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SMOOTHED AGGREGATION MULTIGRID FOR MARKOV CHAINS
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Abstract. A smoothed aggregation multigrid method is presented for the numerical calcula-
tion of the stationary probability vector of an irreducible sparse Markov chain. It is shown how
smoothing the interpolation and restriction operators can dramatically increase the efficiency of
aggregation multigrid methods for Markov chains that have been proposed in the literature. The
proposed smoothing approach is inspired by smoothed aggregation multigrid for linear systems, sup-
plemented with a new lumping technique that assures well-posedness of the coarse-level problems: the
coarse-level operators are singular M-matrices on all levels, resulting in strictly positive coarse-level
corrections on all levels. Numerical results show how these methods lead to nearly optimal multi-
grid efficiency for an extensive set of test problems, both when geometric and algebraic aggregation
strategies are used.
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1. Introduction. This paper is concerned with multilevel methods for the ef-
ficient numerical calculation of the stationary probability vector of large, sparse ir-
reducible Markov matrices [1]. Let B ∈ R

n×n be a column-stochastic matrix, i.e.,
0 ≤ bij ≤ 1 ∀i, j and

1T B = 1T , (1.1)

with 1 the column vector of all ones. We want to find a vector x ∈ R
n that satisfies

B x = x, xi ≥ 0 ∀i, ‖x‖1 = 1. (1.2)

If B is irreducible, then there exists a unique solution x to (1.2). (Matrix B is
irreducible iff there exists a path from each vertex i to each vertex j in the directed
graph of matrix B.) Moreover, this stationary probability vector x then satisfies the
strict inequality xi > 0 ∀i. The eigenvalue of B with largest modulus is λ1 = 1,
and traditional iterative methods for calculating x converge very slowly when the
subdominant eigenvalue satisfies |λ2| ∼ 1 [2, 3]. The Markov chain is said to be
slowly mixing in this case. Multigrid methods aim to accelerate convergence for this
type of problem by reducing error components with different scales on progressively
coarser levels. Note that problem (1.2) with a reducible matrix B requires special
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treatment that is beyond the scope of the present work, but we expect to develop
methods for this case in future work.

Multigrid methods of aggregation type have been studied for (1.2) in the literature
[4, 5, 6]. These methods are multilevel generalizations of the large class of two-
level methods of iterative aggregation/disaggregation type for Markov chains (e.g,
[7, 8, 9, 10, 11, 12, 13, 14, 3]). They are of a multiplicative nature, and include
both geometric versions, in which aggregates are chosen based on the a-priori known
topology (or connectivity) of the chain, and algebraic versions, in which aggregates
are chosen based on strength of connection in the problem matrix. The latter class
is similar to algebraic multigrid (AMG) methods for linear systems [15, 16] and, in
particular, to recent adaptive versions of AMG [17, 18, 6, 19]. Two-level methods of
iterative aggregation/disaggregation type are effective for so-called ‘nearly completely
decomposable’ Markov chains, which can be decomposed in weakly connected blocks
with globally strong connections (and thus fast mixing) inside the blocks. While, for
some applications, significant speedup has been reported for Markov chain methods of
aggregation type on more than two levels [4, 5, 6], compared to traditional one-level
or two-level iterative methods, it appears that true multilevel methods for Markov
chains have not been widely used so far, due likely to the fact that their convergence
properties are often far from optimal. Indeed, while multigrid methods have been
developed for large classes of (nonsingular) linear systems with optimal computational
complexity (i.e., number of floating point operations and memory use are linear in
the number of unknowns), the general performance of the aggregation-type multigrid
methods for Markov chains that are described in the literature is far from optimal.
As illustrated below, suboptimal performance of these methods can be observed even
for very simple model problems.

In this paper, we show how smoothing the interpolation and restriction operators
can dramatically increase the efficiency of aggregation multigrid for Markov chains.
The proposed approach is inspired by the so-called smoothed aggregation (SA) multi-
grid methods for linear systems [20, 21, 17], supplemented with a new lumping tech-
nique that assures well-posedness of the coarse-level problems. It is shown numerically
that the resulting lumped Smoothed Aggregation for Markov chains (SAM) methods
lead to nearly optimal multigrid efficiency for an extensive set of test problems, both
when geometric and algebraic aggregation strategies are used. Our experience with
partial differential equation (PDE) problems suggests that our proposed methods will
be most effective for the class of Markov chains that have a subdominant eigenvalue
that approaches one fast with increasing problem size (slowly mixing Markov chains),
have fairly small numbers of inlinks and outlinks per node that are fairly constant over
all nodes, are close to symmetric, and effectively have low-dimensional connectivity.
For instance, chains on two-dimensional (2D) and three-dimensional (3D) lattices will
work well, but higher-dimensional problems are more challenging. We will investigate
in future work how much our method in the form presented here extends beyond this
class, and which modifications may be required.

Almost all existing multigrid methods for Markov chains use non-overlapping
aggregates. Yet, smoothing the interpolation and restriction operators introduces
overlap between the aggregates, which, similar to the case of linear systems, is a
crucial enhancement that can significantly improve convergence. Some results have
recently been reported for multilevel Markov chain methods that employ the equiva-
lent of overlapping agglomerates, but obtained in a way different from our smoothing
approach: an AMG-like approach for building the interpolation matrix of a multilevel



3

preconditioner has been proposed in [22] for a Krylov subspace method applied to
Markov chains, and some results have been reported in [23] for a method that uses
overlapping aggregates that are determined based on strength of connection. However,
to our knowledge, the approach proposed in our paper is the first to use interpola-
tion and restriction operator smoothing for bringing the performance of aggregation
multigrid for Markov chains to nearly optimal levels in a general, systematic way.

Large sparse Markov chains are of interest in a wide range of applications, includ-
ing information retrieval and web ranking [24, 25], performance modelling of computer
and communication systems, dependability and security analysis, and analysis of bi-
ological systems [3]. Multilevel solvers for Markov problems with improved efficiency
thus promise to have significant impact in many disciplines.

This paper is organized as follows. We start in the next section with some back-
ground information on an important theoretical concept in the formulation of aggre-
gation multigrid methods for Markov chains, namely, singular M-matrices. In Section
3, we recall the general framework of the aggregation-type multigrid methods that
have been proposed in the literature. This introduces relevant notation and sets the
stage for the introduction of SAM in Section 4. Well-posedness of the smoothed
method is proven in Section 4 as well. Numerical convergence tests are presented for
an extensive set of test problems, for the case of geometric aggregation in Section 5
and for the case of algebraic aggregation in Section 6. Conclusions and future work
are discussed in Section 7.

2. Singular M-matrices. An important theoretical concept in the formulation
of aggregation multigrid methods for Markov chains is that of singular M-matrices,
which can be defined as follows [1]:

Definition 2.1 (singular M-matrix).
A ∈ R

n×n is a singular M-matrix ⇔ ∃B ∈ R
n×n, bij ≥ 0 ∀i, j : A = ρ(B) I −B.

Here, ρ(B) is the spectral radius of B. Note that A = I −B, with B the column-
stochastic matrix from problem (1.2), is a singular M-matrix.

In this paper, we call a real number x positive (or strictly positive) when x > 0,
and nonpositive when x ≤ 0, with a similar convention for negative and nonnegative
numbers. A nonpositive (nonnegative) vector or matrix is a vector or matrix that has
all nonpositive (nonnegative) elements.

The Perron-Frobenius theorem for nonnegative matrices provides important in-
sight about the spectral radius of a nonnegative matrix and its associated eigenvector.
The following version is useful for our purposes:

Theorem 2.2 (Perron-Frobenius ([1], p. 26, 27, 28)).
Let B ∈ R

n×n, bij ≥ 0 ∀i, j. Then the following hold:
(1) ρ(B) is an eigenvalue of B.
(2) ∃x ∈ R

n, xi ≥ 0 ∀i : B x = ρ(B)x and ∃y ∈ R
n, yi ≥ 0 ∀i : yT B = ρ(B)yT .

(3) If B is irreducible, then the eigenvectors x and y in (2) are unique up to scaling,
and the inequalities in (2) are strict.
(4) If B has a left or right eigenvector with strictly positive components, then this
eigenvector has ρ(B) as its eigenvalue.

Note that the choice of B in Definition 2.1 is not unique. Indeed, the Perron-
Frobenius theorem implies that ρ(B + s I) = ρ(B) + s for any real s > 0. Then
A = ρ(B) I − B = (ρ(B) + s) I − (B + s I) = ρ(B + s I) I − (B + s I), which means
that B + s I can be used instead of B in the above definition.

The following properties of singular M-matrices are important in this paper:
Theorem 2.3 (some properties of singular M-matrices (see, e.g., [1])).
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(1) Irreducible singular M-matrices have a unique solution to the problem Ax = 0,
up to scaling. All components of x have strictly the same sign (i.e., scaling can be
chosen s.t. xi > 0 ∀i). (This follows directly from the Perron-Frobenius theorem.)
(2) An equivalent definition for singular M-matrices is: A ∈ R

n×n is a singular M-
matrix ⇔ A is singular and all elements of (A + α I)−1 are nonnegative, ∀α > 0.
(3) Irreducible singular M-matrices have nonpositive off-diagonal elements, and strictly
positive diagonal elements (n > 1).
(4) If A has a strictly positive vector in its left or right nullspace and the off-diagonal
elements of A are nonpositive, then A is a singular M-matrix (see also [22]).

The theoretical concepts introduced above serve to prove the well-posedness of
the proposed smoothed aggregation multigrid methods for Markov chains in Section
4 below.

3. Aggregation multigrid for Markov chains (AM). In this section, we
recall the general framework of the aggregation-type multigrid methods that have
been proposed in the literature for Markov chains [4, 5, 6]. The main difference with
traditional multigrid methods for linear systems Ax = f is the multiplicative nature
of the aggregation-type methods for Markov chains.

Consider the equation for the stationary probability vector of irreducible Markov
matrix B,

B x = x, (3.1)

which we rewrite as

Ax = 0 (3.2)

with

A = I −B. (3.3)

Remember that A is an irreducible singular M-matrix. We can then rewrite the exact
solution, x, in terms of the current approximate, xi, and its multiplicative error, ei,
as diag(xi) ei, obtaining

Adiag(xi) ei = 0. (3.4)

Note that we have to assume here that all components of the current approximate,
xi, are nonzero (the exact solution, x, also has this property). At convergence, the
multiplicative error is ei = 1.

The n fine-level degrees of freedom are aggregated into m groups according to the
columns of aggregation matrix Q ∈ R

n×m, where qij = 1 if fine-level node i belongs
to aggregate j and qij = 0 otherwise. For example, if the fine-level degrees of freedom
are ordered according to the agglomerates they belong to, then Q has the form

Q =































1 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 1 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
0 0 1 · · ·
0 0 0 · · ·
...

...
...

. . .































. (3.5)
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In a multilevel setting, the aggregation matrix Q can be determined at successive
coarse levels using topological information when the Markov chain is structured [4]
(we call this geometric aggregation, in analogy with geometric multigrid). Alterna-
tively, aggregates can be chosen algebraically based on strength of connection in the
problem matrix [5, 6] (we call this algebraic aggregation). Experience with AMG and
SA for PDE problems suggests that optimal convergence properties can be achieved
when aggregates are selected based on strength of connection. We determine strong
connections between points by considering relative sizes of entries in each row of scaled
problem matrix Adiag(xi). AMG heuristics show that large entries indicate connec-
tions in the direction of slowly varying error, and these connections are employed to
generate aggregates that lead to efficient coarse-level error correction. (See Section 6
for full details about our strength-based aggregation procedure.)

Once Q has been determined, a coarse-level version of Eq. (3.4) is constructed:

QT Adiag(xi)Q ec = 0, (3.6)

where ec represents the coarse-level approximation of unknown fine-level multiplica-
tive error ei.

Define the restriction and prolongation operators, R and P , by

R = QT (3.7)

and

P = diag(xi)Q, (3.8)

and write

R AP ec = 0. (3.9)

Define the coarse-level operator, Ac, by

Ac = R AP. (3.10)

Let the coarse-level vector of all ones be denoted by 1c. It then follows from 1T
c R = 1T

that 1T
c Ac = 0.

Note now that PT 1 = Rxi is the restriction of current fine-level approximate xi

to the coarse level. Instead of solving coarse-level equation (3.9) for the multiplicative
error, ec, one can also equivalently seek an improved coarse-level approximation, xc,
of probability vector x. This improved coarse-level approximation xc is related to
coarse-level error ec by

xc = diag(PT 1) ec, (3.11)

leading to the coarse-level probability equation

Ac (diag(PT 1))−1 xc = 0. (3.12)

We define coarse-level stochastic matrix Bc as

Bc = QT B diag(xi)Q (diag(QT xi))
−1. (3.13)
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This matrix satisfies 1T
c Bc = 1T

c . We then obtain

Ac (diag(PT 1))−1 = R (I −B)P (diag(PT 1))−1

= QT diag(xi)Q (diag(QT xi))
−1 −QT B diag(xi)Q (diag(QT xi))

−1

= Ic −Bc. (3.14)

Coarse-level equation (3.12) was first introduced in [26] and has a straightforward
probabilistic interpretation (see, e.g., [5, 6]). It is well-known that (3.12) can be used
to accelerate simple one-level iterative methods for Eq. (3.2), like the weighted Jacobi
or Gauss-Seidel relaxation methods. For example, a two-level numerical method may
proceed by relaxation on Eq. (3.2) on the fine level, followed by a coarse-level solve
of Eq. (3.12), a coarse-level correction according to

xi+1 = P (diag(PT 1))−1 xc = P ec, (3.15)

and another relaxation on the fine level. Some theoretical convergence results for this
two-level method have been derived in [11, 12, 14].

In this paper, we use the weighted Jacobi method for all relaxation operations.
We split problem matrix A into its diagonal and lower and upper triangular parts as

A = D − (L + U), (3.16)

using standard notation. Note that, since A is an irreducible singular M-matrix, L and
U are nonnegative, and D has strictly positive elements on the diagonal. Weighted
Jacobi relaxation with weight w ∈ (0, 1) is then given by

x← (1 − w)x + w D−1 (L + U)x. (3.17)

Note that D−1 exists because dii > 0 ∀i. Also, Jacobi relaxation maintains strict
positivity of the components of x, because (1−w)x is strictly positive and w D−1 (L+
U)x is nonnegative (w ∈ (0, 1)).

A multilevel method can then be obtained by recursively applying the two-level
method to coarse-level equation (3.12):

Algorithm AM(A,x, ν1, ν2): aggregation multigrid for Markov chains (V-cycle)
if not on coarsest level

x← Relax(A,x) ν1 times
build Q

R = QT and P = diag(x)Q

Ac = R AP

xc ← AM(Ac diag(PT 1)−1, PT 1, ν1, ν2) (coarse-level solve)
x← P (diag(PT 1))−1 xc (coarse-level correction)
x← Relax(A,x) ν2 times

else
x← direct solve of Ax = 0

end

This algorithm uses the simplest type of recursion, resulting in a so-called V-cycle.
We require well-posedness of this algorithm in the the sense that, given an iterate

that is strictly positive, the algorithm gives a proper definition for the next iterate.
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Well-posedness of the algorithm follows from the first of the following two theorems
(see [4, 3, 11, 12]), and the second theorem is required for convergence of the method.

Theorem 3.1 (Singular M-matrix property of AM coarse-level operators). Ac

is an irreducible singular M-matrix on all coarse levels, and thus has a unique right
kernel vector ec with strictly positive components (up to scaling) on all levels.

Proof. Eq. (3.14) shows that Ac has nonpositive off-diagonal elements, and
1T

c Ac = 0 because 1T
c R = 1T . This implies that Ac is a singular M-matrix, due

to Theorem 2.3(4). Irreducibility of Ac can be proved as follows. Let fine-level node
i belong to aggregate I, and fine-level node j to aggregate J . Then a link exists from
J to I ((QT B diag(xk)Q)IJ 6= 0) if a link exists from j to i (bij 6= 0), by virtue of the
shape of Q (Eq. (3.5)) and the strict positivity of the components of xk. This implies
that every aggregate J is connected to every aggregate I via a directed path, because
every i ∈ I is connected to every j ∈ J via a directed path due to A’s irreducibility.
The second part of the theorem then follows directly from Theorem 2.3(1).

Theorem 3.2 (Fixed-point property of AM V-cycle). Exact solution x is a fixed
point of the AM V-cycle.

Proof. It is easy to see that ec = 1c is a solution of coarse-level equation (3.9) for
xi = x: R AP ec = R AP 1c = QT Adiag(x)Q 1c = QT Adiag(x)1 = QT Ax = 0.
This solution is unique (up to scaling) because Ac is an irreducible M-matrix. Coarse-
level correction equation (3.15) then gives xi+1 = P ec = diag(x)Q 1c = diag(x)1 =
x.

In the numerical results presented below, we sometimes also use so-called W-
cycles, which are identical to the V-cycles described above, except that each oc-
currence of the recursive coarse-level solve and coarse-level correction is duplicated
(resulting in two coarse-level solves at the first level, four coarse-level solves at the
second level, eight at the third level, and so on). While W-cycles are more expensive
than V-cycles, they can retain computational complexity that is linear in the number
of unknowns, as long as coarsening is sufficiently fast.

4. Smoothed aggregation for Markov chains (SAM). As shown in the nu-
merical results of Sections 5 and 6, performance of the aggregation multigrid method
for Markov chains described in the previous section is often far from optimal. Inspired
by smoothed aggregation (SA) multigrid methods for linear systems [20, 21, 17], we
propose smoothing the interpolation and restriction operators, P and R, to improve
the convergence properties of the multilevel aggregation method. The main difficulty
is that smoothing may destroy the singular M-matrix nature of the coarse-level op-
erators, thus potentially compromising the well-posedness of the method, so we then
use a lumping process to overcome this difficulty.

We smooth the rows of the interpolation operator, P , with A, using weighted
Jacobi with weight w:

Ps = (1− w)P + w D−1 (L + U)P

= (1− w) diag(xi)Q + w D−1 (L + U) diag(xi)Q

= (I − w D−1A) diag(xi)Q. (4.1)

For the restriction operator, we smooth the rows of R with A:

Rs = R (1− w) + R w (L + U)D−1

= QT (I − w AD−1). (4.2)
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Note that the resulting smoothed operators, Rs and Ps, are nonnegative and of full
rank. Note also that 1T

c Rs = 1T for any xi, and Ps 1c = x for xi = x.
This particular choice for the smoothed P and R can be motivated heuristically

as follows. The left kernel vector of A is known: it is the vector with all ones, 1T .
The right kernel vector of A is the unknown stationary probability vector, x. For the
multilevel method to be efficient, the range of interpolation should provide a good ap-
proximation for the solution, x. At convergence, the range of P = diag(x)Q exactly
contains x, but the problem is that, during the iteration process, corrections may
produce sharp jumps between aggregates, because the interpolation in Q is piecewise
constant. These sharp jumps between aggregates may reintroduce errors with high
frequencies in the new fine-level approximation, and this may lead to slow conver-
gence. Smoothing the piecewise defined columns of P using operator A may provide
a remedy. Indeed, smoothing the columns of P with A leaves the interior parts of the
aggregates largely unaffected (xi is close to the kernel of A), while the jumps at aggre-
gate boundaries are smoothed out. This results in xi still approximately being in the
range of P , while the high-frequency errors related to the jumps are smoothed out. In
fact, the range of the smoothed P contains the image of xi under the smoothing op-
erator, which can only improve the approximation to the right kernel. See [20, 21, 17]
for formal theoretical justification of smoothed aggregation in the context of symmet-
ric linear systems Ax = f . Note that, in our case, smoothing must be applied to
the columns of P = diag(x)Q, as opposed to the columns of Q, because that would
adversely affect the interiors of the aggregates (1 is generally not in the kernel of A),
and move x away from the range of the smoothed P . In a similar way, 1T is the left
kernel vector of A, and A is applied to the rows of QT , from the right. Note that this
way of smoothing restriction and interpolation separately leads to a method in which
the smoothed restriction operator, Rs, and the smoothed interpolation operator for
the multiplicative error, diag(xi)

−1 Ps, are not related by a transpose operation (they
are in the unsmoothed case). While there are good reasons (of a variational nature)
to have them related by a transpose for the case of symmetric matrices, there does
not appear to be a compelling reason for this in the case of nonsymmetric matrices.
In fact, it appears more important to preserve the local nature of the left and right
kernel vectors when smoothing. We have confirmed this in extensive numerical tests,
in which the above described smoothing approach performs better than the possible
alternatives, like smoothing Q instead of P , or smoothing one of R and P and forming
the other smoothed operator such that diag(xi)

−1 Ps is the transpose of Rs.
As above, we can proceed to the coarse-level equation by writing

Rs APs ec = 0, (4.3)

and define the smoothed coarse-level operator by

Acs = Rs APs. (4.4)

Coarse-level operator Acs enjoys the following two properties on all levels:

1T
c Acs = 0 ∀xi, (4.5)

Acs 1c = 0 for xi = x. (4.6)

The former property follows from 1T
c Rs = 1T (for any xi), and the latter from

Ps 1c = x (for xi = x). The coarse-level probability equation is given by

Acs (diag(PT
s 1))−1 xc = 0, (4.7)
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and the V-cycle follows as above.
There is, however, a significant problem with the well-posedness of the resulting

V-cycle. Coarse-level operator Acs is singular on all levels, but strict positivity of
all components of ec can no longer be guaranteed, because Acs is not an irreducible
singular M-matrix in general. To see this, note that

Acs = Rs (D − (L + U))Ps

= Rs D Ps −Rs (L + U)Ps. (4.8)

Both Rs D Ps and Rs (L + U)Ps are nonnegative matrices because A is a singular
M-matrix. Matrix Rs D Ps is, in general, not diagonal because of the smoothing
of Rs and Ps, and Acs may have strictly positive off-diagonal elements as a result,
which means that Acs may not be a singular M-matrix. Note that Acs may also lose
irreducibility due to new zero elements being created. Thus, strict positivity of the
components of ec cannot be guaranteed. Numerical experiments confirm that the
resulting multilevel method leads to erratic convergence behavior or divergence for
most problems.

It is possible, however, to modify the term Rs D Ps in Acs, such that the modified
coarse-level operator is an irreducible singular M-matrix. For convenience, define
S = Rs D Ps and G = Rs (L + U)Ps, and write

Acs = S −G. (4.9)

We consider a modified version, Ŝ, of S, which is obtained by lumping parts of it to
the diagonal (in a way to be explained below), resulting in the modified coarse-level
operator

Âcs = Ŝ −G. (4.10)

Our goal is to modify S in such a way that Âcs has nonpositive off-diagonal elements,
but retains nonzero off-diagonal elements where G has them (to guarantee irreducibil-
ity). While modifying S, we also want to conserve properties (4.5) and (4.6) of Acs:

1T
c Âcs = 0 ∀xi, (4.11)

Âcs 1c = 0 for xi = x. (4.12)

The first of these properties implies well-posedness of the resulting multilevel method:
it guarantees that Âcs is a singular M-matrix when its off-diagonal elements are non-
positive (see Theorem 4.1 below). The second assures that the exact solution, x, is a
fixed point of the multigrid cycle, as required for convergence (see Theorem 4.2).

We proceed as follows. Considering all off-diagonal index pairs (i, j) for which
S is nonzero, we select the offending pairs of indices that have nonnegative elements
in Acs. Lumping is done for these pairs. Suppose (i, j) is an offending index pair.
To correct the sign of Acs at location (i, j), we add a matrix S{i,j} to S, with the
elements of S{i,j} equaling β{i,j} at positions (i, i) and (j, j), −β{i,j} at positions (i, j)
and (j, i), and otherwise being zero. We choose β{i,j} so that

sij − gij − β{i,j} < 0, (4.13)

sji − gji − β{i,j} < 0,

resulting in strictly negative off-diagonal elements in locations (i, j) and (j, i). We
explain below how we choose β{i,j} in practice. Adding a matrix of this form to S
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corresponds to lumping parts of S to the diagonal, in the sense that β{i,j} is removed
from off-diagonal elements sij and sji and added to diagonal elements sii and sjj . We
perform lumping using symmetric matrices S{i,j} because they conserve the row sums
and column sums of Acs, and thus conserve the crucial properties (4.5) and (4.6). Note
that adding this matrix for correcting the sign at location (i, j) also corrects the sign
at location (j, i), if necessary. This means that, if both (i, j) and (j, i) are offending
index pairs, only one matrix S{i,j} has to be added to S. (Note that S and G are
generally not symmetric.) Note also that this procedure may generate new nonzero
off-diagonal elements in Âcs, but that Âcs cannot have zero off-diagonal elements at
locations that have nonzero elements in G.

As expected, numerical tests show that it is advantageous to lump as little of S

as possible: the factors β{i,j} in S{i,j} should be chosen small. This is so because
lumping may adversely affect convergence properties of the multilevel method. We

choose β{i,j} = max(β
(1)
{i,j}, β

(2)
{i,j}), with

sij − gij − β
(1)
{i,j} = −η gij , (4.14)

sji − gji − β
(2)
{i,j} = −η gji,

and η a fixed parameter ∈ (0, 1]. Note that β{i,j} > 0 always holds. Choosing η = 1
corresponds to lumping the full value of the largest of sij and sji to the diagonal. For
η < 1, a smaller value is lumped. Parameter η has to be taken strictly larger than zero,
because η = 0 could introduce new zero elements in Âcs that may lead to reducibility.
In our experience, choosing η close to zero results in the best multilevel convergence
properties for the smoothed method. We chose η = 0.01 for the numerical results
reported below. (In tests for our most simple test problems, we found that choosing η

smaller than 0.01 did not improve performance further.) Our numerical experiments
also indicate that the number of offending elements at any level is normally only a
small fraction of the total number of nonzero elements in Acs.

We now prove the following two theorems on the well-posedness and fixed-point
property of the Smoothed Aggregation for Markov chains (SAM) algorithm with
lumped coarse-level operators Âcs.

Theorem 4.1 (Singular M-matrix property of lumped SAM coarse-level oper-
ators). Âcs is an irreducible singular M-matrix on all coarse levels, and thus has a
unique right kernel vector ec with strictly positive components (up to scaling) on all
levels.

Proof. Lumped coarse-level operator Âcs has nonpositive off-diagonal elements,
and 1T

c Âcs = 0, i.e., (4.11), holds. This implies that Âcs is a singular M-matrix,
due to Theorem 2.3(4). Irreducibility of Âcs follows as in the proof of Theorem 3.1
(because Âcs has nonzeros where G has nonzeros), and the second part of the theorem
follows directly from Theorem 2.3(1).

Theorem 4.2 (Fixed-point property of lumped SAM V-cycle). Exact solution x
is a fixed point of the SAM V-cycle (with lumping).

Proof. Property (4.12) implies that ec = 1c is a solution of coarse-level equation
Âcs ec = 0 for xi = x. Note that this solution is unique (up to scaling) because Âcs

is an irreducible M-matrix. The coarse-level correction equation then gives xi+1 =
Ps ec = Ps 1c = x.

5. Numerical results: geometric aggregation. In this section, we report
on numerical convergence results for SAM using a geometric aggregation process, in
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which aggregates are chosen based on the a-priori known topology of the chain. Al-
gebraic aggregation is considered in the next section. We compare the results of the
unsmoothed aggregation algorithm and the new smoothed aggregation algorithm with
lumping for a representative suite of test problems. Some of these test problems have
also been considered in [23]. We use the shorthand notations G-AM (Geometric Ag-
gregation for Markov chains) for the unsmoothed algorithm and G-SAM (Geometric
Smoothed Aggregation for Markov chains) for the smoothed algorithm with lumping.
Results for six test problems are discussed, all of which have the subdominant eigen-
value approaching one as the number of states is increased, so traditional one-level or
two-level iterative methods are ineffective.

5.1. Uniform chain. The first three test problems are one-dimensional (1D)
Markov chains generated by linear graphs with weighted edges. Fig. 5.1 shows the
graph for the simplest case, in which all weights are equal; this constitutes our first
test problem. The weights determine the transition probabilities: the transition prob-
ability from node i to node j is given by the weight of the edge from node i to j,
divided by the sum of the weights of all outgoing edges from node i. (Note that the
edge weights can also be interpreted as transition rates in continuous time.) For this
example, the transition probabilities from interior nodes are 1

2 , and they equal 1 from
the end nodes.

11 1 1 1

Fig. 5.1. Graph for uniform chain test problem. The Markov chain is generated by a linear
graph with weighted edges. The weights determine the transition probabilities. In this uniform case,
all weights are equal. The transition probabilities from interior nodes are thus 1

2
, and they equal 1

from the end nodes.

Tables 5.1 and 5.2 show numerical convergence results for G-AM and G-SAM. For
the 1D problems in this section, aggregates of size three are chosen. In the tables, ‘n’
is the number of degrees of freedom and ‘γ’ is the geometric mean of the convergence
factors of the last five V-cycles (the convergence factor of a V-cycle is defined as
the ratio of the one-norm of the residual, ‖Axi‖1, after and before the cycle). For
all the numerical results presented in this paper, we start from a random, strictly
positive initial guess and iterate until the residual has been reduced by a factor of
10−8 measured in the one-norm, or until 100 cycles have been performed, whichever
comes first. We do a direct solve on the coarse level when n < 12. All multilevel
cycles used are (1,1) cycles, with one pre-relaxation and one post-relaxation on each
level. A scalable (or optimal) method requires γ to be bounded away from one as n

is increased, resulting in the number of required iterations to be bounded as well. In
the tables, ‘it’ is the number of iterations performed and ‘lev’ is the number of levels
in the last cycle. For simplicity, the weight in our weighted Jacobi relaxation scheme
is always chosen as 0.7. This value works well for all tests considered, but, if desired,
convergence factors can be further reduced by choosing problem-dependent optimal
weights. ‘Cop’ is the operator complexity of the last cycle, defined as the sum of the
number of nonzero elements in all operators A on all levels divided by the number of
nonzero elements in the fine-level operator. This number gives a good indication of
the amount of work required for a cycle and, for a scalable (or optimal) method, it
should be bounded by a constant not too much larger than one as n increases. Note
that, for the case of W-cycles, all operators on each level are counted in Cop (i.e., two
operators on level two, four on level three, eight on level four, etc.). We also provide
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an effective convergence factor, defined as γeff = γ1/Cop . This effective convergence
factor takes work into account, and makes it easier to compare the overall efficiency
of different methods applied to a problem. Finally, ‘Rlump’ is the lumping ratio of the
last cycle, defined as the sum of the number of ‘offending’ elements in operators A

on all levels divided by the sum of the number of nonzero elements in A on all levels.
This ratio gives the fraction of matrix elements for which lumping is required, and
is thus an indication of the extra work required for lumping. Note that no lumping
is required in the fine-level matrix, so lumping only contributes extra work starting
from the second level.

n lev it Cop γ γeff it Cop γ γeff

27 2 32 1.32 0.66 0.73 32 1.63 0.66 0.78
81 3 85 1.43 0.87 0.91 52 2.07 0.80 0.90

243 4 >100 1.47 0.95 0.97 73 2.37 0.87 0.94
729 5 >100 1.49 0.98 0.98 >100 2.58 0.92 0.97

2187 6 >100 1.50 0.98 0.98 >100 2.72 0.95 0.98
Table 5.1

Uniform chain. G-AM with V-cycles (left) and W-cycles (right). (Size-three aggregates, no
smoothing.)

n it Cop lev γ γeff Rlump

27 13 1.32 2 0.27 0.37 0
243 13 1.47 4 0.27 0.41 0

2187 13 1.50 6 0.27 0.42 0
19683 13 1.50 8 0.27 0.42 0
59049 13 1.50 9 0.27 0.42 0

Table 5.2
Uniform chain. G-SAM with V-cycles and size-three aggregates. (Smoothing with lumping.)

number of it Cop γ γeff Rlump

levels used

1 >100 1.00 0.99 0.99 0
2 >100 1.33 0.99 0.99 0
3 >100 1.44 0.98 0.99 0
4 >100 1.48 0.99 0.99 0
5 22 1.49 0.88 0.92 0
6 13 1.49 0.27 0.41 0

Table 5.3
Uniform chain with 729 nodes. Comparison of true multilevel G-SAM V-cycles (bottom line)

with one-level, two-level, etc. smoothed V-cycles. One pre-relaxation and one post-relaxation are
performed on all levels, and two relaxations are also performed on the coarsest level, instead of a
direct solve. (Size-three aggregates, smoothing with lumping.)

Table 5.1 shows that G-AM, the unsmoothed aggregation approach which is sim-
ilar to methods described by various authors in the literature, is not effective for this
problem: The operator complexity, Cop, appears bounded by a small constant, but
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the convergence factor, γ, appears to approach one, and is close to one even for rela-
tively small n, resulting in an excessive number of iterations that grows as a function
of n. W-cycles do not significantly improve the convergence of the V-cycles.

Table 5.2 shows that G-SAM V-cycles lead to computational complexity that is
optimal: Cop is bounded, γ is constant and much smaller than one, and the number
of required iterations is small and constant for increasing n. Note that Cop is not
larger than for the unsmoothed method. This is because the smoothed coarse-level
operators remain tridiagonal matrices when aggregates of size three are chosen for this
simple, highly structured 1D test problem. This is, in fact, the reason for choosing
aggregates of size three. Size-two aggregates lead to large operator complexity, and
size-four aggregates lead to poor convergence factors. Size-three aggregates thus give
the best overall results. Note that no lumping is required for this highly regular 1D
problem.

Table 5.3 illustrates the superiority of the multilevel approach over a one-level
and a two-level method. In these tests, one pre-relaxation and one post-relaxation are
performed on all levels, and two relaxations are also performed on the coarsest level,
instead of a direct solve. It is clear that one-level relaxation and two-level aggregation
(similar to aggregation/disaggregation methods) fail to improve convergence for this
model problem.

11 1 1 1

µ µ µ µµ

Fig. 5.2. Graph for birth-death chain test problem. The weights of the edges in the graph
determine the transition probabilities. The transition probabilities from interior nodes are 1

1+µ
for

transitions to the right (birth of a new population member), and µ

1+µ
for transitions to the left

(death of a population member).

n Cop lev it γ γeff it γ γeff Rlump

27 1.32 2 33 0.66 0.73 13 0.27 0.37 0
81 1.43 3 95 0.88 0.92 12 0.27 0.40 0

243 1.47 4 >100 0.95 0.97 13 0.26 0.40 0
729 1.49 5 >100 0.97 0.98 12 0.24 0.38 0

Table 5.4
Birth-death chain (µ = 0.96). (left) G-AM (no smoothing) and (right) G-SAM (smoothing with

lumping). (V-cycles and size-three aggregates.)

5.2. Birth-death chain. The next test problem is a birth-death chain with
constant birth and death rates (Fig. 5.2). Birth-death chains are used in queueing
theory models. Table 5.4, for a birth-death chain with µ = 0.96, shows that the
smoothing of G-SAM dramatically improves efficiency of the multilevel algorithm,
leading to optimal computational complexity. Note that choosing µ not close to one
gives solutions with extremely small probabilities toward one side of the chain, of the
order of µn. These small values are hard to compute due to finite precision number
representation. For this reason, µ = 0.96 was chosen for our numerical tests. Note
again that no lumping is required for this problem.



14

5.3. Uniform chain with two weak links. The next test problem is a 1D
chain with uniform weights, except for two weak links with weight ǫ in the middle of
the chain. G-AM converges very slowly for this problem, as in Table 5.1. Table 5.5

ε1 1 1 1

Fig. 5.3. Graph for uniform chain with two weak links in the middle.

shows convergence results of G-SAM when the aggregates are chosen such that the
weak links occur between two aggregates at each level. The smoothed method shows
optimal convergence, and no lumping is required for this problem.

n it Cop lev γ γeff Rlump

54 12 1.43 3 0.26 0.39 0
486 13 1.49 5 0.27 0.41 0

4374 13 1.50 7 0.27 0.42 0
39366 13 1.50 9 0.27 0.42 0

Table 5.5
Uniform chain with two weak links (ǫ = 0.001). G-SAM with V-cycles and size-three aggregates.

The two weak links occur between aggregates at all levels. (Smoothing with lumping.)

n it Cop lev γ γeff Rlump

27 >100 1.32 2 1.00 1.00 0
81 >100 1.43 3 1.00 1.00 0

243 >100 1.47 4 1.00 1.00 0
729 >100 1.49 5 1.00 1.00 0

Table 5.6
Uniform chain with two weak links (ǫ = 0.001). G-SAM with V-cycles and size-three aggregates.

The two weak links occur inside an aggregate on the finest level. (Smoothing with lumping.)

However, table 5.6 shows that, when the aggregates are chosen such that the
weak links occur within aggregates, G-SAM fails. This can be explained as follows.
When the weak links are contained within an aggregate, the differences in the error
in the states joined by the weak links cannot be balanced out efficiently by relaxation
because the link (and matrix element) between those states is weak compared to
the other links. The error differences also cannot be smoothed out efficiently by the
multiplicative coarse-level correction, which tends to correct states in the interior of
an aggregate with the same multiplicative factor. This example is important because
it shows that smoothing cannot remedy a bad choice of aggregates: aggregates have to
be chosen carefully such that no states are aggregated together that are locally weakly
connected. While it is not difficult to geometrically choose aggregates in this way for
mostly uniform, structured problems, it is much harder to do this for less uniform
and unstructured problems, especially because the operators change on coarse levels
and strength of connection has to be taken into account in forming the aggregates on
all recursive levels. This is the main motivation for an algebraic choice of aggregates
based on strength in the problem matrix, which is discussed in Section 6.

5.4. Uniform 2D lattice. The next problem is a 2D lattice with uniform
weights (Fig. 5.4). Aggregates of size 3 × 3 are used. Tables 5.7 and 5.8 show
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Fig. 5.4. Graph for 2D lattice with uniform weights.

n lev it Cop γ γeff it Cop γ γeff

64 2 43 1.11 0.71 0.73 43 1.23 0.71 0.75
256 3 83 1.14 0.87 0.88 60 1.30 0.81 0.85

1024 4 >100 1.13 0.95 0.95 81 1.30 0.88 0.91
4096 4 >100 1.13 0.95 0.96 92 1.30 0.89 0.92

16384 5 >100 1.13 0.96 0.97 >100 1.29 0.92 0.94
Table 5.7

Uniform 2D lattice. G-AM with V-cycles (left) and W-cycles (right) (Three-by-three aggregates,
no smoothing.)

n lev it Cop γ γeff Rlump it Cop γ γeff Rlump

64 2 22 1.17 0.49 0.55 0 17 1.34 0.39 0.49 0
1024 4 25 1.22 0.57 0.63 6.6e-4 18 1.49 0.44 0.58 4.3e-3

16384 5 27 1.22 0.61 0.67 4.0e-5 19 1.51 0.45 0.59 1.3e-4
65536 6 27 1.23 0.62 0.67 1.5e-5 19 1.52 0.45 0.59 2.6e-4

Table 5.8
Uniform 2D lattice. G-SAM with V-cycles (left) and W-cycles (right), using three-by-three

aggregates. (Smoothing with lumping.)

again that G-SAM improves the convergence properties of G-AM in a similar way
as for the 1D problems. G-AM W-cycles do not sufficiently improve efficiency. While
the convergence rates are admittedly not as low as for additive multigrid applied to
isotropic elliptic PDE problems, the improvement over the unsmoothed method is
very significant, especially because the smoothed method appears scalable. Note also
that the operator complexity remains quite low. G-SAM W-cycles appear somewhat
more effective than V-cycles. Very small amounts of lumping are applied for some
problem sizes.

5.5. Anisotropic 2D lattice. The next test problem is an anisotropic 2D lat-
tice (Fig. 5.5). The results in Table 5.9 show that straightforward smoothing does not
improve convergence in this case. This is completely analogous to the case of elliptic
PDEs: the anisotropy is a real difficulty, because error components with high fre-
quencies across weak connections cannot be reduced effectively by relaxation, nor by
coarse-level correction on three-by-three aggregates. It is well-known that modifica-
tions of geometrical multigrid like semi-coarsening or line relaxation can remedy this
shortcoming [27]. Rather than pursuing this remedy here, we refer the reader to Sec-
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Fig. 5.5. Graph for 2D lattice with anisotropic weights.

n lev it Cop γ γeff it Cop γ γeff Rlump

64 2 >100 1.11 1.00 1.00 >100 1.17 1.00 1.00 0
256 3 >100 1.14 0.97 0.97 >100 1.22 0.95 0.96 0

1024 4 >100 1.13 0.99 0.99 >100 1.22 0.99 0.99 0
4096 4 >100 1.13 0.99 0.99 >100 1.23 0.99 0.99 0

Table 5.9
Anisotropic 2D lattice (ǫ = 1e−6). (left) G-AM (no smoothing) and (right) G-SAM (smoothing

with lumping) with V-cycles and three-by-three aggregates.

tion 6.1, where it is shown that strength-based algebraic aggregation with smoothing
leads to good results for this problem, because aggregates are chosen automatically in
a way that allows for efficient relaxation and coarse-level correction (see also [16, 27]
for further explanation in the PDE context).

µ
µ 1 µ 2

Fig. 5.6. Tandem queueing network.
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Fig. 5.7. Graph for tandem queueing network.

5.6. Tandem queueing network. The final test problem is an open tandem
queueing network from [3], p. 55 (Fig. 5.6). Two finite queues with single servers
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are placed in tandem. Customers arrive according to a Poisson distribution with rate
µ, and the service time distribution at the two single-server stations is Poisson with
rates µ1 and µ2. In our numerical experiments, we limit the number of customers
in the queues to N = 15, 31, 63, 127, 255. We choose µ = 10, µ1 = 11 and µ2 = 10.
The states of the system can be represented by tuples (n1, n2), with n1 the number
of customers waiting in the first queue and n2 in the second queue. The total number
of states is given by (N + 1)2. The states can be represented on a 2D regular lattice,
and transition rates are as indicated on Fig. 5.7. In this directed graph, the transition
probability from node i to node j is given by the weight of the edge from node i to j,
divided by the sum of the weights of all outgoing edges from node i. The results in
Tables 5.10 and 5.11 show again that smoothing improves efficiency dramatically, and
that W-cycles are somewhat more efficient than V-cycles. Small amounts of lumping
are applied for this nonsymmetric 2D problem.

n it Cop lev γ γeff

256 >100 1.19 3 0.91 0.93
1024 >100 1.19 4 0.96 0.97
4096 >100 1.19 4 0.96 0.97

Table 5.10
Tandem queueing network. G-AM with V-cycles and three-by-three aggregates. (No smoothing.)

n lev it Cop γ γeff Rlump it Cop γ γeff Rlump

256 3 19 1.28 0.44 0.52 2.4e-2 14 1.60 0.33 0.50 3.9e-2
4096 4 20 1.29 0.49 0.57 7.4e-3 14 1.65 0.33 0.51 1.4e-2

16384 5 21 1.28 0.56 0.63 8.1e-4 14 1.63 0.33 0.51 2.0e-3
65536 6 21 1.28 0.51 0.59 1.6e-3 14 1.64 0.33 0.51 3.8e-3

Table 5.11
Tandem queueing network. G-SAM with V-cycles (left) and W-cycles (right), using three-by-

three aggregates. (Smoothing with lumping.)

6. Numerical results: algebraic aggregation. In this section, we show per-
formance results for the unsmoothed and smoothed aggregation methods with alge-
braic aggregation. Simulation parameters for the numerical results presented in this
Section are the same as for the geometric aggregation results presented in Section 5,
see Section 5.1. We use the shorthand notations A-AM (Algebraic Aggregation for
Markov chains) for the unsmoothed algorithm and A-SAM (Algebraic Smoothed Ag-
gregation for Markov chains) for the smoothed algorithm with lumping. (Note that
the unsmoothed algebraic method, A-AM, is identical to the method described in [6],
where we used the name MAA). In these algebraic methods, aggregation is based
on the sizes of entries in the problem matrix. As shown in [6], it is crucial to base
strength on the sizes of the entries in the scaled problem matrix, Adiag(xi), at all
levels, because the matrix elements of the unscaled A may give a false indication of
strength. We use the aggregation strategy from [6]: denoting the scaled matrix with
matrix elements ājk by

Ā = Adiag(xi), (6.1)

we base the aggregation procedure on a strength matrix, S, defined as follows:
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Sjk =

{

1 if j 6= k and − ājk ≥ θ max
l 6=j

(−ājl) ,

0 otherwise,
(6.2)

where θ ∈ [0, 1] is a strength threshold parameter. In this paper, we choose θ = 0.25.
After strength matrix S has been determined, the aggregates are formed by the

following procedure:

Algorithm: Aggregation based on strength matrix S

repeat
• among the unassigned states, choose state j which has the largest value
in current iterate xi as the seed point of a new aggregate
• add all unassigned states k that are strongly influenced by seed point j

(i.e., Skj = 1) to the new aggregate
until all states are assigned to aggregates

See [6] for further details and motivation for this aggregation strategy. Note that we
recompute aggregates at every level of every V-cycle. This is especially important
early on in the iteration process, because aggregates are calculated using the scaled
problem matrix which depends on the current iterate. In principle, the aggregates can
be ‘frozen’ after a few cycles to save some work, but this is not done for the scaling
results presented in this paper.

Distance-one aggregation in the results below denotes aggregation according to
the algorithm above, which takes a seed point and its strongly influenced unassigned
neighbors to form an aggregate. We also employ distance-two aggregation, which
takes, in addition, all strongly influenced unassigned neighbors of the strong neighbors
initially selected for the aggregate, and makes them part of the aggregate as well.
We can similarly extend the method to distance-three aggregation, and so on. The
advantages of algebraic aggregation over geometric aggregation are that algebraic
aggregation groups states with strongly connected neighbor states automatically on all
recursive levels, which is crucial for good performance, and that unstructured chains
can be considered for which there is no direct geometric approach to aggregation.
The numerical results below show that our aggregation process performs well for most
problems. Other types of aggregation [5, 20, 23, 17, 28, 29] could be considered for
use with our algorithm. The best choice of aggregation may be problem-dependent.

n it Cop lev γ γeff

27 39 1.71 3 0.74 0.84
81 83 1.85 4 0.87 0.93

243 >100 1.96 6 0.96 0.98
729 >100 1.98 7 1.00 1.00

Table 6.1
Uniform chain. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

6.1. Structured problems. Tables 6.1 to 6.8 show algebraic aggregation per-
formance results for the structured test problems from Section 5. It can be observed
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n it Cop lev γ γeff Rlump it Cop lev γ γeff Rlump

27 10 2.09 3 0.20 0.46 2.4e-2 13 1.33 2 0.32 0.43 0
243 10 2.20 5 0.21 0.49 1.3e-3 12 1.46 4 0.32 0.46 0

6561 11 2.24 8 0.24 0.53 1.4e-3 12 1.49 7 0.31 0.46 0
19683 11 2.25 8 0.26 0.55 1.4e-3 12 1.49 8 0.32 0.47 0
59049 12 2.25 9 0.30 0.59 1.0e-3 12 1.50 9 0.32 0.47 0

Table 6.2
Uniform chain. A-SAM with V-cycles using distance-one aggregation (left) and distance-two

aggregation (right). (Smoothing with lumping.)

that, for all problems, the unsmoothed method, A-AM, performs poorly. Smoothing
(with lumping) improves efficiency dramatically and, for most problems, highly scal-
able results are obtained: convergence rates and iteration counts are low and nearly
constant, and operator complexities are small and appear bounded. We can make the
following observations for the specific test problems.

For the 1D uniform chain test problem, Tables 6.1 and 6.2 show that operator
complexity is somewhat high and slowly growing for distance-one aggregation because
smoothing of the restriction and interpolation operators causes fill-in of the coarse-
level operators, which are formed by matrix multiplication of the fine-level operator
and the restriction and interpolation operators. Fill-in can be avoided for this 1D
problem when aggregates are chosen of fixed size three, but it generally does occur
for algebraic aggregation procedures, except when they would be especially tailored
to this 1D problem. However, Cop behaves much better for distance-two aggregation,
without compromising convergence factors significantly (scalability is retained). We
observed the same effect for the other test problems, and use distance-two aggregation
for them. Note that, for this highly regular 1D problem, almost no lumping is required
for distance-two aggregation, due to the very small fill-in.

n it Cop lev γ γeff it Cop lev γ γeff Rlump

27 34 1.32 2 0.64 0.71 15 1.32 2 0.35 0.45 0
81 >100 1.43 3 0.88 0.92 15 1.43 3 0.35 0.48 0

243 >100 1.47 4 0.95 0.97 15 1.47 4 0.35 0.49 0
729 >100 1.49 5 0.97 0.98 15 1.49 5 0.35 0.49 0

Table 6.3
Birth-death chain (µ = 0.96). (left) A-AM (no smoothing, distance-one aggregation) and (right)

A-SAM (smoothing with lumping, distance-two aggregation) with V-cycles.

n it Cop lev γ γeff it Cop lev γ γeff Rlump

54 79 1.43 3 0.86 0.90 14 1.38 3 0.32 0.44 0
486 >100 1.49 5 0.98 0.99 13 1.48 5 0.32 0.46 0

4374 >100 1.49 7 0.98 0.98 12 1.49 6 0.32 0.46 0
Table 6.4

Uniform chain with two weak links (ǫ = 0.001). (left) A-AM (no smoothing, distance-one
aggregation) and (right) A-SAM (smoothing with lumping, distance-two aggregation) with V-cycles.

Table 6.4 for the uniform chain with two weak links shows that the strength-based
aggregation procedure chooses aggregates automatically in such a way that no states
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are aggregated together that are locally weakly connected.

n it Cop lev γ γeff it Cop lev γ γeff Rlump

64 47 1.70 3 0.75 0.85 18 1.25 2 0.42 0.50 0.0e-0
1024 >100 1.87 5 0.92 0.95 20 1.42 4 0.49 0.60 4.5e-3
4096 >100 1.91 6 0.98 0.99 20 1.47 4 0.49 0.62 1.7e-3

16384 >100 1.92 7 0.98 0.99 20 1.56 5 0.59 0.72 1.4e-3
65536 >100 1.92 9 0.97 0.98 21 1.59 6 0.66 0.77 1.3e-3

Table 6.5
Uniform 2D lattice. (left) A-AM (no smoothing, distance-one aggregation) and (right) A-SAM

(smoothing with lumping, distance-two aggregation) with V-cycles.

n it Cop lev γ γeff it Cop lev γ γeff Rlump

64 27 1.78 4 0.55 0.72 17 1.76 3 0.40 0.59 0.0e-0
1024 80 2.01 8 0.86 0.93 14 2.81 5 0.33 0.68 1.6e-3
4096 >100 2.04 10 0.93 0.96 14 3.43 7 0.33 0.73 4.9e-4

16384 >100 2.06 11 0.96 0.98 13 4.17 7 0.33 0.77 2.5e-4
65536 >100 2.16 13 0.97 0.99 13 4.80 9 0.32 0.79 7.6e-5

Table 6.6
Anisotropic 2D lattice (ǫ = 1e− 6). (left) A-AM (no smoothing, distance-one aggregation) and

(right) A-SAM (smoothing with lumping, distance-two aggregation) with V-cycles.

Comparing Table 6.6 with Table 5.9 (geometric aggregation) for the 2D anisotropic
lattice test problem, it appears that algebraic aggregation performs much better for
unsmoothed V-cycles than geometric aggregation, because it chooses aggregates in the
direction of strong connections. Smoothed V-cycles with distance-two aggregation are
a significant improvement over unsmoothed V-cycles. Smoothing leads to higher op-
erator complexity for this test problem. Highly anisotropic problems are difficult for
smoothed aggregation methods [29], because the strength-based aggregation tends to
create elongated, one-dimensional aggregates. Smoothing these aggregates leads to
large increases in the aggregate sizes, which causes significant fill-in and increasing
operator complexity. Convergence factors for the smoothed method in Table 6.6 are
scalable. Very small amounts of lumping are required.

The amount of lumping required for the nonsymmetric tandem queueing problem
(Table 6.8) is somewhat larger than for the previous problems, but it is still small and
does not add much extra work.

n it Cop lev γ γeff

256 >100 1.86 5 0.92 0.96
4096 >100 2.03 7 0.98 0.99

16384 >100 2.09 9 0.98 0.99
Table 6.7

Tandem queueing network. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

6.2. Random walk on unstructured planar graph. Random walks on graphs
have important applications in several fields, including information retrieval and sta-
tistical physics [30]. For example, importance rankings can be determined as station-
ary distributions of random walks on graphs that describe relations between the items
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n it Cop lev γ γeff Rlump

256 18 1.94 4 0.39 0.61 1.1e-1
4096 24 2.12 5 0.45 0.69 5.5e-2

16384 30 2.18 6 0.56 0.77 5.3e-2
65536 37 2.37 6 0.71 0.86 1.3e-1

Table 6.8
Tandem queueing network. A-SAM with V-cycles and distance-two aggregation. (Smoothing

with lumping.)

to be ranked. Google’s PageRank algorithm is a well-known example [24, 25, 6]. In
our final test problem, we consider an unstructured planar (undirected) graph and
calculate the stationary probability distribution of the random walk on the graph.
The graph is generated by choosing n random points in the unit square, and triangu-
lating them using Delaunay triangulation. The random walk on the graph is modeled
by a Markov chain, with the transition probability from node i to node j given by the
reciprocal of the number of edges incident on node i.

n it Cop lev γ γeff Rlump

1024 20 1.69 5 0.53 0.68 2.6e-2
4096 21 1.80 5 0.61 0.76 2.4e-2
8192 22 1.92 7 0.64 0.79 2.5e-2

16384 30 2.03 7 0.76 0.87 2.4e-2
32768 28 2.08 7 0.74 0.86 2.4e-2

Table 6.9
Unstructured planar graph. A-SAM with V-cycles and distance-one aggregation. (Smoothing

with lumping.))

Tables 6.9 and 6.10 show numerical results for the random walk test problem with
algebraic aggregation. For this application, smoothed V-cycles with distance-one ag-
gregation perform better than cycles with distance-two aggregation. Table 6.10 com-
pares one-level relaxation (with two relexations on the fine level per iteration), two-
level A-AM aggregation (with two relaxations on the coarse level; this is essentially
equivalent to the aggregation/disaggregation methods of [7, 8, 9, 10, 11, 12, 13, 14]),
and unsmoothed, multilevel A-AM (which is the same as MAA in [6], and similar to
the multilevel aggregation methods of [4, 5]). It can be observed that traditional two-
level and multilevel aggregation methods hardly manage to accelerate convergence for
this problem. Table 6.9, however, shows that our smoothed multilevel method does
improve convergence significantly.

n = 32768 it Cop lev γ γeff

multilevel A-AM >100 1.26 8 0.98 0.99
two-level A-AM >100 1.20 2 0.98 0.99
one-level method >100 1.00 1 0.98 0.98

Table 6.10
Unstructured planar graph with n = 32768 nodes. Comparison of multilevel A-AM, two-level A-

AM (aggregation-disaggregation), and one-level relaxation. (V-cycles and distance-one aggregation,
no smoothing. The V(1,1)-cycles have two relaxations per level per cycle.))
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7. Conclusions and future work. We showed how smoothing of the interpo-
lation and restriction operators can dramatically increase the efficiency of aggregation
multigrid for Markov chains. A new lumping technique assures well-posedness of the
coarse-level problems. These results may lead to the adoption of true multilevel ag-
gregation methods for calculating stationary probability vectors of irreducible Markov
chains in several application areas.

There are several interesting avenues for future research. More rigorous theoret-
ical underpinning of the proposed smoothed aggregation method for Markov chains,
and the algebraic aggregation strategy, need to be considered. It is plausible that
the theoretical results of [11, 12, 14], which demonstrate convergence of two-level,
unsmoothed aggregation methods for Markov chains under some conditions, can be
extended to the case of our smoothed method. However, proving optimal computa-
tional complexity, linear in the number of unknowns, is expected to be much more
difficult, because the Markov chain matrices are, in general, not symmetric. This is
similar to the case of AMG and smoothed aggregation for linear systems, for which
there is some theory for the symmetric case [31, 20, 21, 17], but for which there is
also still no theory yet about optimality of convergence for the nonsymmetric case.
Nevertheless, for AMG, decades of numerical experience in the field show that nearly
optimal performance can often be obtained [32, 16].

Also, it would be interesting to extend the applicability of the methods proposed in
this paper to larger classes of Markov chains. Developing optimal multilevel solvers for
various classes of well-studied Markov chains for which one-level or two-level iterative
methods converge slowly is an interesting topic of further research.
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