequent, the constrained minimization
approach presented in Section 5 is a better approach.
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Remark 4.2. Normalization constraint (C1) is a scaling, and F1 is indifferent
to scalings:

〈A(αw), A(αw)〉

〈(αw), (αw)〉
=
〈Aw, Aw〉

〈w, w〉
, ∀w 6= 0, ∀α ∈ R \ {0}.

Solving (4.1) without (C1) and normalizing afterward produces the same solution
(with less computation) as solving with (C1) explicitly enforced.

The minimization problem (4.1) is solved by choosing a vector

x∗ = Xz = z1xk + z2xk−1 + ... + zmxk−m+1. (4.2)

where coefficients z are selected to be any solution to a smaller minimization problem,

z = argmin
v 6=0

〈AXv, AXv〉

〈Xv, Xv〉
, (4.3)

In other words, z is a right eigenvector of (XtX)−1(XtAtAX) corresponding to
the eigenvalue of smallest magnitude. Note that this is an m ×m eigensystem with
real and nonnegative spectrum. In exact arithmetic, solving Equation (4.3) for such
a z, and setting x∗ = Xz, gives the optimal approximation in R(X). This is an
eigenvector problem of order m which, for small m, is solved with a small amount of
computation, relative to the per-iteration cost of the method being accelerated. For
small window sizes, m = 2, 3, or 4, this method of computing x∗ is typically adequate
and is the method used in the numerical results section.

For larger window sizes, the numerical stability of (XtX)−1(XtAtAX) is a po-
tential problem, and the accuracy of z may suffer. To avoid this pitfall, we consider
finding orthogonal representations of matrices X and AX to form a more numerically
stable problem of order m. First, apply QR factorization to the input space involved
in the denominator of (4.3), R(X), and the output space involved in the numerator,
R(AX) = R(AQin).

X = QinRin, AQin = QoutRout. (4.4)

Note that the QR factorization of AX is known as well without computing a third
factorization:

AX = AQinRin = QoutRoutRin = Qout(RoutRin). (4.5)

These factorizations give us an equivalent problem that is better behaved in terms
of numerical stability. By the QR factorization of X , for any vector s ∈ R(X), there
is a set of coefficients u such that s = Qinu

s = Xv = QinRinv = Qinu, (4.6)

where u = Rinv. Using this fact, the QR factorization of AQin, and the orthogonality
of Qin and Qout gives an equivalent minimization functional:

〈AXv, AXv〉

〈Xv, Xv〉
=
〈AQinu, AQinu〉

〈Qinu, Qinu〉

=
〈QoutRoutu, QoutRoutu〉

〈Qinu, Qinu〉

=
〈Routu, Routu〉

〈u, u〉
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Any minimizer, y, of this functional is a right singular vector of Rout, corresponding
to its smallest singular value. Thus, x∗ = Qiny is a minimizer of F1 in R(X).

Remark 4.3. The relative sizes of the diagonal entries of Rin indicate how
linearly independent the columns of X are. This information could be used to adjust
the window size adaptively, however, this has not been addressed in this work.

4.1. Backing Up. If x∗ violates (C2), then using it to form a coarse grid within
the algebraic multilevel method causes the coarsening algorithms to break down. The
presence of vanishing or negative components in iterates xk destroys the singular
M-matrix nature of operators Adiag(xk), such that the existence of unique positive
solutions to the singular equations is no longer guaranteed. If x∗ violates (C2), we
back up the acceleration by only using the last m− 1 iterates to form a new optimal
vector. This process is repeated until we have an optimal vector that satisfies (C2),
which is guaranteed. If m = 1, the subspace is merely the span of the last iterate,
X = xk, which is output from Algorithm 1 and is necessarily a probability vector.
We call this scenario a full backup, which amounts to no acceleration of the method
with the additional overhead computational cost. The results in Section 6 show this
scenario is unlikely for many example problems.

The rest of this section describes the details of the process used to backup the
window size. For p ≤ m, define the matrix of the last p iterates

X(p) = [xk,xk−1, . . . ,xk−p+1] . (4.7)

and solve a p× p unconstrained minimization problem,

x∗
p = argmin

w∈R(X(p))

〈Aw, Aw〉

〈w,w〉
. (4.8)

Note that x∗
m = x∗ and X(m) = X . To solve for x∗

p, we need to form matrices

(X(p))tX(p) and (X(p))tAtAX(p), find zp, the minimal right eigenvector of

[(X(p))tX(p)]−1[(X(p))tAtAX(p)]

and set x∗
p = X(p)zp. The entries of these matrices are

[(X(p))tX(p)]ij = 〈xk−i−1,xk−j−1〉 (4.9)

and

[(X(p))tAtAX(p)]ij = 〈Axk−i−1, Axk−j−1〉 . (4.10)

These matrices are computed the first time only (when p = m), stored, and when
p < m, they are reused. Therefore, the cost of backing up is a p× p eigenvector solve
which is considered irrelevant to the O(n) method. The situation is similar when
using the alternative approach that involves the QR factorizations, which is useful for
calculating the minimizing vector with a larger window size.

4.2. Overhead Cost Estimates. Finding the minimizing vector in the range
of X requires an eigenvector solve involving (XtX)−1(XtAtAX), and computing the
matrices XtX and XtAtAX requires several inner products of order n. Computing
XtX with n×m matrix X requires computing m(m + 1)/2 inner products,

〈xi,xj〉 for k ≥ i ≥ j ≥ k −m + 1. (4.11)
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On the next iteration, however, we can recycle the inner products from the previous
iteration. Only m inner products will be new. They are

〈xk+1,xj〉 for j = k + 1, k − 1, . . . , k −m + 2 (4.12)

The situation is the same for computing XtAtAX ; only m inner products will be
new. Therefore, assuming k ≥ m, there are 2m inner product computations and one
residual evaluation required per acceleration step.

Algorithm 3: Acceleration by Unconstrained Minimization
x←−AUM(A, x∗

0, τ , M)

0. Set k = 1, if no initial guess is provided, choose x∗
0.

1. Run the multilevel method,

xk ←− AMMM(A1,x
∗
k−1, ν1, ν2, γ)

2. Set m← min{M, k}. /* set window size */

3. Set X ← [xk,xk−1, ...,xk−m+2,xk−m+1]. /* last m iterates */

4. Solve

y = argmin
w∈R(X)

〈Aw, Aw〉

〈w,w〉

/* if (C2) is not satisfied, backup and solve again */

5. if y > 0 then x∗
k = 1

‖y‖1
y, else set m← m− 1 and go to 3.

6. Check for convergence, ‖Ax∗
k‖1 < τ . Otherwise set k ← k + 1, and go to 1.

5. Constrained Minimization Approach. The second approach we consider
is to minimize F2 in R(X) with both (C1) and (C2) explicitly enforced.

x∗ = argmin
w∈R(X)∩P

〈Aw, Aw〉 (5.1)

If (C2) holds, then the absolute values in ‖w‖1 are unnecessary. Thus, (C1) is a
linear constraint,

∑

i wi = 1. Furthermore, because w ∈ R(X), there exists a vector
z such that w = Xz. This implies that

‖w‖1 =

n
∑

i

wi =

n
∑

i=1

m
∑

j=1

Xijzj =

m
∑

j=1

zj

n
∑

i=1

Xij =

m
∑

j=1

zj , (5.2)

due to each column in X being a probability vector. Therefore, the constrained subset
is equivalently written as

R(X) ∩ P =

{

w = Xz :

m
∑

i=1

zi = 1 , Xz ≥ 0

}

. (5.3)

This is a convex quadratic subset of R
m defined by a single equality constraint and a

large number, n, of inequality constraints. Formally, we rewrite (5.1) as

minimize: zt(XtAtAX)z,
subject to: 1tz = 1, and

Xz ≥ 0.
(5.4)



16 De Sterck, Miller, Manteuffel, Sanders

A solution to (5.1) is given by any vector

x∗ = Xz = z1xk + z2xk−1 + ... + zmxk−m+1, (5.5)

where coefficients zi are selected to minimize 〈AXz, AXz〉 with the equality constraint
satisfied,

∑m
j=1 zj = 1, and the full set of inequality constraints satisfied,

∑m
j=1 xijzj ≥

0, for any 1 ≤ i ≤ n.
For the m = 2 case, we are guaranteed that only two constraints are necessary, and

the other n− 2 constraints may be ignored when solving (5.1). This is explained and
displayed in Figure 5.1, but the algebraic details are given in [17]. For slightly larger
window sizes, m = 3 or 4, we assume that only a few of these constraints are relevant
and that the constrained minimization is typically performed in O(n) operations. The
implementation for this paper uses the active set method from matlab’s quadprog
function [8].

Fig. 5.1. Constrained minimization with window size m = 2. The top-left shows how a single
inequality constraint in (C2) limits (z1, z2). The shaded regions are infeasible. The top-right shows
that the intersection of subsets satisfying each constraint is the region satisfying the two most extreme
constraints. The line segment in the bottom-left shows the location of the subset satisfying the equality
constraints. The bottom right shows the feasibility region for δ > 0.

If any of the inequality constraints are active, or equivalently, if (x∗)i = 0 for any
i, there are potential difficulties for Algorithm 1. The coarsening procedures involved
in aggregation and AMG need to assume that the input is an all-positive vector.
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Otherwise, there are columns of all zeros in Adiag(xk), so the M-matrix structure is
not upheld. Essentially, the well-posedness of the algorithm is lost when an entry in
the input vector is allowed to be non-positive. There are two ways to avoid using a
vector with a zero entry in the coarsening. The first is to minimize over an interior
subset, R(X) ∩ Pδ, with

Pδ := {w ∈ R
n such that ‖w‖1 = 1, and w ≥ δ xmin}, (5.6)

where δ is a small positive number (δ = 0.1, for example) and xmin is the smallest
entry in X .

The other way to avoid a zero component is to allow the pre-relaxation of the
next cycle to make the iterate strictly positive. Often enough, one single relaxation
will enforce (C2) in this case, but it may be necessary to do more. The following two
results show that the solution to the constrained minimization problem 5.1 will have
the property w > 0 after some relaxation steps.

Theorem 5.1 (Pre-Relaxation Positivity). Assume that A is an irreducible,
singular M-matrix and that weighted-Jacobi relaxation parameter α is in (0, 1). If
vector w ≥ 0 and w 6≡ 0 in any neighborhood within the graph of A, then the relaxed
vector is positive, (I − αD−1A)w > 0.

Proof. Matrix A is a singular M-matrix, so for any i 6= j we have aij ≤ 0. There
is also at least one negative off-diagonal entry in every row of A, since it is irreducible.
Define Ni to be the neighborhood of i in the graph of A, excluding i. Then

0 >
∑

j∈Ni

aijwj for any i. (5.7)

Because α ∈ (0, 1), aii > 0 and wi ≥ 0, we have

(1− α)aiiwi > α
∑

j∈Ni

aijwj , ∀i (5.8)

This implies

(1− α)wi − α
1

aii

∑

j∈Ni

aijwj > 0, ∀i (5.9)

which is the same as (I − αD−1A)w > 0.

The following corollary is a generalization of the previous theorem that can be
easily proved. It shows that there is some amount of pre-relaxation that guarantees
positivity.

Corollary 5.2. Assume that A is an irreducible, singular M-matrix and that
weighted-Jacobi relaxation parameter α is in (0, 1). If vector w ≥ 0, then there exists
an integer ν > 0 such that w 6≡ 0 in any neighborhood within the graph of (I −
αD−1A)ν , and then (I − αD−1A)νw > 0.

The existence of such an integer ν that meets the assumptions of the previous
corollary is certain (set ν to the diameter of the graph), but for a general w ≥ 0
this integer could be unacceptably high. In practice, however, small ν (one or two) is
sufficient for all the problems we have investigated. This is because the constrained
minimization is unlikely to return a vector that is identically zero on any large localized
patches within the graph of A.
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Algorithm 4: Acceleration by Constrained Minimization
x←−ACM(A, x∗

0, τ , M, δ)

0. Set k = 1, if no initial guess is provided, choose x∗
0.

1. Run the multilevel method,

xk ←− AMMM(A1,x
∗
k−1, ν1, ν2, γ)

2. Set m← min{M, k} /* set window size */

3. Set X ← [xk,xk−1, ...,xk−m+2,xk−m+1]. /* last m iterates */

4. Define Pδ := {w ∈ R
n such that ‖w‖1 = 1, and w ≥ δxmin}.

5. Solve

x∗
k = argmin

w∈R(X)∩Pδ

〈Aw, Aw〉 (5.10)

6. if ‖Ax∗
k‖1 > ‖Axk‖1 then x∗

k ← xk

7. Check convergence, ‖Ax∗
k‖1 < τ . Otherwise set k ← k + 1, and go to 1.

6. Numerical Results. In this section, we present the results of applying the
unconstrained (Algorithm 3) and constrained acceleration (Algorithm 4) approaches
with window sizes m = 1, 2, 3, 4 to versions of Algorithm 1 for several examples.
Here, the accelerators are applied to V-cycles (γ = 1) for the SAM [16] and AMG [14]
versions of Algorithm 1 and W-cycles (γ = 2) for unsmoothed aggregation [15] and
”smooth P only” SA versions, as defined in (2.8).

For all examples, the specific set of parameters in this paragraph are used. One
pre- and post-relaxation step is used at each stage of the algorithm and γ = 1 or
2 (V(1,1) or W(1,1)-cycles). The iterative method used for relaxation is weighted
Jacobi with relaxation parameter α = 0.7. Direct coarse-level solves are performed
using the techniques from [15, 16, 14]. The lumping parameter is η = 0.01. Initial
guesses x(0) are randomly sampled in (0, 1) and normalized to one in the one norm.

For the examples involving aggregated multigrid hierarchies, the neighborhood-
based aggregation technique from [21] is used, as discuss in Section 2.1, with strength
of connection defined as in (2.6) with θ = 0.25. Smoothing parameters (αR, αP ) were
chosen to be (0, 0) when using unsmoothed aggregation, (0, 0.7) when smoothing P
only, and (0.7, 0.7) when smoothing R and P .

For the examples involving multigrid hierarchies employing standard AMG, strength
of connection is defined by (2.9), with θ = 0.25.

The parameter δ = 0.1 is used to maintain positivity when defining constraints
(5.6) in the constrained minimization approach.

The following statistics are reported in tables throughout the rest of this sec-
tion. The number of levels in the multigrid hierarchies is denoted by ”lvls”. The
iteration count, ”its”, is the lowest integer K such that‖Ax(K)‖1/‖Ax(0)‖1 < 10−8.
The operator complexity, Cop, is the total number of nonzero entries in the problem
matrices, Al, from every level in the multigrid hierarchy relative to the number of
nonzero entries in A. This number is an estimate for the amount of work performed
by the relaxation processes on all levels. The amount of lumping required within
each multigrid hierarchy is not reported here, but is reported in [16, 14] for common
examples.

6.1. Example Problems. Example 6.1 (2D lattice). We consider a Markov
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SAM
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
64 3 1.26 16 12 9 9 11 10 10
256 3 1.34 17 12 9 9 12 10 9
1024 4 1.32 17 13 10 10 11 11 11
4096 5 1.34 18 13 11 11 13 11 11
16384 5 1.33 18 13 10 10 12 11 11
65536 6 1.34 19 14 11 11 13 12 11

MCAMG
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
64 3 2.02 11 9 7 8 9 7 7
256 5 2.20 11 9 8 8 8 8 8
1024 6 2.20 11 9 8 8 9 8 7
4096 7 2.20 11 9 8 8 9 8 8
16384 8 2.20 11 9 8 8 9 8 8
65536 9 2.20 11 9 8 8 9 8 8

Table 6.1
Example 6.1 (2D lattice). Iteration counts for various window sizes for unconstrained and

constrained minimization strategies applied to SAM and MCAMG methods. The iteration count for
the standalone versions of these methods is below the column labeled ”its”. Additionally, number of
levels and operator complexities of the multigrid hierarchies used are given.

Fig. 6.1. Graphs for Examples 6.1 and 6.4. Black nodes represent states within the Markov
chain and gray lines represent transitions where arrows specify directionality.

chain on 2D lattice with uniform weights. Matrix A is essentially a scaled graph-
laplacian on a 2D uniform quadrilateral lattice with 5-point stencil. (see Figure 6.1,
or [16, 14] for more complete descriptions). The results of accelerating SA and AMG
versions of Algorithm 1 by unconstrained and constrained wrappers with small window
sizes are reported in Table 6.1.
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For for both types of acceleration, similar results are observed with window size
3 giving the most effective acceleration. Window size 4 takes more overhead and
typically offers little or no improvement over window size 3. For the SA method,
iteration counts are reduced by around 40% and for the AMG method, iteration
counts are reduced by around 30%. No backup steps are needed for unconstrained
minimization to maintain iterate positivity.

Example 6.2 (random planar graph). We consider Markov chains based on
unstructured, random, planar graphs (see [16]). To construct the transition matrix for
the chain, we start by randomly distributing n nodes in (0, 1)2. Then we form a planar
graph connecting these nodes using Delaunay triangulation and put bidirectional links
connecting each node that shares an edge within the triangulation. The probability
of transitioning from node i to node j is given by the reciprocal of the number of
outward links from node i (a random walk).

For for both types of acceleration similar results are observed in Table 6.2, with
window size 3 seeming to be most efficient. For the SA method, iteration counts are
reduced by around 60% and for the AMG method, iteration counts are reduced by
around 35%. No backup steps are needed for unconstrained minimization to maintain
iterate positivity.
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Fig. 6.2. Graphs for small versions of Examples 6.2 (left) and 6.3 (right). Black dots represent
nodes, and light gray arrows represent bidirectional links. For the figure on the right, black arrows
represent uni-directional links and triangles with a ”+” inside have a single link that was made
uni-directional. For easier visualization, the graphs shown here have a more regular distribution of
points than the actual points used to build the Markov chains.

Example 6.3 (Random Planar Graph, Nonsymmetric). We use the un-
structured planar graphs from the previous example to form a similar problem, but
with nonsymmetric sparsity structure. Starting with the graphs described in Exam-
ple 6.2, we select a subset of triangles from the triangulation such that no two triangles
in the set share an edge. This is done by selecting any triangle, marking it with a ”+”,
and marking all of its three neighbors with a ”-”. This process is repeated for the
next unmarked triangle until all triangles are marked. One edge on each ”+” triangle
is next made uni-directional by randomly deleting one of the six directed arcs that
connect the three nodes in the triangle. Note that this makes some of the ”-” triangles
have missing arcs as well. In fact, the ”-” may have several missing directed arcs, but
each ”+” triangle has one and only one missing directed arc. This process ensures
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SAM
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
1024 4 1.29 25 16 12 12 17 14 13
2048 4 1.29 29 18 13 13 18 15 14
4096 4 1.32 32 21 14 14 19 17 15
8192 5 1.34 28 19 14 13 17 16 14
16384 5 1.34 39 25 14 14 19 16 15
32768 5 1.35 39 26 16 16 21 18 17

MCAMG
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
1024 6 2.13 15 11 10 9 11 10 9
2048 7 2.22 14 10 9 9 10 9 9
4096 7 2.19 15 11 10 9 11 10 9
8192 8 2.25 15 11 10 10 11 10 10
16384 8 2.26 15 11 10 10 11 10 10
32768 9 2.28 14 11 10 10 11 10 10

Table 6.2
Example 6.2 (random planar graph). See Table 6.1 for full description.
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Fig. 6.3. Convergence histories for SAM with unconstrained and constrained minimization
with various window sizes for Example 6.3 and n = 32768.

that the resulting Markov chain is still irreducible. The probability of transitioning
from node i to node j is given by the reciprocal of the number of outward links from
node i. See Figure 6.2 for a small version of this example with the ”+” triangles
marked.

For for both types of acceleration similar results are observed in Table 6.3, with
window size 3 seeming to be most efficient. For the SA method, iteration counts are
reduced by around 60% and for the AMG method, iteration counts are reduced by
around 30%. No backup steps are needed for unconstrained minimization to maintain
iterate positivity.
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SAM
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
1024 4 1.31 39 24 15 15 20 17 17
2048 4 1.31 29 20 15 14 17 17 16
4096 4 1.35 69 25 22 21 28 20 18
8192 4 1.37 35 23 15 15 18 17 16
16384 5 1.36 42 28 17 16 21 19 18
32768 5 1.38 44 28 17 16 21 17 18

MCAMG
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
1024 6 2.67 14 10 10 10 11 10 9
2048 7 2.62 15 11 10 10 11 10 10
4096 8 2.70 16 12 11 10 12 11 10
8192 8 2.74 16 12 11 10 12 11 10
16384 9 2.77 16 12 11 11 12 11 11
32768 10 2.79 17 12 11 11 12 11 11

Table 6.3
Example 6.3 (random planar graph, nonsymmetric). Table 6.1 has a complete description.

Figure 6.3 displays convergence histories for the SAM method applied to Exam-
ple 6.3 with unconstrained acceleration on the left and constrained acceleration on
the right, each with window sizes m =1,2, and 3. The histories for m = 4 were very
similar to m = 3 and were therefore not displayed.

Example 6.4 (tandem queueing network). We consider the Markov chain
given by two serial queues of finite capacity with the following transition probabilities:
the probability of a new customer entering the system is 0.32, the probability of a
customer being processed by the first queue and moving to the second queue is 0.36,
and the probability of a customer being processed by the second queue and leaving
the system is 0.32. The graph of this Markov chain is planar and is represented by
directed edges on a triangulation of the unit square (see Figure 6.1 and [16] for a more
complete description).

For both types of acceleration, similar results are observed in Table 6.4, where
for both SAM and MCAMG, the iteration counts are not really improved. However,
results for accelerating a less successful standalone method (SAM with smoothing P
only and not smoothing R) are given in Table 6.5. For this method, both types of
acceleration give similar improvement, where about 65% less iterations are needed
for the largest problem size. The acceleration wrappers reduce the iteration counts
significantly, and the accelerated methods are much more near optimal that the un-
accelerated. It should be noted that the accelerator applied to SAM with smoothing
P only is still not as efficient as the standalone version of SAM with smoothing both
R and P . These results are meant to display how the acceleration typically improves
nonoptimal methods, thus increasing robustness for multiplicative algebraic multilevel
methods. Additionally, for problems where smoothing R and P gives unacceptable
operator complexities, accelerating SAM with smoothing P only may prove more
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SAM
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
256 3 1.25 17 15 15 15 15 15 15
1024 4 1.25 20 17 17 16 17 16 16
4096 4 1.24 19 17 16 16 17 16 16
16384 5 1.24 22 18 18 17 19 18 16
65536 6 1.25 18 17∗ 17∗ 16∗ 17 17 16

MCAMG
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
256 5 4.08 15 12 11 11 12 10 10
1024 7 4.39 15 12 11 11 12 11 11
4096 8 4.47 15 13 13 12 13 12 12
16384 9 4.54 15 14 14 13 15 14 14
65536 12 4.60 16 16 15 14∗ 16 14 15

Table 6.4
Example 6.4 (tandem queueing network). Table 6.1 has a complete description. Stars (∗) mark

cases where backup steps are performed.

efficient.

The results in both Tables 6.4 and 6.5 show that a small amount of backup steps
were required for certain problem sizes and window sizes. For the largest problem size,
n = 65536, and window size m = 4, a few backup steps are needed for unconstrained
minimization to maintain iterate positivity. For MCAMG, the window size is reduced
to m = 3 for 2 of the 14 iterations. No full backups were observed.

SAM (Smooth P Only)
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
256 3 1.24 32 20 17 16 20 17 16
1024 4 1.22 41 27 20 20 27 20 20
4096 4 1.23 56 37 24 24 35 24 24
16384 5 1.22 57 37 27 27 38 26 26
65536 6 1.22 80 39 28 28 36 28 31

Table 6.5
Example 6.4 (tandem queueing network). Table 6.1 has a complete description. Stars (∗) mark

cases where backup steps are performed.

Example 6.5 (Petri Net) We consider a stochastic Petri net (SPN) problem.
Petri nets are a formalism for the description of concurrency and synchronization
in distributed systems. They consist of: places, which model conditions or objects;
tokens, which represent the specific value of the condition or object; transitions, which
model activities that change the value of conditions or objects; and arcs, which specify
interconnection between places and transitions. A stochastic Petri net is a standard
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Petri net, together with a tuple Λs = (r1, ..., rs) of exponentially distributed transition
firing rates. A finite place, finite transition, marked stochastic Petri net is isomorphic
to a discrete space Markov process. See [10] for an in-depth discussion of Petri nets.

Again, for both types of acceleration, similar results are observed in the top part
of Table 6.1 where for SAM, the iteration counts are not really improved. However,
results for accelerating a less successful standalone method (unsmoothed aggregation
and W-cycles) are given in the bottom part of Table 6.1. For this method, both types
of acceleration give similar improvement, where about 60% less iterations are needed
for the largest problem size. The acceleration is slightly better for the smaller versions
of this problem. It should be noted that the accelerator applied to unsmoothed
aggregation and W-cycles is still not as efficient as the standalone version of SAM
with smoothing both R and P and V-cycles.

SAM
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
819 4 1.85 16 13 13 12 13 13 12
2470 4 1.93 14 14 12 12 13 12 12
10416 5 2.05 14 14 13 12 14 12 12
23821 5 2.04 15 15 13 13 15 13 13
45526 5 1.90 14 14 13 14 14 13 13

Unsmoothed Aggregation with W-cycles
Unconstrained Constrained
Window Size Window Size

n lvls Cop its 2 3 4 2 3 4
819 4 1.79 61 32 25 24 29 26 23
2470 5 1.85 63 31 27 25 30 30 28
10416 6 1.90 62 33 28 31 33 33 33
23821 6 1.92 62 34 32 24 32 34 34
45526 6 1.94 63 39 38 32 37 36 35

Table 6.6
Example 6.5 (stochastic Petri net). Table 6.1 has a complete description.

7. Conclusion. In this work we developed two approaches to accelerate adaptive
algebraic multiplicative multilevel methods for steady-state solution to Markov chains.
One acceleration approach is based on minimizing a quadratic rational functional in an
unconstrained subspace, and the other is based on minimizing a quadratic functional
in a constrained subset. We performed tests by applying the accelerators to two
different classes of adaptive algebraic multiplicative multilevel methods, one based
on aggregation and one based on algebraic multigrid. For both the unconstrained
and constrained approaches, similar results were observed. In some cases where the
standalone methods were performing optimally, reductions to iteration counts were
observed. However, for a few cases where the unaccelerated methods were already near
optimal, the accelerated methods offered no improvement. Significant improvements
in iteration counts and scalability could be made with small window sizes when the
standalone methods were not performing optimally. Therefore, the accelerators were
found to be useful to increase the robustness of a given method with a small amount
of additional cost, similar to the effect of preconditioned Krylov acceleration applied



Acceleration for Steady-State Markov 25

to nonsingular linear problems.
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