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Abstract. Least-squares finite element methods (LSFEM) for scalar linear partial differential
equations (PDEs) of hyperbolic type are studied. The space of admissible boundary data is identified
precisely and a trace theorem and a Poincaré inequality are formulated. The PDE is restated as the
minimization of a least-squares functional and well-posedness of the associated weak formulation is
proved. Finite element convergence is proved for conforming and nonconforming (discontinuous) LS-
FEM that are similar to previously proposed methods, but for which no rigorous convergence proofs
have been given in the literature. Convergence properties and solution quality for discontinuous
solutions are investigated in detail for finite elements of increasing polynomial degree on triangular
and quadrilateral meshes and for the general case that the discontinuity is not aligned with the
computational mesh. Our numerical studies found that higher-order elements yield slightly better
convergence properties when measured in terms of the number of degrees of freedom. Standard alge-
braic multigrid methods that are known to be optimal for large classes of elliptic PDEs are applied
without modifications to the linear systems that result from the hyperbolic LSFEM formulations.
They are found to yield complexity that grows only slowly relative to the size of the linear systems.
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1. Introduction. We consider scalar linear partial differential equations (PDEs)
of hyperbolic type that are of the form

b · ∇p = f in Ω, (1.1)

p = g on ΓI , (1.2)

with b(x) a flow field on Ω ⊂ R
d, and

ΓI := {x ∈ ∂Ω: n(x) · b(x) < 0}, (1.3)

the inflow part of the boundary of domain Ω. Here, n(x) is the outward unit normal
of ∂Ω.

Equations of this type, often called transport equations or linear advection equa-
tions, arise in many applications in science and engineering, e.g. in fluid dynamics [22]
and in neutron transport [23]. For decades there has been a drive to find increasingly
accurate and efficient numerical solution methods for equations of the form (1.1-1.2).
Not only do these equations have wide applications by themselves, but they also form
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a prototype equation for more general equations of hyperbolic type, e.g. systems of
nonlinear conservation laws [22] or transport equations in phase space [23]. Successful
numerical methods for (1.1-1.2) can often be used as building blocks for the numerical
solution of more complicated hyperbolic PDEs [22].

Linear hyperbolic PDEs allow for discontinuous solutions when the boundary data
is discontinuous. It is difficult to develop numerical methods that offer both high-order
accurate results in regions of smooth solution and sharp discontinuity resolution, while
avoiding spurious oscillations at discontinuities [3]. For wide classes of elliptic PDEs,
optimal multilevel iterative solution algorithms have been developed for the discrete
linear algebraic systems that require only O(n) operations, where n is the number
of unknowns (see e.g. [29, 10] and references therein). For hyperbolic and mixed
elliptic-hyperbolic PDEs, attempts at finding such optimal iterative solvers have been
scarcely successful, even though some promising results have been reported [30].

The general philosophy behind the approach pursued in this paper is to combine
adaptive least-squares (LS) finite element discretizations on space-time domains with
global implicit solves using optimal iterative methods, in particular algebraic multigrid
(AMG). Our goal is to explore whether such an approach can be competitive with
present-day state-of-the-art techniques, e.g. approaches that rely on explicit time-
marching using discontinuous Galerkin (DG) schemes. Clearly, there are important
difficulties that have to be overcome. Optimal O(n) solvers are still an active research
topic for general hyperbolic and mixed elliptic-hyperbolic PDEs. A strong motivation
for our choice of LS discretizations is that optimal solvers are more easily designed for
the symmetric positive-definite (SPD) matrices that result from LS discretizations.
We intend to remedy the extra smearing at discontinuities that is introduced by LS
methods as compared with other approaches by adaptive refinement based on the
natural, sharp error estimator provided by the LS functional, see Remark 3.7. The
research question we seek to answer is whether the resulting adaptive least-squares
finite element methods (LSFEM), combined with optimal solvers, can be competitive
with other approaches. The scope of the present paper encompasses the theoretical
aspects of the LSFEM for continuous and for discontinuous elements, as well as a
numerical study of AMG performance. Work on the combination of these techniques
with adaptive refinement is the subject of a forthcoming paper. Application of these
methods to linear hyperbolic systems and general systems of nonlinear conservation
laws is also work in progress.

Finite element methods for (1.1-1.2) have been considered before, for example
in Galerkin, streamline-upwind Petrov-Galerkin (SUPG), and residual distribution
frameworks [20, 15, 1]. Least-squares terms have been added to Galerkin methods for
stabilization, see e.g. [17, 2], and the SUPG method can be written as a linear combi-
nation of a Galerkin method and a least-squares term [15]. A comparison of Galerkin,
SUPG, and LSFEM for convection problems can be found in [5]. In the present pa-
per, we investigate pure least-squares formulations for (1.1-1.2). While least-squares
finite element methods have been investigated extensively for equations of elliptic
type [11, 12, 19, 7], their use for hyperbolic PDEs has only been initiated recently
[13, 6, 17]. LSFEMs are inherently attractive variational formulations for which well-
posedness of the resulting discrete problems can be proved rigorously. Least-squares
finite element formulations lead to SPD linear systems. Another advantage of the LS-
FEM approach is that higher order accurate methods can easily be constructed which
are linear (for linear or linearized PDEs). As is shown in this paper, these linear
higher order discretizations do not exhibit excessive spurious oscillations at disconti-
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nuities. This is in contrast to most other methods, e.g. DG methods, where nonlinear
limiter functions have to be employed in order to assure monotonicity [14]. Linear
discretizations are better suited for iterative solution in global implicit solves. In the
case of elliptic PDEs, LSFEM have been used successfully as a starting point for de-
signing multilevel solution techniques with provably optimal behavior [11, 12, 19, 7].
Least-squares methods naturally provide a sharp error estimator [4], which can be
used advantageously to design adaptive refinement techniques using composite grids
in a multi-level context [25].

Discontinuous finite element methods for hyperbolic PDEs, in particular, DG
methods [21], have enjoyed substantial interest in recent years [14, 17]. They have
proved to be effective and versatile high order methods for nonlinear hyperbolic sys-
tems with natural conservation properties and good monotonicity properties near
discontinuities due to up-winding. They can handle non-matching grids and nonuni-
form polynomial approximations, orthogonal bases can be chosen that lead to diagonal
mass matrices, and they are easily parallelized by using block-type preconditioners
[14, 17].

The contributions of the present paper are threefold. First, we establish finite ele-
ment convergence of the continuous and discontinuous LSFEM formulations proposed
in this paper. We start out with presenting a trace theorem that precisely identifies
the space of admissible boundary data. Our continuous LSFEM is a modification
of the LSFEM studied by Bochev and Choi [6] for a problem similar to (1.1-1.2), in
which (1.1) is replaced by

b · ∇p + c p = f in Ω. (1.4)

Their convergence proof for this modified problem does not carry over to our LSFEM
formulation for (1.1-1.2). Our discontinuous LSFEM (DLSFEM) is a slight modifi-
cation of the method proposed by Houston et al. in [17], which does not provide a
rigorous finite element convergence proof for this method.

Second, we study the order of convergence of our LSFEM and DLSFEM for dis-
continuous flow solutions in the general case that the discontinuity is not aligned
with the computational mesh. For extensive studies of solution quality and conver-
gence orders for continuous flows, we refer to [5, 6, 17]. Bochev and Choi [5] show
in numerical LSFEM experiments that no substantial spurious oscillations arise near
discontinuities in the solution. This finding is confirmed in Houston et al. [17] for
DLSFEM. Both papers show that for continuous flows the accuracy of (D)LSFEM is
comparable to (D)G and (D)SUPG results (especially for higher order elements and
fine grids), while for discontinuous solutions the smearing is substantially larger in
the (D)LSFEM results.

In [5, 17], the order of convergence for discontinuous flow solutions is not inves-
tigated. In the present paper we study numerical convergence of discontinuous flow
solutions for elements of increasing polynomial degree on triangular and quadrilat-
eral meshes. Our numerical study of discontinuous flow simulation with LSFEM and
DLSFEM yields interesting results. The smearing of the discontinuity improves while
the overshoots and oscillations remain contained as we increase the order of the poly-
nomial degree of the finite elements. We find an increase in the convergence rate as
the polynomial degree increases. We observe similar behavior in the L2 norm and
functional norm for LSFEM and DLSFEM and for different scalar flow fields.

Third, we study the performance of a standard AMG method [27], which is known
to be optimal for large classes of elliptic PDEs. We apply AMG to a conforming LS-
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FEM discretization of the hyperbolic PDE and we discuss strategies that may over-
come some difficulties encountered. The matrices resulting from (D)LSFEM are SPD,
which often is advantageous for the convergence of iterative methods. In particular,
the Ruge-Stüben AMG algorithm [27] we use relies on interpolation and coarsening
heuristics that assume SPD matrices. In this paper we treat simple model problems
for which there is a time-like direction, that can also be exploited by explicit marching
schemes. For optimal global implicit solvers the number of operations per grid point
is bounded, which means that even for this kind of time-like problems they may be
able to compete with explicit marching methods, for which the number of operations
per grid point is bounded as well. This may especially be true when adaptive refine-
ment and derefinement is taken into account. Moreover, explicit marching schemes
are limited by time step constraints, which can be severe on adaptively refined grids.
Also, efficient parallel implementations have been developed for AMG solvers [16].
Global implicit solves may be especially competitive for the simulation of problems
for which there is no preferred marching direction, e.g. steady flows with rotation or
flows of mixed elliptic-hyperbolic type. In this paper we make an important first step
by investigating whether optimal AMG solvers can be constructed for simple time-like
problems. Optimal global solvers for flows without preferred directions will be treated
in forthcoming work.

This paper is organized as follows. In the next section, we examine the space
of admissible boundary data (g in (1.2)) and establish a trace theorem and Poincaré
inequality. This leads, in Section 3, to the formulation of a minimization principle of a
least-squares functional with boundary term, from which a weak form is derived. Co-
ercivity and continuity are proved and a priori estimates are obtained. Well-posedness
is also proved for a slightly modified functional that is suitable for computations. In
Section 4, we describe conforming finite element methods that are obtained when
the least-squares functional is minimized over finite-dimensional subspaces and error
bounds for discontinuous solutions are discussed. In Section 5, a discontinuous LS-
FEM is obtained by minimizing a modified functional that incorporates jump terms
over a discontinuous finite dimensional space. Section 6 presents a numerical study
of the convergence behavior of LSFEM and DLSFEM for discontinuous solutions and
for elements of increasing polynomial degree on triangular and quadrilateral meshes.
The sharpness and monotonicity of the approximate solution in the neighborhood of
discontinuities is investigated. In Section 7, we study the performance of a standard
AMG method [27], which is known to be optimal for large classes of elliptic PDEs.
We apply AMG to a conforming LSFEM discretization of the hyperbolic PDE. Con-
clusions are formulated in Section 8.

2. Admissible Boundary Data. In this section, we examine the space of ad-
missible boundary data for (1.1-1.2) and formulate a Poincaré inequality and a trace
theorem.

Given Ω in (1.1-1.2) ⊂ R
d, let b(x) = (b1(x), . . . , bd(x)) be a vector field on Ω.

We make the following assumptions on b: for any x̂ ∈ ΓI , let x(r) = (x1(r), . . . , xd(r))
be a streamline of b, that is, the solution of

dxi(r)

dr
= bi(x(r)), i = 1, . . . , d (2.1)

with initial condition x(r0) = x̂. In this paper, we limit the discussion to the case
where d = 2, although extensions to higher dimensions can be established [24]. Let
β = |b| and assume there exist constants β0 and β1 such that 0 < β0 ≤ β ≤ β1 < ∞
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on Ω. We assume that there exists a transformation to a coordinate system (r, s) such
that the streamlines are lined up with the r coordinate direction and the Jacobian,
J , of the transformation is bounded. This implies that no two streamlines intersect
and that Ω is the collection of all such streamlines. Further, we assume that every
streamline connects ΓI and ΓO with a finite length `(x̂), where x̂ ∈ ΓI . We require
partition T h of Ω to be an admissible, quasi-uniform tessellation (see [8, 9]). We
assume the same for T̂ h of Ω̂, the image of T h under the transformation. For our
numerical tests, we use uniform partitions of triangles and quadrilaterals.

We define the boundary norm

‖g‖2
B`

:=

∫

ΓI

`(x(σ))|b̂ · n|g2dσ, (2.2)

where b̂ is the unit vector in the direction b and `(x) is the length of the streamline
of b connecting ΓI to the outflow boundary ΓO. Define the space B` to be the closure
of C∞(ΓI) in the B`-norm (2.2). Assuming f ∈ L2(Ω) in (1.1) and using standard
notation for L2 norms, we define the natural norm (often called the graph norm)

‖p‖2
V`

:= ‖p‖2
0,Ω + ‖b · ∇p‖2

0,Ω, (2.3)

and the solution space as

V` := {p ∈ L2(Ω) : ‖p‖V`
< ∞}. (2.4)

Remark 2.1. Depending on b and Ω, B` can be larger than L2(ΓI).
Lemma 2.2. Trace inequality. If p ∈ V` and p = g on ΓI , then there exists a

constant C, depending on β0 and the transformation Jacobian J , such that

‖g‖2
B`

≤ C
(

‖p‖2
0,Ω + ‖b · ∇p‖2

0,Ω

)

. (2.5)

Proof. We first prove (2.5) assuming b is constant. Let b̄ = 1
|b|b, the unit vector

in the direction of b. For every x̂ ∈ ΓI , let

`(x̂) = |s1(x̂)|, (2.6)

where (0, s1) is the largest interval for which x̂ + sb̂ ∈ Ω for all s ∈ (0, s1). Here,

b̂ = b̄(x̂) generates the unique streamline intersecting the point x̂. Let dσ be the
differential arc length along ΓI and n the outward unit normal on ΓI . Then, for any
p ∈ V`, we have

∫∫

Ω

p(x) dA =

∫

ΓI

∫ s1(x̂)

0

p(x̂ + sb̂) ds |b̄ · n| dσ. (2.7)

For any s ∈ [0, s1(x̂)], we have

p2(x̂ + sb̂) = p2(x̂) +

∫ s

0

b̄ · ∇p2(x̂ + tb̂) dt, (2.8)

so

p2(x̂) ≤ p2(x̂ + sb̂) +

∫ s1(x̂)

0

∣

∣

∣b̄ · ∇p2(x̂ + tb̂)
∣

∣

∣ dt. (2.9)
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Integrating over (0, s1(x̂)) with length element dt and using the relation `(x̂) =
∫ s1(x̂)

0
dt, we thus obtain

`(x̂)p2(x̂) ≤
∫ s1(x̂)

0

p2(x̂ + tb̂) dt + `(x̂)

∫ s1(x̂)

0

∣

∣

∣
b̄ · ∇p2(x̂ + tb̂)

∣

∣

∣
dt. (2.10)

Integrating along ΓI with length element |b̄ · n|dσ yields

∫

ΓI

`(x̂)p2(x̂)|b̄ · n|dσ ≤
∫

ΓI

∫ s1(x̂)

0

p2(x̂ + tb̂) dt |b̄ · n| dσ

+

∫

ΓI

`(x̂)

∫ s1(x̂)

0

∣

∣

∣b̄ · ∇p2(x̂ + tb̂)
∣

∣

∣ dt |b̄ · n| dσ.

(2.11)

Let D = diam(Ω). Applying the Cauchy-Schwarz and ε inequalities, we thus have

‖p‖2
B`

≤ ‖p‖2
0,Ω + 2D‖(b̄ · ∇)p‖0,Ω‖p‖0,Ω

≤ ‖p‖2
0,Ω + D2‖p‖2

0,Ω + ‖(b̄ · ∇)p‖2
0,Ω

≤ C(‖p‖2
0,Ω + ‖(b · ∇)p‖2

0,Ω).

(2.12)

For the general case of variable b(x), the bound (2.5) follows using the assumed
transformation with bounded Jacobian and the fact that p = g on the inflow boundary
ΓI .

Remark 2.3. The constants C which appear in Lemma 2.2 and throughout the
rest of the paper are generic and may change value with each occurence, but depend
only on β0, ΓI , and Ω.

Lemma 2.4. Poincaré Inequality. Let D = diam(Ω). There exists a constant C,
depending on β0 and the transformation Jacobian J , such that

‖p‖2
0,Ω ≤ C(‖p‖2

B`
+ D2‖b · ∇p‖2

0,Ω). (2.13)

Proof. As in the preceding proof, we derive this Poincaré inequality for constant
b and rely on the transformation with bounded Jacobian to achieve the general result.
Let b̄ = 1

|b|b and let 0 and s1(x) be as in the proof of Lemma 2.2. For every x̂ ∈ ΓI ,

let `(x̂) = |s1(x̂)|. Also, let b̂ = b̄(x̂) generate the unique streamline intersecting the
point x̂. Notice that for s ∈ [0, s1(x)], we have

p(x̂ + sb̂) = p(x̂) +

∫ s

0

b̄ · ∇p(x̂ + tb̂) dt. (2.14)

Squaring both sides and using the ε and Jensen inequalities yields

|p(x̂ + sb̂)|2 ≤ 2



|p(x̂)|2 +

(

∫ s1(x̂)

0

∣

∣

∣
b̄ · ∇p(x̂ + tb̂)

∣

∣

∣
dt

)2




≤ 2

(

|p(x̂)|2 + `(x̂)

∫ s1(x̂)

0

∣

∣

∣
b̄ · ∇p(x̂ + tb̂)

∣

∣

∣

2

dt

)

.

(2.15)
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Integrating over (0, s1(x̂)) with dt and using the relation `(x̂) =
∫ s1(x̂)

0
dt we thus

obtain

∫ s1(x̂)

0

∣

∣

∣
p(x̂ + tb̂)

∣

∣

∣

2

dt ≤ 2

(

`(x̂)|p(x̂)|2 + `(x̂)2
∫ s1(x̂)

0

∣

∣

∣
b̄ · ∇p(x̂ + tb̂)

∣

∣

∣

2

dt

)

. (2.16)

Integrating along ΓI with |b̄ · n|dσ and using (2.7) then yields

‖p‖2
0,Ω ≤ 2





∫

ΓI

`(x̂)p2(x̂)|b̄ · n|dσ + D2‖b̄ · ∇p‖2
0,Ω





≤ C
(

‖p‖2
B`

+ D2‖b · ∇p‖2
0,Ω

)

.

(2.17)

The following Trace Theorem establishes B` as the space of admissible functions
for inflow boundary conditions when the right hand side, f , in (1.1) is in L2(Ω).

Theorem 2.5. Trace Theorem. For p ∈ V` let γ(p) represent the trace of p on
ΓI . The map γ : V` → B` is a bounded surjection.

Proof. For any g ∈ B`, we can construct a flat function p such that p = g on
ΓI and b · ∇p = 0 in Ω. From the Poincaré Inequality (2.13), it follows that p ∈ V`.
Together with the Trace Inequality, this yields the trace theorem.

Remark 2.6. Our trace theorem is similar to the theorem proved in [24] for
the more general case of the neutron transport equation in phase space. A different
characterization of the trace space is given in [18] for the general class of Friedrichs
systems, of which (1.1-1.2) is a special case. The trace operator defined in [18] is not
surjective. In this sense, in contrast to Theorem 2.5, the trace space identified in [18]
does not provide a sharp trace theorem.

3. Least-Squares Weak Form. In this section, we formulate a least-squares
minimization principle, derive the weak form of the minimization and prove existence
of a unique p ∈ V` solving the weak problem. We use the tools developed in the
previous section and coercivity and continuity with respect to the natural norm (2.3)
to arrive at these results.

We define the least-squares functional

G`(p; f, g) := ‖b · ∇p − f‖2
0,Ω + ‖p − g‖2

B`
. (3.1)

First we note that if p satisfies (1.1-1.2), then

p = arg min
p∈V`

G`(p; f, g).

The bilinear form associated with G` (3.1) is

F`(p, q) := 〈b · ∇p, b · ∇q〉0,Ω + 〈p, q〉B`
,

with standard notation for scalar products associated with norms. The weak form of
the minimization is:

Problem 3.1. Find p ∈ V` s.t.

F`(p, q) = F (q) ∀ q ∈ V`, (3.2)
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where

F (q) = 〈f, b · ∇q〉0,Ω + 〈g, q〉B`
.

Note: F (q) ∈ V ′
` , the dual space of V`.

The following establishes coercivity and continuity in the V` norm of the bilinear
form, F`(·, ·), defined by (3.2). With these properties the bilinear form, F`(·, ·), is
frequently referred to as V`-elliptic [8].

Theorem 3.2. Coercivity and Continuity, Existence and Uniqueness. There
exist constants c0 and c1 s.t. for every p, q ∈ V`

c0‖p‖2
V`

≤ F`(p, p), (3.3)

F`(p, q) ≤ c1‖p‖V`
‖q‖V`

. (3.4)

Furthermore, for every f ∈ L2(Ω), g ∈ B` there exists a unique p ∈ V` solving the
weak problem (3.2). Moreover, p also satisfies (1.1-1.2).

Proof. Using the definition of ‖p‖V`
from (2.3) and Poincaré Inequality (2.13)

yields

‖p‖2
V`

≤ C(‖p‖2
B`

+ D2‖b · ∇p‖2
0,Ω) + ‖b · ∇p‖2

0,Ω

≤ C(‖p‖2
B`

+ ‖b · ∇p‖2
0,Ω)

= CF`(p, p),

(3.5)

which yields (3.3). Similarly, applying the Cauchy-Schwarz inequality followed by
trace inequality (2.5) and Cauchy-Schwarz again, we have

F`(p, q) ≤ ‖b · ∇p‖0,Ω‖b · ∇q‖0,Ω + ‖p‖B`
‖q‖B`

≤ ‖b · ∇p‖0,Ω‖b · ∇q‖0,Ω + C
(

‖p‖2
0,Ω + ‖b · ∇p‖2

0,Ω

)
1

2 C
(

‖q‖2
0,Ω + ‖b · ∇q‖2

0,Ω

)
1

2

≤ C‖p‖V`
‖q‖V`

,

(3.6)

which confirms (3.4).
The trace theorem and Cauchy-Schwarz inequality imply that, for every f ∈

L2(Ω) and g ∈ B`,

F (q) := 〈f, b · ∇q〉0,Ω + 〈g, q〉B`
(3.7)

is a bounded linear functional on V`. Thus, we can embed the pair (f, g) ∈ L2(Ω)×B`

into V ′
` , the dual space of V`.

By the Lax-Milgram Theorem [8], for all (f, g) ∈ L2(Ω) × B`, there exists a
unique p ∈ V` that satisfies the weak problem (3.2). We now show that p also solves
the strong problem (1.1-1.2). It suffices to show that the embedding of L2(Ω) × B`

into V ′
` is injective.

To do this, pick (f, g) ∈ L2(Ω) × B` and suppose

F (q) = 〈f, b · ∇q〉0,Ω + 〈g, q〉B`
= 0, (3.8)

for every q ∈ V`. Thus, if f = 0 and g = 0, the embedding is injective.
We first show that for (f, g) ∈ L2(Ω) × B`, there exists ps ∈ V` such that

Lps = (f, g), (3.9)
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where L : V` → L2(Ω) × B` is defined by

b · ∇ps = f in Ω, (3.10a)

ps = g on ΓI . (3.10b)

That is, we must show that L is surjective. Construct ps as follows. Let p1 be a flat
function such that

b · ∇p1 = 0 in Ω, (3.11a)

p1 = g on ΓI . (3.11b)

For x ∈ Ω, let x̂ be the point on ΓI with the same streamline as x. Let β(x) = |b(x̂)|
and b̄ = b(x)

β(x) . Let p2 be given by

p2(x) =

∫

x

x̂

f(x̂ + sb̄(x̂))

β(x̂ + sb̄(x̂))
ds. (3.12)

Then, p2 satisfies

b · ∇p2 = f in Ω, (3.13a)

p2 = 0 on ΓI . (3.13b)

Writing ps = p1 + p2, we see that ps satisfies (3.10a-3.10b). Thus, L is a surjection.
Now since F (q) = 0 and ps ∈ V` satisfies (3.10a-3.10b), we have

〈f, f〉0,Ω + 〈g, g〉B`
= 0. (3.14)

Thus, f = 0 and g = 0. It follows that the embedding is injective. This completes
the proof.

The following a priori estimate is a direct consequence of Theorem 3.2. These
bounds are often referred to as stability estimates.

Corollary 3.3. A Priori Estimate. There exist constants c3 and c4 such that,
if p satisfies (3.2), then

c3‖p‖V`
≤ (‖f‖0,Ω + ‖g‖B`

) ≤ c4‖p‖V`
. (3.15)

Proof. Proof follows directly from Theorem 3.2.
For certain problems `(x) in (2.2) may not be easily computed, making the least-

squares formulation intractable. To avoid this difficulty we modify the boundary norm
in the functional to be

‖g‖2
B :=

∫

ΓI

|b̂ · n|g2ds, (3.16)

where b̂ is the unit normal in the direction of b. Let B = {g : ‖g‖B < ∞} and notice
that B`∩L∞(ΓI) ⊆ B. If Ω is such that ΓI and ΓO remain a bounded distance apart,
then this norm is equivalent to the original norm, ‖ · ‖B`

. If ΓI and ΓO touch, then
there are functions in B` that are not in B. For bounded functions, the B` norm and
B norm are equivalent. That is, if we restrict our attention to bounded boundary
data, then nothing is lost in modifying the functional.
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In general, the trace inequality (2.5) does not hold with B` replaced by B, but
the Poincaré inequality (2.13) does. To retain the inequalities and ellipticity results
obtained above, we must include the boundary term in the definition of the norm.
Define the norm

‖p‖2
V := ‖p‖2

0,Ω + ‖b · ∇p‖2
0,Ω + ‖p‖2

B ,

and the space

V := {p ∈ L2(Ω) : ‖p‖V < ∞}.
The modified functional is then defined as follows: let f ∈ L2(Ω), g ∈ B and

define

G(p; f, g) := ‖b · ∇p − f‖2
0,Ω + ‖p − g‖2

B . (3.17)

If p satisfies (1.1-1.2), then

p = arg min
p∈V

G(p; f, g).

The associated bilinear form is

F(p, q) := 〈b · ∇p, b · ∇q〉0,Ω + 〈p, q〉B , (3.18)

and the weak form of the minimization is:
Problem 3.4. Find p ∈ V s.t.

F(p, q) = F (q) ∀ q ∈ V, (3.19)

where

F (q) = 〈f, b · ∇q〉0,Ω + 〈g, q〉B . (3.20)

With this change we obtain existence and uniqueness, and an a priori estimate as
before.

Theorem 3.5. Coercivity and Continuity, Existence and Uniqueness. There
exist constants c0 and c1 s.t. for every p, q ∈ V

c0‖p‖2
V ≤ F(p, p),

F(p, q) ≤ c1‖p‖V ‖q‖V .

Furthermore, for f ∈ L2 and g ∈ B there exists a unique p ∈ V solving Problem 3.4.
Corollary 3.6. A Priori Estimates. There exist constants c3 and c4 such that,

if p satisfies (3.19), then

c3‖p‖V ≤ (‖f‖0,Ω + ‖g‖B) ≤ c4‖p‖V . (3.21)

Remark 3.7. The G norm, defined as

‖ph‖2
G := G(ph, 0, 0), (3.22)

is a natural and computable a posteriori error estimator. To see this, let e = ph − p,
where p solves (1.1-1.2). Then,

‖e‖G = G(ph − p; 0, 0)

= G(ph; f, g).

Least-squares methods offer the advantage of a convenient a posteriori error indicator.
Sharpness is addressed in [4, 7].
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4. Conforming Finite Elements. In this section we discuss the discrete form
of the minimization. We consider an admissible, quasi-uniform tessellation T h of Ω (cf.
[8]). For a conforming method, we choose the discrete space V h ⊂ V . For example,
in our numerical tests we use uniform partitions of triangles and quadrilaterals and
implement piecewise polynomials with continuity imposed across element edges. Let

V h := Mh
k ∩ C0(Ω), (4.1)

where

Mh
k := {p : p ∈ Pk(τ), ∀ τ ∈ T h}. (4.2)

Here, Pk(τ) is the space of polynomials of total degree ≤ k when τ is a triangle and
tensor product polynomials of degree ≤ k in each coordinate direction when τ is a
quadrilateral. We now pose the conforming discrete weak form of the minimization.

Problem 4.1. Find ph ∈ V h s.t.

F(ph, qh) = F (qh) ∀qh ∈ V h, (4.3)

where F is defined by (3.18) and F is defined by (3.20).
By Ceá’s Lemma we have

‖p − ph‖V ≤ c0

c1
inf

p̂h∈V h
‖p − p̂h‖V ,

where c1 and c0 are the constants from the continuity and coercivity bounds.
In this paper we are interested in discontinuous solutions, p. Suppose g is discon-

tinuous, but piecewise smooth. That is, g ∈ H
1

2
−ε(ΓI). Then, for smooth f , p has the

same smoothness, p ∈ H
1

2
−ε(Ω). In this case it can be shown that, for grid-aligned

flow,

‖p − ph‖V ≤ Ch
1

2
−ε‖p‖ 1

2
−ε,

where C is some grid-independent constant. The exact bound for the non-grid-aligned
case remains an open question. Still, the theoretical limit for the grid-aligned case and
other results offer some insight. Scott and Zhang describe in [28] an interpolation Ĩh

such that ‖p− Ĩhp‖0,Ω ≤ Ch
1

2
−ε‖p‖ 1

2
−ε. If we assume that 1

2 is the optimal L2-rate of

convergence for interpolation, then we expect that the L2-rate of convergence for the
finite element method will be no better than 1

2 . Note that Poincaré Inequality (2.13)
yields ‖p − ph‖0,Ω ≤ C‖p − ph‖V . Thus, the V norm rate of convergence cannot be
faster than the L2-norm rate. In section 6, we discuss our numerical findings regarding
error estimates and present results consistent with the error bounds proposed. We
find that, as we increase the order of the elements, the convergence rate increases and
is bounded by 1

2 in both the L2 norm and G norm. For an extensive analysis of error
bounds and convergence rates for smooth solutions see [5, 6].

5. Nonconforming Finite Elements. In this section we describe the use of
discontinuous elements motivated by the case when the flow is grid-aligned. Consider
an example when the characteristics follow the grid and the boundary data is pre-
scribed such that the discontinuity in the solution follows the element edges aligned
with the characteristics. In (1.1-1.2) let f = 0 and prescribe piecewise constant
boundary data with discontinuities only at nodes. If we use the discontinuous space
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Mh
k defined by (4.2), the solution to (1.1-1.2) is in this space. However, the grids we

consider are generally not aligned with the flow field b(x) and boundary data is often
more general than this special case. If attention is given to the behavior of the jumps
with respect to the grid, a well posed formulation of the problem in a discontinuous
least-squares setting is attainable. To this end, let T h =

⋃

j τj be a tessellation of Ω

and let Sh := Mh
k defined as in (4.2). Let Γi,j := τi ∩ τj denote the edge common to

elements τi and τj . Since Sh 6⊂ V , we call Sh a nonconforming space [8].

For ph ∈ Sh + V define the element edge functional as

‖ph‖2
Eh :=

∑

i,j

ωi,j

∫

Γi,j

|b · nτ |JphK2ds. (5.1)

Here, nτ is the outward unit normal to edge Γi,j , ωi,j is a weight to be determined and
JphK is the jump in ph across Γi,j . We use the term (5.1) in the least-squares functional
to make a distinction between element edges that are closely aligned with the flow and
edges that are not by tying together neighboring elements. This behavior is consistent
with the regularity of the solution. A solution p of (1.1-1.2) would be smooth in
the direction of the flow while perpendicular to the flow p is only L2-regular. For
further motivation, consider a non-grid-aligned flow with a typical discontinuity (see
Figure 5.1). When element edges are nearly aligned with the discontinuity (location
A), the term |b · n| is small in the term (5.1), allowing a larger jump between the
neighboring element. However, when an element edge is nearly perpendicular to the
flow (location B), |b · n| is large. This enforces a stronger connection between the
elements resulting in a smaller jump.

B

A

Fig. 5.1. Example non-grid-aligned flow and outward normals A and B

We can now define a nonconforming least-squares functional similar to (3.17)
except for the use of broken norms and inclusion of the edge functional (5.1). With
f ∈ L2(Ω), g ∈ B, p ∈ Sh + V , define the functional as

Gh(p; f, g) :=
∑

j

‖b · ∇p − f‖2
0,τj

+ ‖p‖2
Eh + ‖p − g‖2

B . (5.2)

Define the Gh norm as

‖ph‖2
Gh := Gh(ph, 0, 0). (5.3)

If p ∈ V , then Gh(p; f, g) = G(p; f, g).
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Let e = ph − p, where ph ∈ Sh and p satisfies (1.1-1.2). Notice that

‖e‖Gh = Gh(ph − p; 0, 0)

= Gh(ph; f, g).

Thus, Gh is a natural a posteriori error estimator. The sharpness of LS error estima-
tors is addressed in [4, 7].

We can now describe the discrete variational problem for our discontinuous ele-
ments.

Problem 5.1. Find ph ∈ Sh s.t.

F(ph, qh) = F (qh) ∀ qh ∈ Sh,

where

F(ph, qh) :=
∑

τi

〈b · ∇ph,b · ∇qh〉0,τi
+ 〈ph, qh〉Eh + 〈ph, qh〉B ,

F (qh) =
∑

τi

〈f,b · ∇qh〉0,τi
+ 〈g, qh〉B .

In the following lemma we find that a uniform Poincaré inequality is satisfied
for weights stronger than ω = c 1

h
, where c is a grid-independent constant. We also

show, by example, that weights weaker than ω = c 1
h
—e.g. ω = 1 or h—result in a

violation of the uniform Poincaré inequality. Thus, enforcing the connection between
neighboring elements too weakly not only decreases the stability of the solution, but
also results in losing a uniform bound on the error in the L2 norm.

Lemma 5.2. Uniform Poincaré Inequality. There exists a constant C, indepen-
dent of h, such that for ph ∈ Sh + V and ω ≥ c 1

h
, where c is a grid-independent

constant,

‖ph‖0,Ω ≤ C‖ph‖Gh . (5.4)

Furthermore, the above does not hold for ω < c 1
h
.

Proof. Similar to the proof of Lemma 2.4, we derive the uniform Poincaré inequal-
ity for constant b and rely on the transformation with bounded Jacobian to achieve
the general result. As before, let b̄ = 1

|b|b. Let x̂ ∈ ΓI and let sk be parameters in

(0, sm(x̂)) such that x̂k = x̂ + skb̄(x̂) lies on an element edge, where (s0, sm) now
plays the role of (0, s1) in our previous proofs. Since the flow field b is constant, we
have m(x̂) = O(

√
N), where N is the number of elements in T h, the tessellation of Ω,

and m(x̂) is the number of element edges encountered by the characteristics generated

by b̂ = b̄(x̂) emanating from x̂ ∈ ΓI . For 0 ≤ k < m, we assume

|sk+1(x̂) − sk(x̂)| < h̃ (5.5)

for all x̂ ∈ ΓI , where

h̃ = max
j

{diam τj : τj ∈ T h}. (5.6)

Furthermore, assume h̃ = O( 1√
N

) and let

`(x̂) =
m
∑

k=1

|sk(x̂) − sk−1(x̂)|. (5.7)
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Let Jp(x)K denote the jump in p at x. Using

p(x̂+sb̂) = p(x̂)+

k
∑

j=1

∫ sj

sj−1

b̄ · ∇p(x̂ + tb̂) dt + Jp(x̂j)K+

∫ s

sk

b̄ ·∇p(x̂+ tb̂) dt, (5.8)

taking absolute values, extending the range of integration, and then squaring both
sides, we arrive at

∣

∣

∣p(x̂ + sb̂)
∣

∣

∣

2

≤



|p(x̂)| +
m
∑

j=1

∫ sj

sj−1

∣

∣

∣b̄ · ∇p(x̂ + tb̂)
∣

∣

∣ dt +

m−1
∑

j=1

Jp(x̂j)K





2

. (5.9)

Using the inequality





M
∑

j=1

aj





2

≤ M

M
∑

j=1

a2
j , (5.10)

equation (5.5), and Jensen’s inequality, we obtain

∣

∣

∣p(x̂ + sb̂)
∣

∣

∣

2

≤ 3











|p(x̂)|2 +





m
∑

j=1

∫ sj

sj−1

∣

∣

∣b̄ · ∇p(x̂ + tb̂)
∣

∣

∣ dt





2

+





m−1
∑

j=1

Jp(x̂j)K





2










≤ 3







|p(x̂)|2 + m

m
∑

j=1

h̃

∫ sj

sj−1

∣

∣

∣b̄ · ∇p(x̂ + tb̂)
∣

∣

∣

2

dt + m

m−1
∑

j=1

Jp(x̂j)K
2







.

(5.11)

Using the fact that mh̃ ≤ CD, where D = diam(Ω), and integrating over
∫ sm

0
dt we

have

m
∑

j=1

∫ sj

sj−1

∣

∣

∣
p(x̂ + tb̂)

∣

∣

∣

2

dt ≤ 3

{

`(x̂) |p(x̂)|2 + CD`(x̂)
m
∑

j=1

∫ sj

sj−1

∣

∣

∣
b̄ · ∇p(x̂ + tb̂)

∣

∣

∣

2

dt

+ m`(x̂)
m−1
∑

j=1

Jp(x̂j)K
2

}

.

(5.12)
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We now integrate according to
∫

ΓI
·|b̄ · n| dσ to get

∫

ΓI

m
∑

j=1

∫ sj

sj−1

∣

∣

∣p(x̂ + tb̂)
∣

∣

∣

2

dt
∣

∣b̄ · n
∣

∣ dσ ≤ 3

{∫

ΓI

`(x̂)(p(x̂))2
∣

∣b̄ · n
∣

∣ dσ

+ CD2

∫

ΓI

m
∑

j=1

∫ sj

sj−1

∣

∣

∣b̄ · ∇p(x̂ + tb̂)
∣

∣

∣

2

dt
∣

∣b̄ · n
∣

∣ dσ

+ m

∫

ΓI

`(x̂)

m−1
∑

j=1

Jp(x̂j)K
2
∣

∣b̄ · n
∣

∣ dσ

}

≤ 3

{

‖p‖2
B +

CD2

β0

∑

j

‖b · ∇p‖2
0,τj

+ mD
∑

i,j

∫

Γi,j

JpK2 |b · n| ds

}

(5.13)

If ω ≤ c 1
h

= O(m), then

‖p‖2
0,Ω ≤ C







‖p‖2
B +

∑

j

‖b · ∇p‖2
0,τj

+ ‖p‖2
Eh







= C‖p‖Gh .

(5.14)

For the general case, bound (5.4) now follows using the assumed transformation with
bounded Jacobian.

To show that c is not grid independent for ω ≤ c 1
h
, consider the example of a

“stair-step function”. Let Ω = [0, 1]× [0, 1] and partition T h be a uniform tessellation
of squares. Let b = (1, 0)T and h = 1

N
, where N is the number of elements in each

coordinate direction. Define p(x, y) on Ω as

p(x, y) = jh for x ∈ [(j − 1)h, jh) , j = 1, . . . , N. (5.15)

Then

‖p‖2
0,Ω = O(1) (5.16)

and

‖p‖2
Gh = O(ω · h). (5.17)

So, unless ω ≥ c 1
h
, inequality (5.4) is violated for grid independent c.

Remark 5.3. Once the uniform Poincaré inequality is established, Strang’s sec-
ond lemma [8] can be invoked to prove convergence of DLSFEM. In the absence of
the uniform Poincaré inequality, one cannot guarantee that convergence in the grid-
dependent norm implies finite element convergence, as illustrated by the “stair-step”
example described in the proof above.

Since V h ⊂ Sh we can also conclude for p̂h ∈ V h

‖p − ph‖Gh = inf
p̂h∈V h

‖p − p̂h‖Gh .
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Thus, in the Gh norm the nonconforming solution is at least as small as the solution
from the conforming space. This might lead one to believe that the discretization
error in the L2 norm for the nonconforming solution would be smaller than the L2

error in the conforming solution. However, our numerical tests show that this is not
the case. Using the weight ω = 1

h
for non-grid-aligned flow, we show numerically

that the convergence rates, for both conforming and nonconforming approximations,
appear to be increasing, but to be bounded by 1

2 , in both the L2 norm and Gh norm
as k, the order of the polynomial, increases.

6. Numerical Results. In this section we present numerical results in support
of our theoretical error estimates and conjectures of Sections 4 and 5, and to demon-
strate properties of the least-squares solution in terms of oscillations and smearing.
Convergence rates presented in this section are obtained on sequences of grids ranging
from h = 2−4 to 2−9 in mesh size depending on the order of the polynomial, k.

Consider (1.1-1.2) and let Ω = [0, 1]×[0, 1]. Let b(x) = (cos (θ), sin (θ)), where θ is
the angle the flow makes with the first coordinate axis. The inflow boundary defined
by (1.3) is ΓI = ({0} × [0, 1]) ∪ ([0, 1] × {0})—i.e. the west and south boundaries
of the unit square. Let g(0, y) = 1 and g(x, 0) = 0 so that the exact solution is
discontinuous with p = 1 above the characteristic emanating from the origin and
p = 0 below the characteristic. For the tessellation T h of Ω we choose a uniform
partition of quadrilaterals and a uniform partition of triangles.

Tables 6.1 and 6.2 show that we achieve consistent convergence rates in the L2

and Gh norms both for the quadrilateral and triangular elements. Furthermore, as the
order of the polynomials increases, the convergence rates seem to be increasing, but to
be bounded by 1

2 . Figure 6.1 shows that for increasing degree k the convergence rate
(slope) improves slightly, and higher order methods exhibit smaller error constants
per degree of freedom. This suggests that a combination of h and p refinement (where
p is the polynomial order) [17] may work well for the kind of discontinuous hyperbolic
flows we consider in this paper.

The nonconforming space Sh discussed in Section 5 offers the ability for the
approximation ph to be discontinuous at the element edges, with a possibility of
leading to faster convergence rates for the interior term in the functional. This is
indeed the case, as shown in Table 6.3. Since the uniform Poincaré inequality (5.4)
does not hold for weaker values of ω, we should expect the Gh norm to outperform
the L2 norm for weak ω. Moreover, we find that the convergence rates for each term
in the functional become less balanced as ω is chosen away from 1

h
.

It is also interesting to study the effect of varying the weight of the boundary
functional, e.g. for the continuous LSFEM. Figure 6.2 shows the convergence order
for the L2 and Gh norms as a function of boundary functional weight. Only for
a weight equal to 1 are the convergence rates in balance, in accordance with our
theoretical results in Sections 2 and 3.

The above results were obtained using θ = π
8 . Table 6.4 reveals that the conver-

gence rates were generally relatively independent of the angle θ. Table 6.5 shows that
for very small angles—e.g. θ ≤ .05—we find convergence rates very close to 1

2 for
both the L2 norm and the Gh norm using conforming and nonconforming elements.
Furthermore, as expected, the convergence rates do not exceed 1

2 and, for the case of
grid-aligned flow, the convergence rates are exactly 1

2 .

Smearing of discontinuities is an important consideration for numerical approxi-
mation of hyperbolic PDEs. In the exact solution of the model problem, the discon-
tinuity on the inflow boundary ΓI is advected to the outflow boundary ΓO without
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Conforming (4.1) Nonconforming (4.2) ω = 1
h

k L2 norm G norm L2 norm Gh norm

1 .25 .26 .24 .26
2 .34 .33 .32 .33
3 .36 .37 .36 .34
4 .38 .38 .37 .37

Table 6.1

Convergence rates for θ = π

8
using quadrilaterals.

Conforming (4.1) Nonconforming (4.2) ω = 1
h

k L2 norm G norm L2 norm Gh norm

1 .25 .28 .23 .24
2 .33 .32 .33 .33
3 .39 .37 .38 .42

Table 6.2

Convergence rates for θ = π

8
using triangles.

ω = 1
h2 ω = 1

h
ω = 1 ω = h

k L2 Gh L2 Gh L2 Gh L2 Gh

1 .25 .28 .24 .26 .25 .47 .24 .57
2 .32 .25 .32 .33 .33 .45 .32 .59
3 .36 .37 .36 .34 .38 .44 .37 .52
4 .38 .39 .37 .37 .40 .46 .40 .52

Table 6.3

Convergence rates for θ = π

8
using quadrilaterals and various weights ω.

diffusion. However, in a discrete space over a grid that is not flow aligned, we cannot
exactly resolve the discontinuity and the finite element solution displays smearing
along the characteristic defining the discontinuity.

It is shown in [5, 17] that the (D)LS solution smears the discontinuity substan-
tially more than the SUPG solution while the Galerkin solution had the least smearing.
However, the Galerkin solution exhibits the most oscillations. The SUPG solution ex-
hibits a small amount of oscillation, while the LS solution has almost no oscillation.
Oscillations are an impediment to accurate local adaptive refinements as they ob-
scure where the adaptivity is most effective. Figure 6.3 confirms these results for
our least-squares methods and also indicates that the smearing decreases for higher
order elements. Nearly identical plots were obtained using nonconforming elements
and have been omitted for brevity.

Next we evaluate the oscillations arising in the discrete solution and observe the
magnitude of the overshoots. Higher order elements produce undesirable overshoots
and unacceptable oscillations for many FEM. However, it was shown in [5, 17] that
these negative effects are small in the least-squares formulation. Overshoots for these
solutions are displayed in Figure 6.4. Even though the LSFEM solutions are not
strictly monotone and overshoots and undershoots exist, they are contained in a
small region near the discontinuity and do not increase in intensity with increasing
polynomial order. Nonconforming elements produced nearly identical (less smooth)
oscillation and overshoot profiles, see Figure 6.4. In Figures 6.3-6.4 the number of
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Conforming (4.1) Nonconforming (4.2) ω = 1
h

θ k L2 norm G norm L2 norm Gh norm

π
20

1 .25 .25 .25 .23
2 .33 .33 .33 .32
3 .35 .35 .35 .35
4 .36 .35 .37 .35

π
12

1 .25 .26 .25 .25
2 .32 .33 .32 .32
3 .36 .36 .35 .36
4 .39 .37 .39 .37

π
8

1 .25 .26 .24 .26
2 .33 .33 .32 .33
3 .36 .37 .36 .35
4 .38 .38 .39 .38

π
6

1 .25 .26 .24 .26
2 .33 .34 .32 .33
3 .37 .37 .37 .37
4 .39 .39 .39 .39

π
4

1 .24 .26 .23 .26
2 .32 .34 .32 .32
3 .36 .38 .34 .36
4 .38 .40 .36 .40

Table 6.4

Convergence rates for various θ using quadrilaterals.

θ 0 0.01 0.02 0.03 0.04 0.1

L2 norm 0.500 0.497 0.485 0.466 0.441 0.304
Gh norm 0.500 0.498 0.492 0.481 0.468 0.389

Table 6.5

Convergence rates (α) for varying θ using nonconforming linear (k = 1) elements on triangles.

degrees of freedom for the conforming and nonconforming approximations are within
1% of each other.

7. Multigrid. In this section we address the issues involved in solving the large
linear systems arising from the finite element discretizations given in Sections 4 and
5. Although the minimization problem is not H1 equivalent, a property found in
many elliptic PDEs that is advantageous for multigrid methods, we will focus on
iterative solvers in a multilevel framework employing the techniques of the Ruge-
Stüben algebraic multigrid method (AMG) [27]. As we will see, AMG does not fully
achieve optimal convergence factors independent of h.

First, consider the problem in the context of the limit case of an anisotropic
diffusion operator. More specifically, consider the PDE

LAp = f̃ on Ω

p = 0 in ΓI

n · ∇p = 0 in Γ \ ΓI ,

(7.1)
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Fig. 6.1. Error reductions for (D)LSFEM of various orders, measured per degree of freedom.
For degree k increasing from 1 to 4 (solid, dotted, dash-dotted, dashed), the convergence rate (slope)
improves slightly, and higher order methods exhibit smaller error constants per degree of freedom.

where

LAp := ∇ · (A∇p), (7.2)

and f̃ ∈ L2(Ω).
If A = I, we can write I = bbT + ddT where b · b = 1, d · d = 1 and b · d = 0.

When A = bbT + εddT for 0 < ε < 1, the operator LA is an anisotropic diffusion
operator because of the strong connection in a particular direction: b. Efficient
multigrid algorithms have been developed for this class of PDEs and we would expect
to be able to apply similar algorithms to (1.1-1.2).

The Galerkin weak form of (7.1) would be (using standard Sobolev space nota-
tion): Find p ∈ H1(Ω) with p = 0 on ΓI such that

〈b · ∇p, b · ∇q〉0,Ω + ε〈d · ∇p, d · ∇q〉0,Ω = 〈f̃ , q〉0,Ω, (7.3)

for every q ∈ H1(Ω) with q = 0 on ΓI . The left hand side is similar to the left hand
side of the weak form of our LS formulation, which can be written as

〈b · ∇p,b · ∇q〉0,Ω + 〈p, q〉B = 〈f,b · ∇q〉0,Ω + 〈g, q〉B . (7.4)
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Fig. 6.2. Convergence order for the L2 (squares) and G (circles) norms as a function of
boundary functional weight. For weights stronger than 1, the functional error does not converge
well. For weights weaker than 1, the L2 error does not converge well. Only for a weight equal to 1
are the convergence rates in balance. This agrees with our theoretical results in Sections 2 and 3.

We test the convergence of AMG using the example flow described in Section 6
with θ = π

6 . Bilinear elements are used for ease of implementation and interpretation
of work involved. All AMG calculations are done using John Ruge’s FOSPACK (First
Order Systems Least-Squares Finite Element Software Package) [26]. The relaxation
strategy used in the cycles presented in Table 7.1 is point-wise Gauss-Seidel. On the
down sweep of a cycle, first fine grid points and then coarse grid points are relaxed
while on the up sweep of a cycle, coarse grid points are relaxed before fine grid points
using a reverse ordering.

The first four convergence columns of Table 7.1 show the increase in convergence
factors in V(1,1) and V(2,2) cycles as the mesh is refined. These values are the factors
by which the error is reduced on the finest level by performing one cycle and are the
geometric average of convergence factors from one cycle to the next up until the
relative residual has reached a prescribed tolerance. We would like these factors to
be small—i.e large reduction in error from one cycle to the next—and we would like
these factors to remain constant as the grid is refined. An interesting phenomenon is
revealed in the last column of Table 7.1 which shows W(1,1)-cycle convergence factors
with strong treatment of the boundary conditions. The functional for this method
is given by the functional in (3.17) without the boundary term ‖u − g‖B . This is
not the functional we ultimately intend to use, but its resulting linear system exposes
some perhaps beneficial aspects of the solver. Notice that the factors are small.
This is a relative and vague rating, but in the multigrid community grid independent
factors less than 0.5 are generally considered a success. One significant shortcoming
of using the implementation of the strong boundary conditions is that G(ph; 0, 0) fails
to decrease (recall G is a sharp error estimator). The significance of looking at this
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Fig. 6.3. Contour plots for various conforming elements. For varying order k, 24, 12, 8, and
6 elements are used in each coordinate direction, respectively.

case becomes clear when comparing these values to column 6 of Table 7.1. When we
keep the boundary term in the functional (i.e. weak b.c.), the convergence factors fail
to remain constant for the W(1,1)-cycle.

As a measure of grid complexity, we compute the work per cycle in terms of
fine-grid relaxation sweeps (or work units) and find growth with n. We compute the
complexity by summing the number of nonzero matrix entries on each level multiplied
by the number of relaxation sweeps performed on that level, divided by the number
of nonzero entries in the fine grid matrix. This complexity is close to a measure of
the work units per cycle.

In Table 7.2 we report the approximate number of work units per cycle for the
tests reported in Table 7.1. In Table 7.3 we report the number of work units required
to reduce the error by a factor of 10. This “work units per digit” is a measure of the
total relative complexity of the algorithm and is computed as

Wd = − Wc

log ρ
, (7.5)

where Wc is the work units per cycle discussed above and ρ is the convergence factor
presented in Table 7.1. Notice in Table 7.3 that the number of work units per digit
for the V(1,1)-cycle appears to be growing slowly with the dimension of the linear
system, which increases by a factor of 4 with each row of the table. Likewise, the
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Fig. 6.4. Solution profiles for various conforming elements at slice x = 0.5. Dotted line: con-
forming elements. Solid line: nonconforming elements. Dashed line: location of exact discontinuity.

N × N V(1, 1)w V(1, 1)s V(2, 2)w V(2, 2)s W(1, 1)w W(1, 1)s

16 × 16 0.510 0.430 0.420 0.290 0.300 0.250
32 × 32 0.610 0.500 0.540 0.430 0.350 0.280
64 × 64 0.700 0.590 0.640 0.530 0.380 0.300

128 × 128 0.770 0.670 0.730 0.630 0.460 0.300
256 × 256 0.840 0.740 0.820 0.710 0.530 0.310
512 × 512 0.910 0.840 0.890 0.810 0.590 0.360

Table 7.1

AMG convergence factors, ρ, for various cycles. w: weak boundary conditions, s: strong
boundary conditions

work units per digit for the W(1,1)-cycle with weak boundary conditions appears
to be growing but more slowly, while the work units per digit for the W(1,1)-cycle
with strong boundary conditions appears not to grow substantially. Strong boundary
conditions do not reduce the growth in complexity with grid size much for V-cycles,
while for W(1,1)-cycles the complexity growth is significantly reduced. This shows
that W cycles are necessary (more work needs to be done on coarse grids).

8. Conclusion. In this paper we have studied the least-squares finite element
method for scalar linear hyperbolic partial differential equation. We have identified
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N × N V(1, 1)w V(1, 1)s V(2, 2)w V(2, 2)s W(1, 1)w W(1, 1)s

16 × 16 3.774 3.824 7.549 7.552 5.431 5.553
32 × 32 4.088 4.098 8.175 8.192 6.890 6.940
64 × 64 4.241 4.253 8.482 8.504 7.792 7.890

128 × 128 4.333 4.329 8.667 8.658 8.597 8.418
256 × 256 4.373 4.373 8.747 8.747 9.101 9.081
512 × 512 4.396 4.394 8.791 8.787 9.537 9.471

Table 7.2

Work units per cycle: Wc. w: weak boundary conditions, s: strong boundary conditions

N × N V(1, 1)w V(1, 1)s V(2, 2)w V(2, 2)s W(1, 1)w W(1, 1)s

16 × 16 12.907 10.434 20.036 14.047 10.387 9.223
32 × 32 19.041 13.613 30.549 22.349 15.112 12.553
64 × 64 27.379 18.560 43.763 30.844 18.543 15.090

128 × 128 38.176 24.892 63.410 43.149 25.492 16.099
256 × 256 57.758 33.443 101.489 58.804 33.007 17.854
512 × 512 107.321 58.025 173.710 96.020 41.620 21.346

Table 7.3

Work units per digit of accuracy: Wd. w: weak boundary conditions, s: strong boundary
conditions

the space of admissible boundary data and have established a Poincaré inequality for
the graph norm. We have presented a well-posed formulation of the problem based on
the minimization of a least-squares functional. Finite element solutions were obtained
by minimizing the least-squares functional over a finite dimensional subspace and also
by minimizing a similar functional, incorporating a jump term, over a discontinuous,
nonconforming finite dimensional space. It was also determined that a weight of
ω ≥ c 1

h
was required in order for the uniform Poincaré inequality to hold, where c is

a grid-independent constant. Hence, a weight of ω = 1
h

was used in the majority of
the computational comparisons.

We found, numerically, several advantages in using higher order elements for dis-
continuous flow calculation. As the polynomial degree of the finite elements was in-
creased, an increase in convergence rates in the L2 and functional norm was observed.
The convergence rates were fairly independent of the orientation of the flow, with the
exception of very small angles, where the convergence rates approached the upper
bound of 1

2—the predicted and confirmed rate for grid-aligned flow. These results
were similar for conforming and nonconforming elements and the L2 and functional
norms produced nearly identical results. The least-squares approximations exhibited
substantial smearing but only limited oscillation near discontinuities in the solution.
Increasing the polynomial degree of the approximation, while keeping the number of
degrees of freedom fixed, reduced the smearing with minimal increase in oscillations.
There was no apparent advantage of using discontinuous elements over continuous
elements for our least-squares approach. This finding is consistent with the numerical
results for DLSFEM reported in [17]. However, it has to be noted that for other
FEM methods and in the context of parallelization and locally p-adaptive methods,
discontinuous variants may have very important advantages over continuous variants.
A good example is the DG method, which has many advantageous properties as de-
scribed in Section 1.
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A standard algebraic multigrid solver based on the Ruge-Stüben algorithm was
applied to the linear systems with good results. Nearly grid-independent convergence
factors were observed when W-cycles were used and when the boundary conditions
were imposed strongly. The relative complexity of this algorithm was nearly indepen-
dent of the dimension of the linear system. Using the more appropriate formulation
involving weak boundary conditions yielded relative complexity that grew slowly with
the size of the problem.

While strong enforcement of the boundary conditions will not lead to the solution
we seek, the results presented in Section 7 suggest a near-optimal numerical scheme for
the solution of the linear system that results from using the weak boundary condition.
If the value of the approximation at the boundary is known, then solution of the
interior unknowns can be achieved efficiently by solving a system that essentially
invokes strong boundary conditions. Thus, a numerical scheme could alternatively
solve for the boundary values and then the interior values. We will investigate this
approach in future work.
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[18] P. Houston, J. A. Mackenzie, E. Süli, and G. Warnecke, A posteriori error analysis for
numerical approximations of Friedrichs systems, Numer. Math., 82 (1999), pp. 433–470.

[19] B. N. Jiang, The least-squares finite element method, Scientific Computation, Springer-Verlag,
Berlin, 1998. Theory and applications in computational fluid dynamics and electromag-
netics.
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[30] I. Yavneh, C. H. Venner, and A. Brandt, Fast multigrid solution of the advection problem
with closed characteristics, SIAM J. Sci. Comput., 19 (1998), pp. 111–125 (electronic).
Special issue on iterative methods (Copper Mountain, CO, 1996).


