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CRITICAL POINT ANALYSIS OF TRANSONIC FLOW PROFILES

WITH HEAT CONDUCTION

H. DE STERCK∗

Abstract. Critical points arising in transonic flow profiles of the steady compressible Euler
equations with heat conduction are investigated. Two examples of transonic flow profiles are studied,
namely, radial outflow in a gravitational field, and flow in a quasi-one-dimensional nozzle. The
stationary flow equations are reformulated in terms of a dynamical system that parametrizes the
flow profiles. Adding the heat conduction term introduces a critical point that is of a type different
from the well-known sonic critical point that occurs at the transition from subsonic to supersonic
flow when there is no heat conduction. This thermal critical point takes over the saddle-point role of
the sonic critical point in the flow profile. Both the sonic and the thermal critical points are present
in radial outflow profiles, and the type of the sonic critical point is changed from a saddle point to
a simple node by the addition of the heat conduction term. In the nozzle case, the sonic point is no
longer a critical point of the dynamical system when heat conduction is added. It is illustrated how
the results of this analysis can be used for efficient and accurate numerical calculation of transonic flow
trajectories and boundary value problems with heat conduction that are of interest in applications
like supersonic planetary escape and solar wind models, and in aerospace applications. The analysis
also elucidates how many boundary conditions are required for a well-posed transonic boundary value
problem with heat conduction, and clarifies the mathematical structure of transonic flow profiles with
heat conduction that have been calculated numerically in the literature for various applications.

Key words. compressible gas dynamics, transonic flow, heat conduction, critical point

AMS subject classifications. 76H05, 35B38, 65P99

1. Introduction. It is well-known that stationary solutions of the compressible
Euler equations of gas dynamics may exhibit critical points where the gas makes a
transition from the subsonic to the supersonic flow regime [1, 2]. In this paper we
investigate the critical points that arise in one-dimensional (1D) transonic flow profiles
when heat conduction is added to the Euler equations.

The purpose of this analysis is two-fold.
First, the critical point analysis leads to a better understanding of the math-

ematical structure of transonic flow profiles with heat conduction that have been
calculated numerically in the literature for various applications, for example, super-
sonic gas escape from planets like Venus, Pluto and the early Earth [3, 4, 5, 6], and
extrasolar planets [7]. It also elucidates how many boundary conditions are required
for a well-posed transonic boundary value problem with heat conduction.

Second, the results of this critical point analysis can be used for efficient and accu-
rate numerical calculation of transonic flow trajectories and boundary value problems
with heat conduction that are of interest in applications like supersonic planetary
escape and solar wind models, and in aerospace applications.

In the context of 1D flow profiles, critical points are points at which the ordinary
differential equation (ODE) system that governs the stationary flow is singular, i.e.,
the derivatives of some of the flow variables cannot be determined from the ODE
system at the critical points. The stationary flow equations can be reformulated
in terms of a dynamical system that parametrizes the flow profiles. Critical (i.e.,
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2 H. DE STERCK

singular) points of the flow profiles are also critical points of this associated dynamical
system in accordance with the standard definition of critical point in a dynamical
system, i.e., they are equilibrium solutions of the dynamical system.

In this paper, two examples of 1D transonic flow profiles are studied, namely,
radial outflow in a gravitational field [8], and flow in a quasi-one-dimensional nozzle
[9]. The properties of the critical points that arise in these kinds of flows are well-
known for the Euler model without heat conduction. Here, we investigate the critical
points that arise when heat conduction is added to the Euler equations.

In the first part of the paper we study such transonic flow solutions for the case of
radial spherically symmetric outflow from spherical objects with a gravitational field.
The nozzle application is discussed subsequently.
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Fig. 1.1. Radial transonic flow solution for GM = 15, qheat(r) ≡ 0 and κ(T ) = (T/5)0.72 , and
with boundary conditions ρ = 3, T = 4.4 and dT/dr = −4 at the inflow boundary ra = 1. The sonic
critical point is indicated.

Fig. 1.1 shows a stationary transonic radial flow solution of the spherically sym-
metrical Euler equations with radial velocity and heat conduction in a gravitational
field, which are given by
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Here, ρ is the fluid mass density, p is the pressure, u is the radial velocity, r is the
radial coordinate, t is time, −ρ GM/r2 is the gravitational force density, and γ > 1 is
the adiabatic constant. With G being the universal gravity constant and M the mass
of the outflow object, we take GM = 15 in normalized units for all the test problems
in this paper. The right hand side of the equation contains a heat source term qheat,
and a heat conduction term with conductivity κ. This set of equations is used as a
model for supersonic gas escape from Venus, Pluto, the early Earth, and extrasolar
planets [3, 4, 5, 6, 7], and is related to models for the solar wind [8, 10, 11].

The temperature T , sound speed c, entropy S and radial mass flux F are defined
by

T =
p

ρ
,(1.2)

c2 =
γ p

ρ
= γ T,(1.3)

S =
p

ργ
,(1.4)

F = ρ u r2,(1.5)

in our choice of nondimensional units. In general, the heat source qheat and heat
conductivity κ can be functions of the radius r and/or the gas state variables ρ, p
and u. In particular, we consider radial dependence of the heat source qheat(r) and
temperature dependence of the heat conductivity κ(T ), which are assumptions that
are physically relevant for the applications we target [3, 4, 5, 6, 7]. Fig. 1.1 shows a
stationary transonic solution to Eq. (1.2) with the radial outflow velocity from the
planet starting out subsonically near the left boundary. The critical point at the
transition to supersonic flow is indicated.

Stationary transonic solutions to the Euler equations are notoriously hard to
compute numerically. One of the goals of our critical point analysis is to provide
results that allow to numerically calculate radial transonic flows with heat conduction
efficiently and accurately. Traditional techniques employ time-marching strategies of
the time-dependent equations [12, 13]. However, explicit time-marching approaches
tend to converge very slowly, while implicit techniques are expensive per iteration
and may suffer from robustness problems. On the other hand, solving the stationary
equations directly has proved difficult due to the presence of critical points of saddle
point type and the associated difficulties with the changing nature of the solution at
the critical points, and with the number of boundary conditions to be imposed. In [14]
we have proposed a new numerical algorithm for efficiently and accurately calculating
radial transonic flows for the Euler equations, which is based on a dynamical systems
approach. The results from the present paper allow to apply these methods to the
case where heat conduction is added to the Euler equations.

This paper is structured as follows. In the next section we recall results on critical
points for radial Euler flows in a gravitational field without heat conduction, followed
by a critical point analysis for the case when heat conduction is added to the Euler
model. In Section 3 it is shown how the analysis can be extended to the case of a
quasi-1D converging-diverging nozzle. Section 4 illustrates how the results on critical
points can be utilized for efficient direct calculation of transonic flow trajectories
and boundary value problems for the case of radial outflow in a gravitational field.
Conclusions are formulated in Section 5.
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2. Critical point analysis of radial outflow in a gravitational field. The
derivations to be presented in this section start out from rewriting the stationary
Euler equations in spherical symmetry

d

dr







ρ u r2

ρ u2 r2 + p r2

(

γ p
γ−1

+ ρ u2

2

)

u r2






=





0
−ρ GM + 2 p r

−ρ GM u + qheat r2 + ∂
∂r

(

κ r2 ∂T
∂r

)



 ,(2.1)

as an ODE system with unknowns F (r), u(r) and T (r) and with decoupled first
derivatives, as follows:
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It should be noted that the derivations to be presented can also be performed using
other state variables, for instance the density ρ or the entropy S. The choice of vari-
ables somewhat influences the effort required to obtain the results and the simplicity
of some of the resulting expressions, but in the end the results and conclusions are the
same regardless of the choice of variables. The variables in system (2.2) were chosen
because they are of direct interest in the applications targeted.

2.1. Euler equations without heat conduction. We first recall results on
critical points and their types for the case of vanishing heat conduction κ(T ) ≡ 0. In
this case, system (2.2) reduces to a decoupled first-order ODE system, which can be
rewritten as an autonomous system by introducing the independent variable s that
parametrizes the solution trajectories. This leads to the dynamical system

dr

ds
= r2 (u2 − c2),

dF

ds
= 0,

(2.3)

du

ds
= 2 u c2 (r − GM

2c2
) − (γ − 1) qheat

r4 u

F
,

dT

ds
= (γ − 1)T (GM − 2 u2 r) − (γ − 1) qheat

r4

F
(T − u2).

In general terms, the autonomous system is denoted by

dV

ds
= G(V),(2.4)
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with state vector V = [F (s) u(s) r(s) T (s)]T . The critical points (or equilibrium
points) of dynamical system (2.3) satisfy the two conditions

ucrit =
√

γ Tcrit = ccrit,(2.5)

Tcrit =
GM

2 γ rcrit

+ (γ − 1)
qheat r3

crit

2 γ Fcrit

.

Condition (2.5) identifies the critical point as the well-known sonic critical point.
Note that the dynamical system as formulated here is degenerate, in that the four-
dimensional (4D) system allows for a two-dimensional (2D) manifold of critical points,
as there are only two conditions to be fulfilled in stead of four.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

r

 

 
velocity
sound speed
density
temperature

velocity2

sonic critical point

Fig. 2.1. Radial transonic flow solution for qheat(r) ≡ 0 and κ(T ) ≡ 0. The critical radius
rcrit = 5, and the flux F = 2. The sonic critical point is indicated.

The type of the critical point can be derived by investigating the eigenvalues of
the Jacobian matrix

∂G

∂V

∣

∣

∣

∣

Vcrit

.(2.6)

For the case of vanishing heating source term qheat(r) ≡ 0, we obtain

λ1 = 0,

λ2 = 0,(2.7)

λ3 = GM
√

(−3γ + 5)/2,

λ4 = −GM
√

(−3γ + 5)/2.
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When γ < 5/3, this leads to a (degenerate) saddle point. For example, for the outflow
problem of hydrogen gas from planetary atmosphere that we target [3, 4, 5, 6, 7], the
value γ = 7/5 for di-atomic gases applies. All the example flow solutions presented
in this paper use the value γ = 7/5. For general heat source functions qheat(r), the
expressions for Jacobian (2.6) and its eigenvalues are complicated and the detailed
expressions are lengthy and uninsightful. However, using symbolical manipulation
software, it can easily be verified that the eigenvalues satisfy

λ1 = 0,

λ2 = 0,(2.8)

λ3 = a +
√

b,

λ4 = a −
√

b.

Here, a and b are generic placeholders for nonlinear functions that involve the state
variables, parameters like γ and GM , and the heat source function qheat(r) and its
radial derivative dqheat(r)/dr. Depending on the values of these, the type of the
critical point changes. Again, the general conditions that determine the type of the
critical point are lengthy and do not provide specific insight. We suffice by saying
that in many parameter regimes of interest for the applications we target, the critical
point turns out to be of (degenerate) saddle point type.

Fig. 2.1 shows an example of a stationary transonic solution to Eq. (1.2) with
κ(T ) ≡ 0 and qheat ≡ 0. The critical point at the transition to supersonic flow is
indicated. In accordance with the discussion above, the critical point turns out to be
of saddle point type.

2.2. Euler equations with heat conduction. We now proceed with the main
topic of this paper, namely the critical point analysis of radial transonic Euler flow
with heat conduction, i.e., the case where κ(T ) 6= 0. We start from the ODE system
(2.2), and define the additional variable

φ = κ r2
dT

dr
,(2.9)

which is related to the temperature gradient. With the use of this gradient variable
φ we can rewrite ODE system (2.2) as the fully decoupled first-order system
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− qheatr

2.

This system can be written as an autonomous system by introducing the indepen-
dent variable s that parametrizes the solution trajectories, resulting in the dynamical
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system

dr
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= −r2(u2 − c2)(u2 − T ),
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Interestingly, the dynamical system now turns out to have two types of critical
points.
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Fig. 2.2. Radial transonic flow solution for qheat(r) ≡ 0 and κ(T ) ≡ (T/5)0.72 . The two
critical points are indicated. The rightmost critical point is the well-known sonic critical point,
while the leftmost critical point is the thermal critical point that is introduced by including the heat
conduction term. The location of the thermal critical point rcrit ≈ 3.87, its temperature T ≈ 1.34,
and its velocity u ≈ 1.16.

The first type of critical point is the well-known sonic critical point. This critical
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point is four-fold degenerate, as there is now only one condition at this critical point:

ucrit =
√

γ Tcrit = ccrit.(2.12)

The eigenvalues of the Jacobian are given by

λ1 = 0,

λ2 = 0,

λ3 = 0,(2.13)

λ4 = 0,

λ5 = u2

crit

(

(γ + 1)φcrit

κ(Tcrit)
+ 2GM − 4u2

critrcrit

γ

)

,

indicating a critical point of (degenerate) simple node type.
The second type of critical point is characterized by the conditions

ucrit =
√

Tcrit = ccrit/
√

γ,(2.14)

φcrit

κ
+ GM − 2u2

critrcrit = 0.

We call this type of critical point a thermal critical point (u2

crit = Tcrit), in order
to distinguish it from the sonic critical point type, where u2

crit = γ Tcrit. Note that
the dynamical system is again degenerate, in that the five-dimensional (5D) system
allows for a three-dimensional (3D) manifold of critical points, as there are only two
conditions to be fulfilled in stead of five.

For this critical point, the eigenvalues of the Jacobian are given by

λ1 = 0,

λ2 = 0,

λ3 = 0,(2.15)

λ4 = a +
√

b,

λ5 = a −
√

b,

where a and b are generic placeholders for nonlinear functions that involve the state
variables, parameters like γ and GM , the heat source function qheat(r) and its radial
derivative dqheat(r)/dr, and the heat conduction function κ(T ) and its temperature
derivative dκ(T )/dT . Full expressions for a and b can be derived using symbolical
manipulation software, but they are cumbersome and do not lead to further insight.
Again, depending on the values of the parameters, the type of the critical point
changes. As before, the general conditions that determine the type of the critical
point are lengthy and do not provide specific insight, and we suffice by saying that in
many parameter regimes of interest for the applications we target, the critical point
turns out to be of (degenerate) saddle point type.

We can thus conclude that, interestingly, adding the heat conduction term to
the Euler model changes the type of the sonic critical point from a saddle point to
a simple node, and introduces an additional, thermal, critical point into the system,
which is of saddle point type. It turns out that transonic solutions pass through the
two types of critical points, as illustrated by the following example flow solution.

Fig. 2.2 shows an example of a stationary transonic solution to Eq. (1.2) with
κ(T ) = (T/5)0.72, and qheat = 0. The exponent 0.72 for the heat conduction function
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is chosen for this example flow solution due to its relevance for planetary atmosphere
calculations [3, 4, 5, 6, 7]. The two critical points are indicated on the figure. The
leftmost, thermal, critical point occurs where u =

√
T , and is of saddle point type.

The rightmost critical point is the sonic critical point, where u =
√

γT .
The flow profile of Fig. 2.2 thus has two critical points, but they are of different

type (one is thermal, and the other is sonic). Note that this situation is different from
the multitransonic accretion profiles studied in [15], in which multiple critical points
occur that are all of sonic type, for flow equations without heat conduction.

3. Critical point analysis of quasi-1D nozzle flow. In this Section we repeat
the analysis presented above for the case of a quasi-1D converging-diverging nozzle
[9], leading to similar results. Fig. 3.1 shows a de Laval nozzle, in which subsonic flow
can be accelerated to supersonic flow in a continuous fashion. If the cross-sectional
flow area A(x) varies slowly, the nozzle is long and slender, and cross-flow velocities
are small, the flow can be modeled as quasi-1D (see, e.g., [9]), leading to the following
equation system:
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subsonic supersonic

Fig. 3.1. Transonic flow in a converging-diverging nozzle.

3.1. Nozzle flow without heat conduction. First, consider the case that the
heat conduction coefficient, κ(T ), vanishes. Then the dynamical system associated
with the stationary part of Eq. (3.2) can be derived as above, leading to

dx

ds
= u2 − c2,

dF

ds
= 0,

(3.2)

du

ds
=

γ u T

A

dA

dx
,

dT

ds
= − (γ − 1)u2 T

A

dA

dx
.
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The critical points of dynamical system (3.2) satisfy the two conditions

ucrit =
√

γ Tcrit = ccrit,(3.3)

dA

dx
(xcrit) = 0.

This dynamical system has, thus, a sonic critical point, which can only occur at the
throat of the nozzle, where dA(x)/dx = 0. The type of the critical point can be
determined by investigating the eigenvalues of the Jacobian matrix, which are given
by

λ1 = 0,

λ2 = 0,(3.4)

λ3 =

√

γ + 1

A

d2A

dx2
u2,

λ4 = −
√

γ + 1

A

d2A

dx2
u2.

This shows that the sonic critical point is a saddle point at the throat of the nozzle
(where d2A(x)/dx2 ≥ 0).

3.2. Nozzle flow with heat conduction. When heat conduction is added to
the Euler model (κ(T ) 6= 0), we can define the additional variable

φ = κ
dT

dx
.(3.5)

With the use of this gradient variable φ, we can, as before, derive the dynamical
system

dx

ds
= u2 − T,

dF

ds
= 0,

du

ds
=

u T

A

dA

dx
− u φ

κ
,(3.6)
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− φ

A
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)
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dx
+

F φ

Aκ

u2 − γ T

γ − 1
.

Contrary to the radial outflow case with heat conduction, this dynamical system has
only one type of critical point. The critical point is characterized by the conditions

ucrit =
√

Tcrit,(3.7)

1

A(xcrit)

dA

dx
(xcrit) =

φcrit

κ Tcrit

=
1

Tcrit

dT

dx
(xcrit).
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This critical point is a thermal critical point (u2

crit = Tcrit). It is interesting to note
that the thermal critical point does not occur at the throat of the nozzle. For this
critical point, the eigenvalues of the Jacobian are given by

λ1 = 0,

λ2 = 0,

λ3 = 0,(3.8)

λ4 = a +
√

b,

λ5 = a −
√

b,

where a and b are generic placeholders for nonlinear functions that involve the state
variables, the parameter γ, the area function A(x) and its first and second spatial
derivatives, and the heat conduction function κ(T ) and its temperature derivative
dκ(T )/dT . Again, full expressions for a and b can be derived using symbolical manip-
ulation software, but they are cumbersome and do not lead to further insight. Also,
depending on the values of the parameters, the type of the critical point changes.
As before, the general conditions that determine the type of the critical point are
lengthy and do not provide specific insight, and we suffice again by saying that in
many parameter regimes of interest, the critical point turns out to be of (degenerate)
saddle point type.

We can, thus, conclude that adding the heat conduction term to the Euler model
here removes the sonic critical point as a critical point altogether, and introduces a
new thermal critical point of saddle point type.

The result is, thus, similar to the radial outflow case: adding heat conduction to
the Euler equations results in the appearance of a thermal critical point. The thermal
critical point takes over the role of the sonic critical point as a saddle point in the
flow profile.

4. Numerically calculated example flow solutions for radial outflow in

a gravitational field. In this section, we illustrate how the critical point properties
derived above can be used for efficiently calculating stationary transonic Euler flows
numerically, for the case of radial outflow in a gravitational field. Note that exam-
ple flow solutions for the quasi-1D nozzle application can be calculated in a similar
manner.

We consider two typical situations. In the first, most simple, case, the state
variables at the critical point are known, and a numerical approximation to the critical
trajectory through the critical point is sought. In the second case, some state variables
are known at the left inflow boundary, and a numerical approximation to the transonic
solution that matches the boundary conditions is sought. Such a critical boundary
value problem (BVP) is significantly more complicated to solve, but here too the
knowledge about the critical points that was developed aids in efficiently obtaining a
numerical approximation. This section also serves to illustrate how the addition of
heat conduction influences transonic Euler solutions.

4.1. Example trajectories. We first recall why trajectories that pass through
critical points of saddle point type are difficult to approximate numerically. This can
be explained most easily for the simplified case of isothermal Euler flow [8, 11, 14].
In this case the sound speed c is a constant, and a decoupled ODE for u(r) can be
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Fig. 4.1. Solution curves u(r) for the spherically symmetric isothermal Euler eqations with
GM = 2 and c = 1. Numerical integration from the left boundary (dash-dotted curve) does not
allow to approximate the transonic solution, but integration in two directions outward from the
critical point allows numerical approximation of the transonic solution. The arrows indicate the
direction of numerical integration.

derived

du

dr
=

2 u c2
(

r − GM
2c2

)

)

r2 (u2 − c2)
,(4.1)

which leads to the simplified dynamical system

du(s)

ds
= −2 u c2

(

r − GM

2c2

)

,

(4.2)

dr(s)

ds
= −r2 (u2 − c2).

This system features a critical point of saddle point type that is specified by the
conditions

rcrit =
GM

2c2
,

ucrit = c,(4.3)

or the point (1, 1) in the (r, u) phase plane for the choice of parameters GM = 2 and
c = 1. Fig. 4.1 shows solution trajectories in the (r, u) phase plane.
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Fig. 4.2. Radial outflow trajectories without and with heat conduction. Top: Radial transonic
flow solution for qheat(r) ≡ 0 and κ(T ) ≡ 0. The sonic critical radius rcrit = 5, and the flux F = 2.
Bottom: Radial transonic flow solution for qheat(r) ≡ 0 and κ(T ) ≡ (T/5)0.72 . The thermal critical
point has critical radius rcrit ≈ 3.87, temperature T ≈ 1.34, and velocity u ≈ 1.16.

Assume that one wants to find a numerical approximation for the transonic solu-
tion that passes through the critical point. It is easy to see that numerical integration
from the left does not lead to a desirable result, as numerical errors cause the approx-
imation to deviate from the transonic curve. However, integration in two directions
outward from the critical point (dashed curves) leads to an accurate numerical ap-
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proximation of the transonic curve. The initial points for the outward integrations
should be taken in the direction of the tangent to the transonic solution, which is an
eigenvector of the Jacobian matrix ∂G(V )/∂V at the critical point. This approach for
calculating the stable or unstable manifold of a saddle point is a standard dynamical
systems technique [16], and can be applied to transonic Euler flow calculation once
the critical point location and state are known.

Fig. 4.2 illustrates how this approach can be used for numerical approximation of
transonic Euler flow with and without heat conduction. The top panel shows Euler
flow without heat conduction, with critical radius rcrit = 5 and flux F = 2. This
is the same solution as shown in Fig. 2.1, but now we have added the numerical
integration points that were used by our ODE integrator. Numerical integration is
outward from the sonic critical point, which is of saddle point type. We have used
an adaptive fourth-fifth order accurate Runge-Kutta ODE integrator for the result
shown, namely the RK45 Fehlberg method as described, for example, in [17]. This
solution has u2 = T ≈ 1.34 at r ≈ 3.87.

The top flow profile has to be compared with the solution presented in the bottom
panel, which features heat conduction, and has the same values for temperature and
velocity as the top solution at r ≈ 3.87. This is the same solution as shown in Fig.
2.2, but is repeated here for the purpose of comparison with the top panel. Numerical
integration is now outward from the thermal critical point, and it can be seen that
the numerical integration does not experience any problem at the sonic critical point,
which is now a simple node due to the presence of heat conduction. The top and
bottom solutions both feature u2 = T ≈ 1.34 at r ≈ 3.87, but differ otherwise due to
the presence of heat conduction in the bottom solution.

4.2. Example Boundary Value Problems. In Fig. 4.3 we compare two BVPs
without and with heat conduction. The top solution has qheat(r) ≡ 0 and κ(T ) ≡ 0,
while the bottom solution has qheat(r) ≡ 0 and κ(T ) ≡ (T/5)0.72. Both flow solutions
have ρ = 3 and T = 4.4 at the inflow boundary. In addition, the bottom solution,
with heat conduction, requires one more boundary condition at the inflow boundary
in order for the BVP to be well-posed; dT/dr = −4 is imposed additionally at the
lower boundary. Note the difference in scale of the two plots: the heat conduction
brings the location of the sonic critical point much closer to the inflow boundary. The
values of the resulting flux variable F , which is the main quantity of interest for this
kind of BVP solutions in the case of planetary outflow calculations [3, 4, 5, 6, 7], is
also influenced significantly by the heat conduction: F ≈ 0.78 for the BVP without
heat conduction, but F ≈ 1.92 with heat conduction.

Determining the number of boundary conditions necessary for transonic BVPs is
not a trivial matter, and numerical calculation of transonic BVPs is difficult due to
the a priori unknown location of the critical points. Recently we have proposed a
new algorithm for numerical approximation of transonic BVP solutions to the Euler
equations. We suffice here with a brief explanation of how the BVP solutions of Fig.
4.3 were obtained, and full details about the algorithmic approach can be found in
[14].

Regarding the issue of the number of boundary conditions, the isothermal Euler
case is again illustrative. The solution trajectories of Eqs. (4.1) and (4.2) shown in
Fig. 4.1 are uniquely identified by one boundary condition at the left inflow bound-
ary, except for the transonic curve, whose specification does not require any numeric
boundary condition value for the velocity u at the left boundary, in the following sense:
just the requirement that the solution is transonic, i.e., that the flow is subsonic at
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Fig. 4.3. BVP flow trajectories without (top) and with (bottom) heat conduction. Both flow
solutions have ρ = 3 and T = 4.4 at the inflow boundary. In addition, dT/dr = −4 is imposed at
the inflow boundary for the bottom solution. The NCP method from [14] was used to solve these
BVPs numerically.

the left boundary and supersonic at the right boundary, uniquely determines the solu-
tion, and the value of the veolcity u at the inflow boundary follows from the transonic
flow requirement. In the same way, transonic Euler solutions without heat conduc-
tion require only two boundary conditions for three-dimensional system (2.2) (with
κ(T ) ≡ 0), in addition to the requirement that the flow solution is transonic, and,
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similarly, transonic Euler solutions with heat conduction require only three boundary
conditions for four-dimensional system (2.10), again in addition to the requirement
that the flow solution is transonic.

The BVP solution can then be approximated numerically in an iterative pro-
cedure that uses the numerical integration method outward from the critical points
that was described above, combined with a Newton method that allows the critical
point to vary within the manifold of possible critical points, thus driving the iterative
approximation toward the particular transonic solution and critical point that match
the inflow boundary conditions. See [14] for details about this Newton Critical Point
algorithm. Indeed, in the case of the Euler equations without heat conduction, the
two-fold degeneracy of the sonic critical point of saddle-point type (2.5) conveniently
matches the number of inflow boundary conditions for the BVP. In a similar way,
the results of this paper show that, in the case of the Euler equations with heat con-
duction, the three-fold degeneracy of the non-sonic critical point of saddle-point type
(2.14) matches the number of inflow boundary conditions that specify the transonic
BVP solution uniquely.

5. Conclusions. In this paper, we have presented a critical point analysis for
transonic flow solutions of the steady compressible Euler equations with heat conduc-
tion. By means of reformulating the stationary ODE system as a first-order system
that can be rewritten as a dynamical system, it was shown that the addition of the
heat conduction term introduces a new critical point that is different from the well-
known sonic critical point. This so-called thermal critical point is of saddle point
type in parameter regimes of interest. For radial outflows, the sonic point remains
a critical point, and the flow profile, thus, has two critical points of different type,
but the sonic critical point is changed from a saddle point to a simple node by the
addition of the heat conduction term. In the quasi-1D nozzle case, the sonic point is
not a critical point of the dynamical system anymore when heat conduction is added.
Heat conduction adds a term with a second spatial derivative of the temperature, and
it can be concluded that adding this heat conduction term changes the critical point
properties of the ODE system and the transonic flow solutions significantly.

It was illustrated how the results of this analysis can be used for efficient and
accurate numerical calculation of transonic radial outflow trajectories and boundary
value problems using the Newton Critical Point method that was introduced in [14].
The analysis also elucidates how many boundary conditions are required for a well-
posed transonic boundary value problem with heat conduction. The results presented
in this paper, thus, reveal the mathematical structure of stationary transonic solutions
of the compressible Euler equations with heat conduction, which are of interest in
applications like supersonic gas escape from Venus, Pluto and the early Earth [3, 4,
5, 6].

In future work, we will study how the phenomena described in this paper play a
role in 2D and 3D flows with heat conduction, where symmetry is relaxed. We expect
that the analysis given here can be extended to these higher-dimensional cases, and we
speculate that multiple types of critical points may arise there as well. We also intend
to investigate whether numerical methods for stationary transonic flow simulation
that are based on dynamical systems analysis may be developed for flow problems in
multiple spatial dimensions. This will be addressed in future research.
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