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Abstract

An efficient algorithm is described for calculating stationary one-dimensional tran-
sonic outflow solutions of the compressible Euler equations with gravity and heat
source terms. The stationary equations are solved directly by exploiting their dy-
namical system form. Transonic expansions are the stable manifolds of saddle-point-
type critical points, and can be obtained efficiently and accurately by adaptive in-
tegration outward from the critical points. The particular transonic solution and
critical point that match the inflow boundary conditions are obtained by a two-by-
two Newton iteration which allows the critical point to vary within the manifold of
possible critical points. The proposed Newton Critical Point (NCP) method typi-
cally converges in a small number of Newton steps, and the adaptively calculated
solution trajectories are highly accurate. A sample application area for this method
is the calculation of transonic hydrodynamic escape flows from extrasolar planets
and the early Earth. The method is also illustrated for an example flow problem
that models accretion onto a black hole with a shock.

Key words: compressible gas dynamics, Euler equations, transonic flow,
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1 Introduction

In this paper we introduce a fast and accurate algorithm for calculating sta-
tionary one-dimensional (1D) transonic outflow solutions of the compressible
Euler equations with gravity and heat source terms. The Euler equations for
a compressible perfect gas flow with radial velocity and spherical symmetry
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Here, ρ is the fluid mass density, p is the pressure, u is the radial velocity, r is
the radial coordinate, t is time, and γ is the adiabatic constant. Throughout
this paper the value γ = 7/5 for di-atomic gases is used, except where noted.
The right hand side of the equation contains source terms with radial external
force fext and heat source qheat. See the nomenclature below for an overview
of the main variables and parameters used in this paper.

Nomenclature

dimensionless flow variables dynamical system variables

ρ mass density s parameter along trajectory

p, e pressure, energy V(s) state vector

u, ur, uθ velocity components G(V) right hand side function

c sound speed ~xi eigenvector

T temperature λi eigenvalue

S entropy d integration constant

r radial coordinate

t time NCP algorithm description

F mass flux B values at boundary

G gravitational constant C values at critical point

M planet mass F(C) nonlinear mapping

fext, g external force, gravity field k Newton iteration number

qheat heat source B
(k)

B in iteration k

γ adiabatic constant B
(k)
i ith component of B

(k)

ra, rb left and right domain boundary C
(k)

C in iteration k

M (normal) Mach number J |C(k) Jacobian of F(C) at C
(k)

µ uθ r Jij i, j matrix element of J

subscripts and superscripts B
j variation of B

(k) in direction j

crit value at critical point Bj
i ith component of B

j

∗ boundary condition value ǫNewton Newton convergence tolerance

0 scaling factor ǫODE ODE integration error tolerance

various δCrit distance from critical point

I identity matrix δJac δ for Jacobian calculation

As illustrated in Fig. 1, Eq. (1) allows for stationary transonic outflow so-
lutions, where the radial flow velocity is initially subsonic, but then passes
through a critical point where u = c (with c the sound speed of the gas),
and subsequently takes on supersonic values beyond the critical point. (Note
that this flow solution was obtained using the numerical method that is the
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Fig. 1. Radial transonic flow solution for fext = −ρGM , GM = 15 and qheat = 0,
and with boundary conditions ρ = 5 and p = 23 at the inflow boundary ra = 1.

subject of this paper, as described in detail in Section 3.) This type of flows
has applications in models of hydrodynamic escape from extrasolar planets,
Venus and the early Earth [1–4], and in the context of solar and stellar wind
modeling [5–7]. Eq. (1) may, for instance, model transonic outflow of hydrogen
gas from close-in extrasolar planets [1]. In this case, fext = −ρ GM , where G is
the gravitational constant and M is the planet mass. The flow solution in Fig.
1 was obtained for GM = 15, without heating (qheat = 0), and with boundary
conditions ρ = 5 and p = 23 at the inflow boundary ra = 1. In our planetary
atmosphere calculations, one of the major quantities of interest to be obtained
by numerical simulation is the radial outflow flux F = ρ u r2, and we want to
determine how this radial mass flux varies as a function of the heating profile
and the density and pressure imposed at the inflow boundary.
Note that all equations and numerical solutions in this paper are expressed in
terms of dimensionless variables. The dimensionless variables and equations
are derived from their dimensional counterparts in a standard way. Denoting
dimensional variables with a bar, and scaling factors with a 0 subscript, we
can write, for the mass density for example,

ρ = ρ̄/ρ0, (2)

with ρ the dimensionless density, ρ̄ the dimensional density, and ρ0 the scaling
factor. Scaling factors for four quantities can be chosen independently, and
then the others follow from Eq. (1). We normally choose r0, ρ0 and T0 such
that the resulting normalized length, mass and temperature are O(1) (see, for
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example, Fig. 1). Note that the choice of r0, ρ0 and T0 depends on the specific
application problem to be modeled. The fourth scaling factor we choose is for
the constant R̄ in the ideal gas law

p̄ = ρ̄ R̄ T̄ , (3)

where R̄ = k̄/m̄, with k̄ Boltzmann’s constant and m̄ the mass of a gas
molecule. We choose R0 = k̄/m̄, such that the normalized R = R̄/R0 = 1,
and the ideal gas law becomes

p = ρ T (4)

in normalized variables. Some of the other normalization factors are then given
by

p0 = R0 ρ0 T0, u0 = c0 =
√

R0 T0, (GM)0 = ρ0 r3
0, (5)

and the others follow similarly.
Existing numerical approximation methods for stationary transonic flows typ-
ically require a surprisingly large computational effort. This is an issue even
for one-dimensional (1D) flows: while the computational effort for stationary
1D transonic flow simulation may be modest in absolute terms, it still takes
an amount of work that is disproportionate to the relatively small number of
discrete unknowns to be calculated. This is due to the various difficulties that
are hidden in Eq. (1), including strong nonlinearities, stiffness at the criti-
cal point, and difficulties with the number of boundary conditions. The same
types of computational difficulties actually also arise for the multi-dimensional
full form of Eq. (1) [8].
Most traditional methods for computing stationary transonic solutions start
from the time-dependent form of the equations (Eq. (1)), rather than its sta-
tionary counterpart,
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Traditional methods employ a time-marching strategy: some initial condition
is advanced in time until a stationary solution is reached. An advantage of
time-marching methods is that the solutions obtained are physically stable
solutions. Eq. (1) is of hyperbolic type, with wave speeds λ1 = u − c, λ2 =
u, λ3 = u + c [8]. The sound speed c, the temperature T , and the entropy S
of a perfect gas are given by
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c2 =
γ p

ρ
, (7)

T =
p

ρ
=

c2

γ
, (8)

S =
p

ργ
, (9)

in our choice of units.
One intuitive reason why traditional time-marching methods converge slowly,
is that near critical points u ∼ c and thus λ1 = u − c ∼ 0, such that some er-
ror components are propagated out of the system with very slow wave speeds
[9]. As a consequence, standard explicit finite volume methods [8] for Eq. (1)
may require many thousands of timesteps to converge, also depending on the
grid size and the resulting Courant-Friedrichs-Lewy (CFL) condition. Several
methods have been introduced that accelerate convergence, including local
timestepping and implicit timestepping. In particular, important advances for
solving stationary Euler problems have been made through the technique of
local preconditioning (see [9,10], and references therein). In this approach, con-
vergence of the time-dependent equations is improved by pre-multiplying the
time-dependent term in Eq. (1) by a judiciously chosen local preconditioning
matrix P . The preconditioning matrix is chosen such that some of the stiffness
related to vanishing eigenvalues of the Jacobian matrix A is removed.
In addition to slow convergence, a second major concern with existing meth-
ods for stationary Euler flow calculations is that the resulting flow profiles
may not be accurate, in the sense that the error is large in low Mach-number
regions, compared to the error in other regions of the flow [9]. The planetary
outflow solutions targeted in our work are also especially challenging in terms
of accuracy. For example, Fig. 2 shows a transonic solution of Eq. (1) for pa-
rameters that are representative for the extrasolar planet case [1]. Over a very
small range close to the inner boundary, density and pressure drop by six and
four orders of magnitude, respectively. The method we propose in this paper
allows, in a straightforward way, to employ adaptive refinement in this region
that is based on rigorous error estimation. This is in contrast with most stan-
dard solution techiques for Eq. (1), which may not produce accurate results
in such areas with steep gradients, and in low Mach-number regions. Indeed,
standard solvers for the hyperbolic problems Eqs. (1) and (6) were developed
to handle discontinuities that may occur in transient behaviour [8], and these
specialized discretizations, often of upwind type, may not be accurate for some
steady flow regimes. It turns out, in fact, that the above mentioned precon-
ditioning methods also remedy some of the accuracy issues [9]. Nevertheless,
most standard methods for the type of transonic outflows we target in this
paper, tend to be inaccurate in the region close to the inflow boundary, where
density and pressure gradients are very large (Fig. 2). It has to be noted, how-
ever, that the mass outflow flux for planetary outflow problems is normally
predicted well by standard methods, even though flow profiles may be inac-
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Fig. 2. More realistic radial transonic flow solution for fext = −ρGM with
GM ≈ 2.6× 102, qheat = A0 exp(−10 (r − 1.1)2), and A0 ≈ 4.4× 10−6. Density and
pressure values at the inflow boundary ra = 1 are ρ ≈ 2.9×10−3 and p ≈ 2.7×10−3.
Note the decimal logarithm scale on the density and pressure plot.

curate near the lower boundary [1].
Driven by this generally unsatisfactory state of affairs in terms of convergence
speed and flow profile accuracy, and by our need for doing large numbers of
transonic flow simulations for planetary atmosphere research [1,4], we have
developed a new approach for calculating radial transonic flow profiles that
is based on directly solving the stationary problem Eq. (6), rather than using
time-relaxation of the hyperbolic system (1). An important reason why the
stationary route is normally not considered, is related to difficulties with the
number of boundary conditions. For example, the problem in Fig. 1 has only
two boundary conditions (at the inflow boundary), and it is not clear how that
allows for solving the three equations in three unknowns of stationary problem
(6). In contrast, if this problem is solved by hyperbolic time-relaxation using
Eq. (1), the boundary conditions can be handled in a standard way: a subsonic
inner boundary with two inflow conditions and one outflow condition, and a
supersonic outer boundary with three outflow conditions. However, aided by
insight derived from a dynamical system representation of the stationary equa-
tions, it is possible to find a solution for the boundary condition problem for
the stationary equation. This paper describes how, starting from a dynamical
system formulation of stationary equation (6) and using a few simple ideas, a
method can be obtained that allows fast and accurate calculation of difficult
stationary flow problems.

This paper is organized as follows. In the next section, we illustrate the first
important component of our algorithm, namely calculation of transonic flow
solutions by adaptive integration outward from the critical point. For simplic-
ity, this idea is presented in the context of the isothermal Euler equations.
In Section 3, the second important component of our approach is described,
namely the use of a Newton method which allows the critical point to vary
within the manifold of possible critical points, thus obtaining the particular
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transonic solution and critical point that match the inflow boundary condi-
tions. The resulting algorithm is described, and its performance is illustrated
using example flows with various heating profiles. In Section 4, it is shown how
the proposed method can be extended to handle transonic flows with shocks,
in the context of an example application of accretion onto a black hole. Finally,
conclusions are drawn in Section 5.

2 A Critical Point method for isothermal Euler flows

In this section, we illustrate the first essential component of our algorithm for
calculating radial transonic solutions of the Euler equations [5]. This ingredient
of the algorithm is best illustrated for the simplified case of the isothermal
Euler equations.
The isothermal limit of Eq. (1) is given by
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and can be obtained from the full Euler equations by assuming constant tem-
perature, such that the energy equation drops out and γ = 1. The sound speed
c is now a constant to be specified. The isothermal radial transonic solution on
an interval [ra, rb] that is analogous to the solution in Fig. 1, now requires one
boundary condition at the inflow boundary (namely, ρ(ra)), and no boundary
conditions are required at the outflow boundary. We emphasize again the re-
markable fact that a single boundary condition (together with the condition
that the flow makes a transition from subsonic to supersonic flow) uniquely
specifies a stationary solution to system (10), which has two equations. The
reason for this anomaly is clarified below.
A decoupled equation for u(r) can be isolated from the stationary form of Eq.
(10), resulting in

du

dr
=

2 u c2
(

r − GM
2c2

)

r2 (u2 − c2)
. (11)

This equation can be integrated easily as

(

u

c

)2

− log u2 = 4 log r + 4
GM

2 r c2
+ d, (12)

with d an integration constant. Fig. 3 shows solutions for various values of
the integration constant d, for the case GM = 2 and c = 1. Note that there
is only one transonic outflow solution: the transonic conditions u(ra) < c and
u(rb) > c fully specify the unique transonic outflow solution of Eq. (11), and
no further boundary information is required. In contrast, specifying any of the
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other solution curves requires a boundary condition. Also, it has to be noted
that for the simplified case of the isothermal Euler equations, the transonic
solution sought is given implicitly by Eq. (12), while for the full Euler equa-
tions (1) with heating profile qheat, there is generally no analytical solution.
For the isothermal case, an explicit expression for u(r) for the transonic solu-
tion branch can be derived from Eq. (12) in terms of the Lambert W function
[11], which is defined implicitly by z = W (z) exp(W (z)).
We now turn to the dynamical system form of Eq. (11). Throughout this paper,
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Fig. 3. Solution curves u(r) for the isothermal Euler eqations with GM = 2 and
c = 1. Numerical integration from the left boundary (dash-dotted curve) does not al-
low to approximate the transonic solution, but integration in two directions outward
from the critical point (dashed curves) leads to an accurate numerical approximation
of the transonic curve. The arrows indicate the direction of numerical integration.
The two starting points for the numerical integration are chosen a distance δCrit

away from the critical point.

investigating the dynamical system form of the stationary equations provides
insight into the nature of the transonic solutions, and contributes to the for-
mulation of efficient algorithms for finding stationary transonic solutions. Eq.
(11) can be written as a dynamical system as follows:

du(s)

ds
=−2 u(s) c2

(

r(s) −
GM

2c2

)

,

(13)

dr(s)

ds
=−r(s)2 (u(s)2 − c2),
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or, in matrix form,
dV

ds
= G(V), (14)

with the state vector given by V = [ u(s) r(s) ]T . The solutions u(s), r(s)
of this dynamical system – which are also called solution trajectories — are
parametrizations of the solution curves of Fig. 3. The critical point (or equi-
librium point) of this dynamical system is attained when the right hand side
of Eq. (14) vanishes, which leads to the conditions

rcrit =
GM

2c2
,

ucrit = c. (15)

For our choice of the parameters GM and c, the critical point is the point
(1, 1) in the (r, u) phase plane of Fig. 3. Note that du/dr in Eq. (11) is unde-
fined at the critical point. The equilibrium point is of saddle-point type. The
transonic solution sought is called a stable manifold of dynamical system (14),
because all solutions of system (14) with initial conditions on the transonic
curve asymptotically tend to the equilibrium point.
Fig. 3 also provides some intuition as to what kind of numerical approach
would be appropriate for approximating the transonic curve numerically, if
an analytical solution were not known. The dash-dotted curve shows that nu-
merical integration of Eq. (11) from the left boundary would not be succesful,
even if the velocity on the transonic solution curve at the left boundary were
known, because rounding and truncation errors would make the numerical ap-
proximation deviate from the transonic branch, regardless how close the initial
condition is chosen to the transonic solution. On the other hand, the dashed
curves suggest that integration outward from the critical point may be a more
viable idea. Using a local linearization of Eq. (14) about the critical point,
the directions tangent to the stable and unstable manifolds can be obtained.
With initial points chosen at distance δCrit from the critical point in the di-
rection tangent to the stable manifold, Eq. (11) can be integrated numerically
in two directions away from the critical point. The trajectories are attracted
toward the stable manifold as the integration progresses, resulting in an accu-
rate numerical approximation of the transonic solution. The accuracy of the
approximation can be increased by reducing δCrit and the integration step size.
This method for calculating stable manifolds of dynamical systems is actually
well-known and used often in the numerical study of dynamical systems [12].
In the case of the isothermal Euler equations, linearization of dynamical sys-
tem (14) results in the following Jacobian matrix at the critical point,

∂G

∂V

∣

∣

∣

∣

∣

Vcrit

=







0 2 c3

(GM)2

2 c3
0






. (16)
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Its eigenvalues are λ1,2 = ±GM , and its eigenvectors ~x1 = [ 1 GM/(2c3) ]T

and ~x2 = [ 1 −GM/(2c3) ]T give the directions tangent to the stable and
unstable manifolds. Using these results and the approach outlined above, the
transonic solution can be approximated accurately and efficiently, as illus-
trated in Fig. 4. We have used an adaptive fourth-fifth order accurate Runge-
Kutta ordinary differential equation (ODE) integrator for the result shown,
namely the RK45 Fehlberg method as described, for example, in [13]. The
same ODE integrator is used throughout the remainder of this paper.
The reason why this method, which originates in dynamical systems research,
works without change for our problem, is that the critical point for the isother-
mal Euler equations is known in advance, as all quantities in the right hand
side of Eq. (15) are known constants. For the full Euler equations, however,
the location of the critical point is not known a priori. In the next section the
second important component of our algorithm is described, which allows the
use of the above described integration technique even when the location of the
critical point in the desired transonic solution is not known ahead of time.
In this paper, we focus primarily on the transonic outflow solution in Fig. 3,
which makes a transition from subsonic to supersonic flow at the critical point.
The solution curves in Fig. 3 that do not pass through the critical point, like
the so-called ‘breeze’ outflow solutions that remain subsonic over the whole
domain, can be integrated simply using forward numerical integration, or us-
ing shooting methods with boundaries that are fixed in space, depending on
where the boundary conditions are posed. The critical point does not pose a
difficulty in this case, and a dynamical systems formulation is not needed. In
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the extrasolar planet outflow application, the transonic solution is normally
the physically relevant solution, because it is the only solution that can match
the usually very low stellar wind pressure [1]. This is similar to the case of the
solar wind, which matches the very low interstellar medium pressure [5]. For
planetary outflow, there are also cases with a fully subsonic solution, which
are obtained when the stellar wind pressure is relatively strong (for example,
when planets orbit very close to their star). However, the subsonic cases do
not require the methods described in this paper.
Note that Fig. 3 does not show the trajectories with negative velocities that
are also solutions of Eq. (12) by symmetry. The second transonic solution
branch of Fig. 3 (or, in particular, its negative-velocity counterpart) also has
important applications, for example in accretion processes in astrophysics.
The numerical method described in this paper can also be applied for effi-
cient numerical calculation of the second transonic solution branch, simply by
choosing the other of the two eigenvectors of the dynamical system in the pro-
cedure above, and choosing the boundary condition on the appropriate side
of the domain. This is illustrated in an example describing accretion onto a
black hole in Section 4.

3 A Newton Critical Point method for Euler flows

In this section, the second important component of our algorithm is described,
namely a Newton method for locating the critical point of the transonic solu-
tion. We proceed as in the previous section by writing the Euler equations (1)
with fext = −ρ GM as a dynamical system as follows:

dF

ds
= 0,

du

ds
= 2 u c2 (r −

GM

2c2
) − (γ − 1) qheat

r4 u

F
,

(17)

dr

ds
= r2 (u2 − c2),

dT

ds
= (γ − 1) T (GM − 2 u2 r) − (γ − 1) qheat

r4

F
(T − u2).

Note that the radial mass flux F is a constant of motion in the dynamical
system. Some straightforward algebra shows that the critical point of this
system is not uniquely defined. In fact, there is a two-parameter family of
critical points, which can be parametrized, for instance, by the flux Fcrit and
the radius rcrit at the critical point. Using this parametrization, the critical
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temperature and velocity are given by

Tcrit =
GM

2 γ rcrit

+ (γ − 1)
qheat r3

crit

2 γ Fcrit

, (18)

ucrit =
√

γ Tcrit. (19)

Let us now return to the problem of Fig. 1, namely a transonic outflow solution
with boundary conditions ρ = 5 and p = 23 at the inflow boundary ra = 1.
If one seeks this solution, the integration method described in Sec. 2 cannot
be used directly because the location of the critical point is not known. We
propose the following approach. For given values Fcrit and rcrit at the critical
point, define C = [Fcrit rcrit]

T , and denote the density and pressure vector
of the associated critical flow solution at the inflow boundary ra by B =
[ρ(ra) p(ra)]

T . We can say that the critical point vector C is mapped onto
the inflow boundary vector B by a mapping F:

B = F(C). (20)

This mapping is provided by the transonic solution of Eq. (1) that passes
through the critical point C. Note that F is a nonlinear mapping. Denote the
target density and pressure at the inflow boundary by B∗ = [ρ∗(ra) p∗(ra)]

T ,
with, for instance, B∗ = [5 23]T for the example of Fig. 1. The problem of
finding the critical point that corresponds to boundary value vector B∗ can
then be formulated as:

find C s.t. B∗ = F(C). (21)

Since F is a nonlinear function, this equation cannot be solved directly, but we
can resort to a Newton approach to approximate C iteratively. Taylor series
expansion directly leads to the Newton formula

B∗ = F(C(k)) +
∂F

∂C

∣

∣

∣

∣

∣

C(k)

(

C(k+1) −C(k)
)

, (22)

which can be rewritten as

C(k+1) = C(k) +

(

∂F

∂C

∣

∣

∣

∣

∣

C(k)

)

−1
(

B∗ − F(C(k))
)

, (23)

or
C(k+1) = C(k) + (J |C(k))

−1
(

B∗ − B(k)
)

, (24)

with J denoting the Jacobian of function F, and B(k) = F(C(k)). Realizing
that the mapping F can be approximated numerically using the integration
technique outward from the critical point that was discussed in Sec. 2, this
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leads to a practical algorithm for determining the critical point C and the
associated transonic solution that match boundary condition B∗. The Newton
Critical Point (NCP) method can then be described as follows:

Algorithm: Newton Critical Point (NCP) Method
In: B∗,C(0); ǫNewton, ǫODE, δCrit, δJac

k=0
do

B(k) = F(C(k); ǫODE, δCrit)
if ‖B(k) − B∗‖2 ≤ ǫNewton break

B1 = F(C(k) + δJac [1 0]T ; ǫODE, δCrit)
B2 = F(C(k) + δJac [0 1]T ; ǫODE, δCrit)

[Jij] = (Bj
i − B

(k)
i )/δJac (i = 1, 2 and j = 1, 2)

C(k+1) = C(k) + J−1 (B∗ −B(k))
k=k+1

enddo

Inputs to this algorithm are the target boundary value vector B∗, an initial
guess for the critical point vector C(0), and four numerical tolerance parame-
ters: ǫNewton is the error tolerance for the Newton method, ǫODE is the maximal
error per step for the adaptive ODE integrator, δCrit is the distance between
the critical point and the first integration point (see Fig. 3), and δJac is the
increment size for the numerical Jacobian calculation. Note that in the de-
scription of the algorithm, B

(k)
i is the ith component of B(k), and Bj

i is the
ith component of Bj (i = 1, 2 and j = 1, 2).
Fig. 5(a) shows how the NCP algorithm is applied for the calculation of the
transonic flow of Fig. 1, starting from initial guess C(0) = [Fcrit rcrit]

T = [1 2]T .
Parameters used were ǫNewton = 10−6, ǫODE = 10−7, δCrit = 10−2, and
δJac = 10−7. Table 1 illustrates the convergence behaviour of the method.

Table 1
Newton method convergence for the NCP method applied to the problem of Fig. 1.

Newton step k error ‖B(k) − B
∗‖2

1 4.41106268600662

2 2.28831581534917

3 1.43924405447424

4 0.10259052732943

5 0.00125578478131

6 0.00000037420499

Convergence of the method is fast: only six Newton steps were needed to
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Fig. 5. (a) Initial and final critical points and trajectories for calculation of the
transonic flow of Fig. 1 using the NCP algorithm. The algorithm proceeds by varying
the critical point on the two-parameter manifold of critical points by use of a Newton
method until the solution matches the specified boundary values. (b) Grid size
values used by the adaptive integrator for the final solution obtained by the NCP
algorithm. Smaller step sizes are selected close to the critical point, and near the
inflow boundary where steep gradients are encountered.
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obtain convergence for the result of Fig. 5. This is significant: only six ex-
plicit integration sweeps over half of the computational domain downward
from the critical point are needed as the Newton process proceeds, together
with six inversions of a two-by-two linear system, and a final full integration
sweep for the final solution. This is to be compared with the work required for
time-relaxation methods. Explicit relaxation methods require up to several
thousands of full integration sweeps. Relaxation methods based on implicit
discretization of time-dependent Eq. (1) may also require only a limited num-
ber of Newton-like iterations, but each step requires the inversion of a large
Jacobian matrix that contains all the discrete degree of freedoms, while in our
approach the Newton system to be solved is a small two-by-two system. It is
thus clear that the NCP method offers an efficient alternative to these existing
methods.
Fig. 5(b) shows how the adaptive RK45 integration method effectively varies
the grid for the numerical integration. Fig. 5(a) also plots the entropy of the
final solution. As qheat = 0 for this test problem, the entropy should remain
constant. The plot confirms that our method is highly accurate: the entropy
remains constant with high precision. This is an important advantage of our
method. Even for a simple test problem as the one in Fig. 5(a), most existing
methods produce significant entropy errors near the inflow boundary where
density and pressure have steep gradients. Our method does not suffer from
such inaccuracies due to the adaptive integrator that limits the error per step
to a given input tolerance.
It can be noted that the NCP algorithm is akin to a nonlinear shooting method,
with the essential difference that the location from which the shooting inte-
gration is performed is updated in every step of the shooting process, as the
location of the critical point is one of the unknowns to be determined by the
shooting procedure.
We can make the following remarks about the adaptive integrator that cal-
culates the solution trajectories downward from the critical point in order to
approximate B = F(C). As it turns out, it is not necessary to calculate the
trajectories using dynamical system (17), but it is sufficiently accurate and
easier to directly use the expressions for du/dr and dT/dr that correspond
to the equations in system (17). The direction tangent to the stable manifold
can be found as in Section 2, by linearizing the dynamical system about the
critical point.
Without the heating term (qheat = 0), dynamical system (17) simplifies to
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dF

ds
= 0,

dS

ds
= 0,

(25)

du

ds
= 2 u c2 (r −

GM

2c2
)

dr

ds
= r2 (u2 − c2).

Note that we have replaced the equation for dT/ds with an equation for dS/ds,
which is very simple in this case. Linearization of the u, r sub-system about
the critical point produces Jacobian

∂G

∂V

∣

∣

∣

∣

∣

Vcrit

=







GM (−γ + 1) 2 c3 (−2 γ + 3)

(GM)2

4 c3
(γ + 1) GM (γ − 1)






, (26)

with eigenvalues λ1,2 = ±GM
√

(−3 γ + 5)/2. The eigenvectors tangent to the

stable and unstable manifolds are given by ~x1 = [ 2 c3 (−2 γ + 3) (γ − 1 +
√

(−3 γ + 5)/2) GM ]T and ~x1 = [ 2 c3 (−2 γ+3) (γ−1−
√

(−3 γ + 5)/2) GM ]T .
When qheat 6= 0, the linearization does not produce a Jacobian matrix that
leads to further insight. The analytical expression for the Jacobian can actu-
ally be quite complicated, because in general the heating function qheat may
depend on the radius r or the local state of the gas (for instance the density
ρ). For this reason, we decided to calculate the linearization Jacobian about
the critical point and its eigenvectors numerically in our implementation of
the NCP method, with numerical Jacobian increment size δJac the same as for
the numerical calculation of the Jacobian of the function F.
Fig. 6 shows some sample solutions obtained by the NCP algorithm for vari-
ous heating profiles, namely an inverse-distance-squared heating profile, a step
profile, and a Gaussian profile. Parameters were as above, with 5, 13 and 5
Newton steps required for convergence, respectively. It can be seen that the
adaptive integrator increases the point density where necessary, for instance
near the critical points, near the inflow boundary, and near the edges of the
step heating profile in Fig. 6(b).
Note, finally, that the NCP method can be extended easily for flows with
shocks. For example, the transonic outflow solution of Fig. 1, after the criti-
cal point, can be connected to a subsonic branch by a stationary shock wave
(termination shock). This requires an additional boundary condition, for in-
stance on the pressure, at the outflow boundary. The transonic solution part
can be calculated first, and the location of the shock can then be matched to
the value of the outflow boundary condition by a Newton procedure, just like
in the NCP method described above. This is further illustrated in the next
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Fig. 6. Radial transonic flow solutions for various heating profiles obtained by the
NCP method. The heating profiles are: (d) qheat(r) = 0.3/r2, (e) qheat(r) = 0.3 for
r ∈ [2, 3] and qheat(r) = 0 elsewhere, and (f) qheat(r) = 0.3 exp(−(r − 3.5)2).

Section.

4 Example application: accretion onto a black hole with a shock

In this section we describe how the NCP method can be applied to calculate a
transonic solution branch that makes a transition from subsonic inflow away
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from the central object to supersonic inflow close to it, and how NCP can be
extended to handle flows with shocks. We find numerical solutions for a simple
model of an accretion disk around a black hole, as described in [14,15].
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Fig. 7. Numerically obtained accretion flow solution onto a black hole with a shock.
Matter flows into the black hole from the right. At r = 10, the incoming flow is
supersonic. It becomes subsonic at a shock transition (r ≈ 5), and then makes a
transition from subsonic to supersonic inflow through a critical point that is located
at r ≈ 2.5. The boundary conditions at r = 10 are ρ = 1, p = 0.01428, ur = −0.21,
and uθ = 0.1785.

We solve stationary Euler system

∂

∂r





















ρurr

ρu2
rr + p r

ρuruθr
2

ur(e + p)r





















=





















0

p + ρu2
θ + ρg(r)r

0

ρg(r)urr





















, (27)

with pseudo-Newtonian gravity field g(r) = −(r − 1)−2/2 [14,15]. Here, ur

and uθ are the radial and azimuthal velocity components in the plane of the
disk, and e = p/(γ − 1) + ρ(u2

r + u2
θ)/2. The radial distance, r, is measured in

units of Schwarzschild radius. The adiabatic index γ = 4/3. The system has
cylindrical symmetry around the axis of the accretion disk, and the equations
describe the flow in the equatorial plane.
Fig. 7 shows an accretion solution, in which matter flows into the black hole
from the right. At r = 10, the incoming flow is supersonic. It becomes subsonic
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at a shock transition (r ≈ 5), and then makes a transition from subsonic to
supersonic flow through a critical point that is located at r ≈ 2.5. The bound-
ary conditions at r = 10 are ρ = 1, p = 0.01428, ur = −0.21, and uθ = 0.1785.
We now proceed with a critical point analysis, which, together with the Rankine-
Hugoniot relations at the shock, allows us to use the NCP method for calcu-
lating flow profiles like the one in Fig. 7. We can solve the first and third
equations in (27) to obtain the two constants of motion

F = ρurr, µ = uθr.

These are constant both for continuous and discontinuous flow. The remaining
two equations can also be integrated in this simple case without further source
terms [15], but for our purposes we want to write them as a system of ODEs
for ur and T . Using the constants and the equation of state, p = ρ T , one
obtains

dur

dr
=

1

(u2
r − γT )

(

−
ur

2(r − 1)2
+

µ2

r3
ur +

Tγur

r

)

,

dT

dr
=

−(γ − 1) T

(u2
r − γT )

(

−
1

2(r − 1)2
+

µ2

r3
+

u2
r

r

)

.

(28)

This system of ODEs has a critical point (of saddle-point type) when

Tcrit =
rcrit

2γ(rcrit − 1)2
−

µ2
crit

γr2
crit

,

ur,crit =
√

γTcrit.

(29)

At the shock, the Rankine-Hugoniot relations express that ρu2
r+p and ur(e+p)

remain constant, in addition to F and µ. With M = ur/c denoting the normal
Mach Number, and the subscripts 1 and 2 denoting the states on the two sides
of the shock, it can be derived that

ρ2

ρ1

=
ur,1

ur,2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

,

T2

T1
= 1 +

2(γ − 1)(γM2
1 + 1)

(γ + 1)2M2
1

(M2
1 − 1).

(30)

The solution of Fig. 7 can then be calculated using the NCP method as follows.
First, the four boundary conditions at the inflow boundary, r = 10, fully
determine F and µ in the whole simulation domain. The NCP method then
matches the location of the critical point, rcrit, and the location of the shock,
rshock, with the two remaining boundary conditions. Indeed, knowledge of rcrit

and µ determine Tcrit and ur,crit according to Eq. (29). Once the state at the
critical point is known, the transonic trajectory from the critical point up
to the shock can be calculated as in Section 3. At the shock location, the
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Table 2
Newton method convergence for the NCP method applied to the problem of Fig. 7.

Newton step k error ‖B(k) − B
∗‖2

1 0.44190821577274

2 0.27186715877756

3 0.00501067043758

4 0.00001344201187

5 0.00000020814331

values to the right of the shock can be calculated using Rankine-Hugoniot
relations (30), and the trajectory to the right of the shock can be calculated
using straightforward ODE integration. The mismatch at the right boundary
is then used to improve the current guess for rcrit and rshock using Newton’s
method. Table 2 shows that the Newton procedure converges fast.

5 Conclusion

We have presented the Newton Critical Point method for fast and accurate cal-
culation of 1D transonic solutions of the steady compressible Euler equations
with gravity and heating terms. The method has two main ingredients. The
first ingredient is adaptive integration outward from the critical point, which
is a technique that exploits the dynamical system formulation of the problem
and is in fact well-known in dynamical systems research. The second ingre-
dient follows from some more dynamical system analysis and a simple idea:
a Newton method is employed that allows the critical point to vary within
the manifold of possible critical points, thus driving the iterative approxima-
tion toward the particular transonic solution and critical point that match
the inflow boundary conditions. It was shown that the method converges fast
and that the solution is accurate, in the sense that the solution in low Mach-
number regions and at steep gradients is as accurate as in other parts of the
flow. In fact, the solution procedure uses a rigorous error estimator and the
integration step is chosen adaptively such that the error per step is bounded
by a pre-specified error tolerance. The method can be extended easily to han-
dle flows with shocks. This was illustrated for an example flow problem that
models accretion onto a black hole with a shock.
The method as described in this paper deals with transonic flows in one dimen-
sion. The ideas behind the algorithm, however, are quite general. Application
of these ideas to problems in multiple spatial dimensions is a promising topic
of further research.
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