
accepted for publication in SIAM Journal on Scientific Computing, January 2008

MULTILEVEL ADAPTIVE AGGREGATION FOR MARKOV

CHAINS, WITH APPLICATION TO WEB RANKING

H. DE STERCK∗‡ , THOMAS A. MANTEUFFEL†§ , STEPHEN F. MCCORMICK†¶, QUOC

NGUYEN∗††, AND JOHN RUGE†‖

Abstract. A multilevel adaptive aggregation method for calculating the stationary probability
vector of an irreducible stochastic matrix is described. The method is a special case of the adaptive
smoothed aggregation and adaptive algebraic multigrid methods for sparse linear systems, and is
also closely related to certain extensively studied iterative aggregation/disaggregation methods for
Markov chains. In contrast to most existing approaches, our aggregation process does not employ any
explicit advance knowledge of the topology of the Markov chain. Instead, adaptive agglomeration is
proposed that is based on strength of connection in a scaled problem matrix, in which the columns of
the original problem matrix at each recursive fine level are scaled with the current probability vector
iterate at that level. Strength of connection is determined as in the algebraic multigrid method,
and the aggregation process is fully adaptive, with optimized aggregates chosen in each step of the
iteration and at all recursive levels. The multilevel method is applied to a set of stochastic matrices
that provide models for web page ranking. Numerical tests serve to illustrate for which types of
stochastic matrices the multilevel adaptive method may provide significant speedup compared to
standard iterative methods. The tests also provide more insight into why Google’s PageRank model
is a successful model for determining a ranking of web pages.

Key words. multilevel method, adaptive aggregation, Markov chain, stationary probability
vector, web ranking

AMS subject classifications. 65C40 Computational Markov chains, 60J22 Computational
methods in Markov chains, 65F10 Iterative methods for linear systems, 65F15 Eigenvalues, eigenvec-
tors

1. Introduction. This paper describes a multilevel adaptive aggregation (MAA)
method for calculating the stationary probability vector of an irreducible stochastic
matrix. Performance of the method is investigated and compared with more tra-
ditional iterative methods for stochastic matrices that provide models for web page
ranking, including Google’s PageRank model.

Our method is a special case of the adaptive smoothed aggregation (SA) [1] and
adaptive algebraic multigrid (AMG) [2] methods for sparse linear systems. It is, in
fact, a variant of the original adaptive method developed in the early stages of the
AMG project by A. Brandt, S. McCormick, and J. Ruge [3] (described earlier in
[4]). It is also closely related to certain extensively studied aggregation methods for
Markov chains. The coarse-level equations we use on aggregated states are essentially
the aggregated equations proposed in [5], and the framework of our two-level method
is similar to the iterative aggregation/disaggregation (IAD) method for Markov chains
that was pioneered in [6] and has since been used and analyzed extensively [7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17]. While the IAD method is normally employed as a two-level
method, the use of multilevel versions has been proposed in the literature, and the

∗Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
†Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado,

USA
‡hdesterck@uwaterloo.ca
§tmanteuf@colorado.edu
¶stevem@colorado.edu
‖jruge@colorado.edu

††quocuz@gmail.com

1

2

link to algebraic multigrid methods has been pointed out before [18, 19, 20, 21]. The
iterative aggregation framework of the algorithm we describe in this paper is, thus,
not new, but the way we choose aggregates based on a column-scaled problem matrix
is.

In most two-level applications of the IAD method, aggregates are chosen in a pre-
specified way, based on topological knowledge of the fine-level problem. We mention
three examples here: for so-called nearly completely decomposable Markov chains, the
aggregates are normally chosen to be the fine-level blocks that are nearly decoupled
[7, 8]; in [16], one of the coarse states is an aggregate that contains the dangling nodes
of a webgraph; and, in [17], aggregates are formed by the nodes of the webgraph
that reside on the same compute node in a distributed computing environment for
web ranking. In contrast, in the approach we describe, the aggregation process does
not employ any explicit advance knowledge of the topology of the Markov chain,
but aggregation is done automatically, based solely on some measure of strength of
connection in the stochastic matrix. Moreover, the aggregates are adaptively improved
in each step of the iterative process. This adaptive aggregation strategy based on
strength of connection relates our approach to the adaptive SA method for linear
systems [1], and the resulting algorithm promises to be quite generally applicable,
since no a priori knowledge of the topology of the Markov chain is needed for the
aggregation step. Strength of connection-based aggregation can also be recursively
applied on coarser levels, thus enabling multilevel application of the IAD ideas. It
is precisely this multilevel procedure that makes multigrid methods so powerful and
scalable for many sparse linear systems, and it is our goal to explore the degree to
which such general scalability may be achieved for Markov chain problems. AMG
methods can be parallelized efficiently, and AMG scalability has been achieved for
linear systems with billions of unknowns [22]. This makes it interesting to explore
the use of AMG-like multilevel methods for large Markov chains, such as the Markov
chains that result from models for ranking web pages.

Markov chain agglomeration based on strength of connection has been advocated
before [18, 19, 21], using strength of connection in the original problem matrix, but it
has proven difficult to come up with a strength-based multilevel aggregation strategy
that is successful for a wide class of Markov matrices [21]. This is where the main
algorithmic contribution of our paper lies: we propose strength-based adaptive ag-
glomeration for Markov chains that is based on AMG-like strength of connection in a
scaled problem matrix, in which the columns of the original problem matrix at each
recursive fine level are scaled with the current probability vector iterate at that level.
This latter choice is motivated by careful consideration of the error equation to be
solved in every step and at every level of the iteration procedure, and by analysis of a
simple test problem complemented with numerical convergence results. The resulting
aggregation process is fully adaptive, with optimized aggregates chosen in each step
of the iteration and at all recursive levels.

In the second part of this paper, we investigate the efficiency and scalability of
our strength-based multilevel method with adaptive aggregation on a set of stochastic
matrices that provide models for web page ranking. To our knowledge, the use of
iterative methods of multilevel adaptive aggregation type has not been explored before
for web ranking problems. One of the models studied is the well-known PageRank
model [23] employed in the Google search engine [24], and we also apply our method
to two different regularizations of the web graph for page ranking. We compare
the efficiency of our strength-based multilevel adaptive aggregation method to the

3

efficiency of more standard iterative methods for problems of various size. These
numerical tests serve to illustrate for which types of stochastic matrices our multilevel
adaptive method may provide significant speedup, and also to provide more insight
into why the PageRank model is a successful model for determining a ranking of web
pages [25, 26].

2. Multilevel Adaptive Aggregation for calculating the stationary prob-

ability vector of an irreducible stochastic matrix. Let B ∈ R
n×n be a column-

stochastic matrix, i.e., bij ≥ 0 ∀i, j and
∑n

i=1 bij = 1 ∀j. (Note that the latter
condition may also be written as ǫ

T B = ǫ
T , with ǫ the column vector with all ones.)

We want to find a vector x ∈ R
n that satisfies

B x = x, xi ≥ 0 ∀i, ‖x‖1 = 1. (2.1)

If matrix B represents the transition matrix of a Markov Chain, then x is called a
stationary probability vector of the Markov Chain. Note that x is an eigenvector of
B associated with eigenvalue 1, the eigenvalue with largest modulus of matrix B.

In what follows, we are concerned with irreducible matrices [11]. Matrix B is
irreducible iff there exists a path from each vertex i to each vertex j in the directed
graph of matrix B. It can be shown that, if B is irreducible, then there exists a unique
solution x to (2.1). Moreover, this stationary probability vector x satisfies the strict
inequality xi > 0 ∀i. Matrix B is called periodic with period p > 1 (aka p-cyclic)
iff the lengths of all cycles in the directed graph of B are multiples of p. If B is not
periodic, it is called a-periodic. If, in addition to irreducibility, B is a-periodic, then
the unique stationary probability vector, x, can be obtained from any initial vector
x0 with positive components and ‖x0‖1 = 1 by repeated multiplication with B:

x = lim
n→∞

Bn x0. (2.2)

2.1. Relaxation: Power, Jacobi, and Gauss-Seidel methods. A simple
and often used iterative method for approximating the unique stationary probability
vector of an irreducible and a-periodic column-stochastic matrix B, starting from an
initial guess x0 with ‖x0‖1 = 1, is the Power method, which is given by:

xi+1 = Bxi. (2.3)

Closely related iterative methods are Jacobi (JAC) and Gauss-Seidel (GS). The sta-
tionary probability equation (2.1) can be rewritten as

Ax = 0, (2.4)

with

A = I −B, (2.5)

where I ∈ R
n×n is an identity matrix. Using standard notation for the decomposition

of matrix A into its lower and upper triangular parts and its diagonal part A =
L + D + U , the Jacobi method for finding the solution of Eq. (2.4) is given by

xi+1 = N(D−1(L + U)xi), (2.6)

and Gauss-Seidel by

xi+1 = N((L + D)−1Uxi). (2.7)

4

Here, we use the normalization operator N(.) defined by

N(x) =
x

‖x‖1
(x 6= 0). (2.8)

Note that in the iterative algorithms described in this paper, the normalizations ex-
pressed by N(.) do not necessarily have to be carried out in all steps of the algorithms,
and may in fact be combined in a single normalization at the end of the iterative
process. While the latter strategy is obviously advantageous for efficient computer
implementation, we choose to include these normalizations in the descriptions of the
algorithmic steps in this paper for reasons of ease of interpretation. Indeed, in this
way, all the vectors xi can be interpreted as probability vectors, because they satisfy
∑n

i=1 xi = 1.
In a multigrid context, the Power, Jacobi, and Gauss-Seidel methods are often

referred to as relaxation or smoothing methods, because they attenuate oscillatory
error components quickly, leaving smooth error (at least for typical discrete elliptic
systems). A variant of Jacobi used further on in this paper is weighted Jacobi (WJAC)
with weight w, given by

xi+1 = N((1− w)xi + w D−1(L + U)xi). (2.9)

The Power and Gauss-Seidel methods can be weighted in the same fashion.
It is useful to mention here some of the convergence properties of these relaxation

methods for Markov chains [10, 11]. As was stated above, a-periodicity of an irre-
ducible stochastic matrix guarantees convergence of the Power method to the unique
stationary probability vector, for any probability vector as initial condition. However,
the weighted Power method with weight w ∈ (0, 1) converges to the unique stationary
probability vector of an irreducible stochastic matrix regardless of periodicity, for any
probability vector as initial condition. In contrast, Jacobi and Gauss-Seidel may fail
to converge, even when the matrix is a-periodic, but weighted Jacobi and Gauss-Seidel
iteration with weight w ∈ (0, 1) always converge, regardless of the periodicity of the
stochastic matrix. For some initial conditions, however, convergence may not be to
the unique stationary probability vector. For example, for initial conditions that lie
in the kernel of the upper triangular part, U , of B, Gauss-Seidel fails to converge to
the unique stationary probability vector, and converges to the trivial solution instead
(when no normalization is employed during the iteration process). Some of these
convergence properties of the various relaxation methods can be easily seen for the
simple 2× 2 periodic irreducible matrix given by

B =

[

0 1
1 0

]

, (2.10)

with stationary probability vector xT = [1/2, 1/2], and its a-periodic perturbation

B̂ = (1− δ)B + δ I (0 < δ < 1), (2.11)

that has the same stationary probability vector.

2.2. Aggregation equations for Markov Chains. It is well-known that Markov
chain states can be aggregated, and an equation can be obtained for the stationary
probability vector of the aggregated states that is equivalent to Eq. (2.1). We illustrate
this here with an example.

5

1/2

21

3
5

4

1

2
3

1
1

1/3
1

1/3

1/3
1/2

Fig. 2.1. Aggregation of a fine-level Markov chain with five states into a coarse-level chain with
three states. The fine-level states are indicated by numbers in circles, and the aggregated coarse-
level states are indicated by numbers in boxes. Fine-level transitions are indicated by arrows with
associated transition probabilities. The fine-level Markov chain is an example of a random walk on
a directed graph: in each state, the outlinks are followed with equal probability.

Fig. 2.1 gives a simple example of a Markov chain with five states (n = 5). This
Markov chain is an example of a random walk on a graph. In each state, the outlinks
are followed with equal probability. The transition matrix is given by

B =

0 1/3 0 0 0
0 0 0 1 0

1/2 1/3 0 0 1
0 1/3 1 0 0

1/2 0 0 0 0

, (2.12)

with stationary probability vector xT = [2/19, 6/19, 4/19, 6/19, 1/19].

In Fig. 2.1, the five states are aggregated into three coarse states. The stationary
probability vector on the aggregate with index set I is given by

xc,I =
∑

i∈I

xi. (2.13)

Subscript c denotes that the aggregated probability vector applies to a coarse-scale
version of the original fine-scale 5×5 problem. For the example of Fig. 2.1, the coarse-
scale aggregated stationary probability vector is given by xT

c = [8/19, 10/19, 1/19].

It follows directly from elementary probability calculus that xc satisfies a coarse
version of Eq. (2.1):

Bc xc = xc, (2.14)

with the matrix elements of Bc given by

bc,IJ =

∑

j∈J

xj

(

∑

i∈I

bij

)

∑

j∈J

xj

. (2.15)

6

For our example,

Bc =

1/4 3/5 0
5/8 2/5 1
1/8 0 0

 . (2.16)

In matrix form, Eq. (2.15) can be written as

Bc = PT B diag(x)P diag(PT x)−1, (2.17)

with matrix P given by

P =

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

, (2.18)

and diag(x) denoting the diagonal matrix of appropriate dimension with diagonal
entries xi. In analogy with multigrid terminology, we call matrix P an interpolation
operator, because it interpolates from the coarse to the fine level, and its transpose
PT a restriction operator. We also refer to P as the agglomeration matrix, because
it contains the information that specifies the agglomerates. Operator PT restricts
fine-scale probability vector x to the coarse-scale vector, xc:

xc = PT x. (2.19)

Coarse-scale matrix Bc is a column stochastic matrix, and it can be shown that Bc

inherits the properties of irreducibility and a-periodicity from the fine-scale B [11].

2.3. Two-level acceleration of relaxation methods by aggregation. It
is well-known that relaxation methods for solving problem (2.1), or, equivalently,
problem (2.4), can be accelerated by making use of the aggregation idea described
above. It is clear that the aggregated operator, Bc, cannot be constructed without
knowledge of the fine-level solution, x, but it turns out that a coarse-level operator
constructed using the current fine-level relaxation iterate, xi, can be used to accelerate
convergence in a two-level method as follows:

Algorithm: Two-level acceleration by agglomeration
choose initial guess x

repeat

x← N(Relax(A,x)) ν times
Ac = PT Adiag(x)P diag(PT x)−1

xc ← solve Ac xc = 0, xc,i ≥ 0 ∀i, ‖xc‖1 = 1 (coarse-level solve)
x← N(diag(P diag(PT x)−1 xc)x) (coarse-level correction)

until convergence criterion satisfied

Here, Relax(A,x) stands for one step of relaxation (e.g., the Power or Gauss-
Seidel method). The coarse-level solve can be approximate (e.g., by use of a relax-
ation method, which may employ PT x as the initial guess), and the efficiency of the

7

algorithm hinges on exploiting the fact that the coarse-level solve typically requires
much less work than a fine-level solve.

The coarse-level correction step needs some explanation here. On the coarse
level, the current guess for the stationary probability vector, PT x, is replaced by the
new approximation, xc. The expression diag(PT x)−1 xc gives the ratios of the new
and initial probabilities on each of the agglomerates, and the coarse-level correction
scales the fine-level probabilities in each agglomerate by the coarse-level correction
probability ratio of that agglomerate. As explained in more detail in the next section,
the correction is, thus, a correction of multiplicative type. Depending on the properties
of the fine-level matrix, A, the choice of the relaxation method, and the choice of
the agglomeration matrix, P , this two-level method may accelerate convergence of
the relaxation method considerably. Local convergence properties of the two-level
aggregation method are discussed in [15].

2.4. Multiplicative coarse-level correction. It is instructive to explain the
coarse-level correction step of the two-level algorithm further by considering multi-
plicative error equations as follows. Given a current iterative approximation, xi, for
Ax = 0, define the multiplicative componentwise error vector of the ith iterate, ei,
by

x = diag(xi) ei = diag(ei)xi. (2.20)

This yields the following multiplicative error equation

Adiag(xi) ei = 0. (2.21)

At convergence, xi = x and ei = ǫ = [1, . . . , 1]T . If the fine-level error, ei, is not
known, one can seek a coarse-level approximation, ec, with ei ≈ P ec. An approxi-
mate, coarse-level version of the error equation is given by

PT Adiag(xi)P ec = 0. (2.22)

We can relate the coarse-level error, ec, to the coarse-level probability vector, xc, by

xc = diag(PT xi) ec, (2.23)

which makes coarse-level error equation (2.22) equivalent to coarse-level stationary
probability equation Ac xc = 0, with

Ac = PT Adiag(xi)P diag(PT xi)
−1, (2.24)

as in the two-level acceleration algorithm above. The fine-level error, ei, is then
approximately given by

ei ≈ P diag(PT xi)
−1xc, (2.25)

and this approximation is used in the multiplicative error correction step in the algo-
rithm given above.

2.5. Multilevel Adaptive Aggregation method. The efficiency of the two-
level acceleration algorithm described above can be further enhanced by using the
agglomeration idea in a recursive way, and it turns out that the convergence properties
of the resulting algorithm can be improved by choosing the agglomeration matrices,
P , on all levels adaptively based on the current iterates, xi, and the matrix elements
of A. The resulting adaptive multilevel aggregation algorithm is as follows.

8

Algorithm MAA(A,x, ν1, ν2): Multilevel Adaptive Aggregation method (V-cycle)
begin

x← N(Relax(A,x)) ν1 times
build P based on x and A (P is rebuilt in every V-cycle at each level)
Ac = PT Adiag(x)P diag(PT x)−1

xc = MAA(Ac, N(PT x), ν1, ν2) (coarse-level solve)
x← N(diag(P diag(PT x)−1 xc)x) (coarse-level correction)
x← N(Relax(A,x)) ν2 times

end

This algorithm uses the simplest type of recursion, resulting in a so-called V-cycle.
Similar to the multigrid context, other types of recursive cycles can be considered as
well.

Multilevel algorithms of this kind have been considered for Markov Chains be-
fore. It turns out, however, that a careful choice of aggregation strategy is crucial
for the efficiency of the algorithm, and it appears that there is no known method
that produces good results for general stochastic matrices B. In fact, efficiency of
aggregation strategies may depend on certain properties of B. In the next subsection,
we describe a particular aggregation strategy that is based on strength of connection
in the scaled matrix Adiag(xi). Strength of connection is determined as in the AMG
algorithm. The proposed aggregation process is fully adaptive, with optimized aggre-
gates chosen in each step of the iteration and at all recursive levels. Our approach is
further motivated in the subsequent section, which analyzes a simple model problem,
complemented with numerical convergence results.

Further on in the paper, we investigate the performance of the MAA method
using our new aggregation strategy for problems related to the ranking of web pages,
and we compare its performance with more traditional iterative methods. The MAA
method described above is also related to adaptive AMG and SA algorithms for the
solution of sparse linear systems, as explained in more detail below.

2.6. Strength-based aggregation procedure. The main algorithmic contri-
bution of this paper is strength-based aggregation that uses strength of connection in
the problem matrix scaled by the current iterate, Adiag(xi), rather than the original
problem matrix A. We determine strength as in the classical AMG algorithm [3].

Use of AMG’s strategy to determine coarse variables for linear systems has been
supported by some theory for the symmetric case [29] and by decades of numeri-
cal experience in the field for more general cases [30, 31]. While AMG’s particular
strength-of-connection strategy has apparently not been used previously for Markov
chains, a very few studies [19, 21] have considered strength-based agglomeration meth-
ods that are of a different type, in part because they are focused on the original matrix,
A. While these previous approaches have met with some success for particular types
of problems, effective agglomeration strategies for large classes of Markov chains have
proved elusive [21].

To motivate the choice of the strategy used here, first note that our multigrid
solver is applied to the error equation determined by the scaled matrix:

Adiag(xi) ei = 0. (2.26)

Understanding that our target is the scaled matrix is important because it bears on
two critical principles that are the foundation of efficient multilevel algebraic solvers.

9

First, we need an understanding of algebraically smooth error, and the multiplicative
formulation of Eq. (2.26) provides this, as the multiplicative error, ei, approaches 1

as xi approaches the exact solution. Second, we need to choose agglomerates that
group variables where the pattern of algebraic smoothness can be exploited. These
two principles are critical to our ability to accelerate relaxation. Indeed, success
of classical AMG has been based on the understanding that algebraically smooth
error is nearly constant (for many problems) in “local” neighborhoods, where the
corresponding row entries of the governing matrix are relatively large. We must rely
on analogous understanding of the scaled matrix if we are to obtain anything close to
optimal performance.

To understand algebraically smooth error in our context, note that relaxation on
Ax = 0 typically results in a small residual after just a few relaxation steps: Axi ≈ 0.
As xi approaches the exact solution, x, the multiplicative error, ei, approaches 1.
This means that algebraically smooth error varies slowly in a local neighborhood, just
as it does in classical AMG applications. Without using the scaling expressed by
diag(xi), we cannot make such a statement about error for the original matrix, A. In
fact, if we erroneously assumed that relaxation on the original matrix, A, produced
error that was locally constant, we could not accurately approximate the null space
component of A by interpolation, and this would ensure catastrophically poor coarse-
level approximation and intractable coarse-level matrices. The ability to accurately
represent the (near) null space of the matrix is a fundamental principle that must be
addressed in virtually all multilevel methods.

To capitalize on the sense of algebraic smoothness relevant to our context, we
need to understand what is meant by “local” neighborhood. That is, we need to
know which neighbors of each state have similar values of the error after relaxation.
Our understanding here is again the same as it is for classical AMG: the error at state
j is influenced most strongly by the errors at states k that have large matrix elements
in row j and columns k of the scaled matrix, Adiag(xi). Note that strength based on
the scaled Markov matrix also has a simple intuitive interpretation: for a link in the
Markov chain from state i to state j, state i contributes to the probability of residing
in state j in the steady state not just by the size of the transition probability from i
to j, but by the product of that transition probability and the probability of residing
in state i.

Denoting the scaled matrix with matrix elements ājk by

Ā = Adiag(xi), (2.27)

we base the agglomeration procedure on a strength matrix, S, defined as follows:

Sjk =

{

1 if j 6= k and − ājk ≥ θ max
l 6=j

(−ājl) ,

0 otherwise,
(2.28)

where θ ∈ [0, 1] is a strength threshold parameter. In this paper, we choose θ = 0.8.
After strength matrix S has been determined, the aggregates are formed by the

following procedure:

10

Algorithm: Aggregation based on strength matrix S

repeat

• among the unassigned states, choose state j which has the largest value
in current iterate xi as the seed point of a new aggregate
• add all unassigned states k that are strongly influenced by seed point j
(i.e., Skj = 1) to the new aggregate

until all states are assigned to aggregates

This aggregation heuristic is based on the notion that ‘important states’ (states
that have a large value in the current iterate xi) are good candidate seed points for
new aggregates, and that states that are strongly influenced by the seed point of an
aggregate are good candidates to join that aggregate. The choice of seed points in
our aggregation strategy is somewhat different from how candidate coarse-grid points
are selected in classical AMG. Classical AMG selects the next available point with
the highest value of an ‘importance measure’ λ, which is initially set to the number of
points strongly influenced by each point, and is then dynamically updated every time
a new coarse grid point is selected in order to favor points that are strongly influencing
newly selected fine grid points. Instead, we base the selection of seed points on the
notion that ‘important states’ (states that have a large value in the current iterate
xi) are good candidate seed points for new aggregates, which, intuitively, appears
relevant for the Markov chain case. An advantage of our approach is that it does not
require updating the selection measure as new seed points and aggregate members
are selected. It can, thus, be implemented efficiently by pre-sorting the current iter-
ate vector xi at the beginning of the aggregation routine. Note also that new seed
points can be chosen that are immediately adjacent to existing aggregates. It may
appear that spreading out seed points somewhat more could be beneficial in terms of
complexity of the resulting algorithm. However, while this may indeed benefit prob-
lems with a regular geometric structure, it is not so clear why this would matter for
unstructured problems in a general algebraic sense, and it would be more expensive.
The numerical tests reported below indicate that the strategy described above works
well for the unstructured problems we target, with satisfactory complexity.

We summarize this section by saying that the justification for our strength-based
MAA algorithm is closely related to the general ideas behind the AMG approach.
The main difference is that a multiplicative error equation has to be considered, in
which the problem matrix is column-scaled with the current iterate. It is crucial to
use this scaled problem matrix both for building the coarse-grid operators and for
determining the aggregates based on strength of connection. Forming the coarse-grid
operator using the scaled problem matrix dates back to [5, 6] and has been proposed
before in a multigrid context (e.g., in [18, 19, 20, 21]), but forming the aggregates
based on strength in the scaled problem matrix is new, and is the main algorithmic
contribution of our paper.

The performance of the MAA method employing this agglomeration strategy is
examined in the next section for a small model problem, and in Section 4 for large
unstructured problems related to ranking of web pages.

2.7. Example of strength-based aggregation. To provide further support
for the use of the strength notion that was proposed above, we analyze a small but
illuminating test problem, complemented with numerical performance results.

Fig. 2.2 shows a graphical representation of a small, five-node Markov chain gen-

11

100000
2 3 4 51

101 1 100

Fig. 2.2. Graphical representation of a Markov chain generated by a linear undirected graph
with weighted edges. The weights determine the transition probabilities. For example, the transition
probabilities from state 2 are 101

102
(to state 1) and 1

102
(to state 3). The weakest link is indicated

by a dashed line. Aggregation using our strength-based aggregation approach applied to the scaled
problem matrix, A diag(xi), results in the aggregates shown. The weak link occurs between the two
aggregates.

100000
2 3 4 51

101 1 100

Fig. 2.3. The Markov chain of Fig. 2.2, with aggregates formed by applying our strength-based
aggregation approach to the unscaled problem matrix, A. The weak link is now contained inside the
first aggregate.

erated by a linear undirected graph with weighted edges. The weights determine the
transition probabilities. For example, the transition probabilities from state 2 are 101

102
(to state 1) and 1

102 (to state 3). The resulting Markov problem matrix, A, is given
by

A =

1
−101

102
0 0 0

-1 1
−1

101
0 0

0
−1

102
1

−100

100100
0

0 0
−100

101
1 -1

0 0 0
−100000

100100
1

. (2.29)

It is easy to see that the stationary probability vector for this problem is proportional
to a vector, x̂, which has the sums of the edge weights incident to the nodes as its
components:

x̂ = [101 102 101 100100 100000]. (2.30)

12

The column-scaled Markov matrix, Adiag(x), is thus proportional to

101 -101 0 0 0

-101 102 −1 0 0

0 −1 101 -100 0

0 0 −100 100100 -100000

0 0 0 -100000 100000

. (2.31)

We now proceed with determining strength-based aggregates in two ways, first
using strength in the scaled matrix in (2.31), which is the approach proposed in
Section 2.6, and then using the alternative of basing strength on the unscaled matrix
in (2.29).

The strong connections in the column-scaled matrix are indicated by the boxed
matrix elements in (2.31) (we use strength threshold θ = 0.8 here). Sufficiently close
to convergence, the seed points for the aggregation algorithm of Section 2.6 are chosen
based on the size of the components of x̂; see (2.30). This means that state 4 is chosen
as the first seed point. State 4 strongly influences states 3 and 5 (see column 4 of
matrix (2.31)), and the first aggregate thus consists of states 3, 4 and 5. The next
available seed point is state 2, which is subsequently aggregated with state 1. The
resulting aggregates are depicted in Figure 2.2. Note that the weakest link, with
weight 1, occurs between the two aggregates.

If, alternatively, aggregation is based on strength in the unscaled matrix in (2.29),
then different aggregates result. Row 3 of matrix (2.29) shows that the link from state
2, with weight 1, is now considered the strong link into state 3, while the link from
state 4, with weight 100, is considered weak. This means that the first seed point,
state 4, is aggregated with state 5, and the second seed point, state 2, is aggregated
with states 1 and 3, resulting in the aggregates shown in Fig. 2.3. Note that the
weakest link, with weight 1, is now located inside the first aggregate.

Table 2.1 shows convergence results for the two-level MAA algorithm of Section
2.3, applied to this test problem, for the two different ways of forming the aggregates.
We use one pre-relaxation and one post-relaxation in each cycle, WJAC relaxation
with weight w = 0.7, agglomeration strength threshold θ = 0.8, and a direct solve on
the coarse grid. In table 2.1, it is the number of two-level MAA iterations required
to reduce the 1-norm of the error by a factor 10−5, and γ is the convergence factor
of the final two-level MAA cycle, i.e., the rate by which the 1-norm of the error is
reduced in that cycle.

scaled strength unscaled strength
γ it γ it

0.16 6 0.98 332
Table 2.1

Convergence results for the two-level MAA algorithm applied to the 5-node test problem, for
two different ways of forming the aggregates: the aggregates of Fig. 2.2, determined using strength
in the scaled Markov matrix, A diag(x), and the aggregates of Fig. 2.3, determined using strength
in the unscaled Markov matrix, A.

13

The first part of the table gives the results for the case where we form aggregates
based on the scaled problem matrix, Adiag(x), using the strong connections of (2.31)
and resulting in the aggregates of Fig. 2.2. For this type of aggregation, convergence
of the two-level method is fast.

The second part of the table gives the results for the case where we form aggregates
based on the unscaled problem matrix, A, using the strong connections of (2.29) and
resulting in the aggregates of Fig. 2.3. The convergence results show that this leads
to very poor convergence. The reason is that, for this choice of aggregates, the weak
link is contained within an aggregate. It can be understood intuitively why this leads
to poor convergence: differences in the error in states 2 and 3 cannot be balanced out
efficiently by relaxation because the link between states 2 and 3 is weak compared to
the other links, and they can also not be smoothed out by the multiplicative coarse
grid correction, which corrects all states of an aggregate with the same multiplicative
factor. Note that relaxation alone also converges very slowly for this problem (the
second largest eigenvalue of B ≈ 0.995).

The main conclusion to be drawn from this example is that strength in the un-
scaled, original Markov matrix may give a false indication of weak and strong links,
which may lead to the aggregation of states that are weakly connected and result in
very poor convergence of the multilevel method. This simple example thus comple-
ments the heuristic reasoning presented in Section 2.6, which indicates that strength
in the scaled problem matrix, Adiag(xi), is the appropriate notion of strength to be
used in the aggregation procedure. This example also illustrates that it is crucial to
take into account the strength of the links for aggregation, and that aggregation that
would just be based on nearest-neighbour topology of the Markov chain may lead to
very poor convergence. If a Markov chain has a regular structure and one knows in
advance where the weak links are located in the chain, one can, of course, also attempt
to choose aggregates by hand such that no aggregate contains weak links internally,
which would lead to fast convergence. The point is, however, that the strength-based
algebraic aggregation procedure is able to do this automatically and at all recursive
levels, and also for unstructured chains. Note also that, for simplicity, we gave an
example here that consists of a linear chain with symmetric weigths, but similar ex-
amples can be constructed easily for chains with more general connectivity and with
directed links.

It is interesting to point out an alternative interpretation of the Markov problem
of Fig. 2.2. Consider a diffusion problem modeled by differential equation

(η(x) y′(x))′ = 0, (2.32)

with homogeneous Neumann boundary conditions (i.e., y′(x) = 0 at the left and right
boundaries). This problem applies to Fig. 2.2 if one allows the diffusion coefficient,
η(x), to be discontinuous. Assume a unit distance between nodes in Fig. 2.2, ∆x =
1, and assume that η(x) takes on the values of the weights indicated in Fig. 2.2
between the nodes. Discretizing differential equation (2.32) using standard central
finite differences then leads to linear problem

M y = 0, (2.33)

where y is the vector with discrete unknowns, and M is precisely the scaled Markov
matrix (2.31). For example, the third row of the system is obtained from 1 (y3 −
y2)− 100 (y4− y3) = 0. The solution of the Neumann differential equation problem is
any vector proportional to the unit vector, y = 1. It is well-known that AMG works

14

well for linear system (2.33), with row-based strength determined by matrix (2.31)
[3, 4, 29].

Moreover, the Neumann problem is also related to the unscaled Markov matrix,
A, by a simple diagonal scaling. Indeed, decomposing M into its diagonal and of-
diagonal parts as M = D − L− U , we can rewrite (2.33) as

(M D−1)D y = 0 or (M D−1)x = 0, (2.34)

with x = D y. The scaled Neumann matrix, M D−1, then precisely equals the un-
scaled Markov matrix, A (2.29), and, as before, the solution of (2.34) is any vector
proportional to D y = D 1 = x̂, with x̂ as defined in (2.30). While AMG is known
to work well on the original Neumann problem, (2.33), it does generally not work
well on the scaled Neumann problem, (2.34), because the scaling may introduce a
false sense of strong connections. Entirely in the same way, strength based on the
scaled Markov matrix, Adiag(xi), leads to good convergence for the MAA method,
while strength based on the original Markov matrix, A, may lead to poor convergence
because matrix A may convey a false sense of strong connections.

2.8. Relation to adaptive AMG and adaptive SA. Our MAA algorithm is
similar in several respects to the original adaptive AMG scheme (now referred to as
aAMG) developed in the early stages of the AMG project [3]. The original aAMG
approach was based on three fundamental components: Gauss-Seidel relaxation ap-
plied to the fine-level homogeneous problem, Ax = 0; a rescaling of A by the current
approximation, x, according to A ← diag(x)1/2 Adiag(x)1/2, where diag(x) is the
diagonal matrix with entries xj ; and a standard AMG formulation of the coarse-grid
correction equation. This is similar to the MAA approach because: the scaling in
effect amounts to multiplicative correction; it is adaptive in that the aim is to com-
pute a vector in the (near) null space of A; it takes the scaled matrix into account in
the coarsening process; and it is a true multilevel process because this approach was
used on all levels. It differs, however, in that the adaptive AMG scheme was applied
primarily to real, symmetric positive definite matrices and the coarsening strategy
was of AMG type, as opposed to agglomeration type.

The current adaptive smoothed aggregation (aSA) and aAMG methodologies (see
[1] and [2], respectively) have been extended in several respects from the early aAMG
schemes. This extension is most evident in aSA, where several representative compo-
nents of the (near) null space of A are computed. This allows the adaptive approach
to handle more complicated systems of partial differential equations (PDEs), such as
those that arise in structural mechanics. Treating multiple components is a delicate
process in this methodology because many aspects of the approach must be care-
fully considered. Critical aspects include a clear articulation of what constitutes a
representative component, mechanisms to prevent global and local redundancy, and
procedures for improving the quality of these components. Such a development in the
AMG context has been longer in the making because these issues are not as natural
as they are in an aggregation setting.

3. Regularization of the web matrix for page ranking. Let G be the
column-based adjacency matrix describing links between web pages, i.e., gij = 1 if
page j contains a link to page i, and gij = 0 otherwise. Assume that G is derived
from a single breadth-first ‘webcrawl’ that recursively visits the first n pages that are
reached from a root page. This link structure can be used to determine an importance
ranking of the web pages as follows. For simplicity, first assume that every page

15

has at least one outlink (there are no dangling nodes), or, equivalently, that every
column of G has at least one non-zero element. Also, we make the usual assumption
throughout the remainder of this paper that self-links are not considered in the original
G, although they may be introduced via one of the regularizations discussed below,
or into agglomerated equations on coarse levels. Let

B = N(G), (3.1)

where normalization operator N(.) is now applied to every column of its matrix ar-
gument. Consider a ‘random surfer’ who starts from an arbitrary page and wanders
through the network by each time following outlinks with equal probability from the
page he resides on. The random surfer basically performs a random walk on the
directed graph induced by the link structure. The transition probabilities are given
by the columns of B, and, if B is irreducible and a-periodic, a stationary probability
distribution x will ultimately be approached that satisfies

B x = x. (3.2)

This stationary probability density can be used to rank the web pages by importance.
One of the crucial properties of rankings defined by this kind of mechanism is that
the resulting rankings are robust against ‘spamming’ [23, 25].

There are, however, several problems with the general applicability of this ap-
proach. The web matrix, G, may have dangling nodes, and may in general not lead
to an irreducible and/or a-periodic stochastic matrix B. The link structure has to
be regularized in some way before the stationary probability problem (3.2) can be
formulated in a well-posed manner. In the following subsections, we describe a few
possible regularizations. The first is the well-known PageRank regularization, and the
other two are alternatives we introduce here.

(a) (b) (c)

Fig. 3.1. Example of PageRank regularization. (a) Original, reducible graph. (b) Links from
dangling nodes to all other nodes are added with probability 1/n (dotted lines). (c) Links from all
nodes to all nodes are added with coupling factor α (dashed lines).

3.1. PageRank regularization. The PageRank algorithm that is employed by
the Google search engine regularizes the link structure as follows (Fig. 3.1). First,
the dangling nodes are treated by linking them with all other nodes. Dangling node
vector d is introduced, which is 1 for every dangling node and 0 otherwise. This
ensures that N(G + d ǫ

T) is a stochastic matrix. Second, this stochastic matrix can
be made irreducible and a-periodic by adding links from all nodes to all nodes that
are to be followed with a small probability, α. The PageRank regularized matrix,

16

BPR, is then given by

BPR = (1 − α)N(G + ǫdT) + α N(ǫ ǫ
T). (3.3)

We call α the coupling factor of the regularization. A value of α = 0.15 is reported
to normally be used for the PageRank algorithm.

(a) (b)

Fig. 3.2. Example of BackLink regularization. (a) Original, reducible graph. (b) Links from
all nodes to the root node are added with coupling factor α, and selflinks with strength δ (dashed
lines).

3.2. Backlink to the root page. A first alternative way to deal with dangling
nodes and reducibility is to add a backlink from every page to the root page of
the crawl, with a small coupling probability, α (Fig. 3.2). This, however, does not
necessarily make the resulting matrix a-periodic. A-periodicity can be enforced by
adding self-links with a small probability, δ. In our numerical tests, we choose δ =
10−12. Note that this addition does not change the stationary probability vector. In
fact, while it guarantees convergence of the Power method without damping, it is not
needed for convergence of weighted relaxation methods and the MAA method. We
add it here merely because it allows the ‘random surfer’ in our web ranking analogy
to converge to the stationary probability vector. The resulting BackLink regularized
matrix, BBL, is given by

BBL = N((1− α− δ)N(G) + α ǫ
(1)

ǫ
T + δ I). (3.4)

Here, ǫ
(1) = [1, 0, . . . , 0]T , and we have assumed that the root page of the crawl is

the first page in the page numbering. Note that this regularization adds global links,
but only a relatively small amount of them, and all to the same target. Note also that
the normalization operator N(.) is now used in a generalized way, in the sense that
columns of its matrix argument that are identically zero remain unchanged under the
action of N(.). The second, outer normalization N(.) is needed to deal correctly with
dangling nodes.

3.3. Adding local backlinks. A second alternative way for dealing with dan-
gling nodes and reducibility is to add backlinks to the pages from which links originate,
with a small coupling probability, α (Fig. 3.3). This is a crude model for the use of the
back button by actual web surfers. Again, this does not necessarily make the resulting
matrix a-periodic, but a-periodicity can again be enforced by adding self-links with a
small probability, δ. This results in what we call the BackButton regularized matrix
BBB:

BBB = N((1 − α− δ)N(G) + α N(GT) + δ I). (3.5)

Note that regularization (3.5) only adds local links.

17

(b)(a)

Fig. 3.3. Example of BackButton regularization. (a) Original, reducible graph. (b) Reverse
links are added for all links with coupling factor α, and selflinks with strength δ (dashed lines).

3.4. Second eigenvalue of the regularized matrices. The asymptotic con-
vergence factor (i.e., the asymptotic error reduction factor per iteration) of the Power
method is bounded by the modulus of the second eigenvalue of B. It can be shown
that the second eigenvalue of BPR satisfies |λ2| ≤ 1 − α, with equality holding when
there are at least two irreducible closed subsets in N(G + edT) [27, 26]. One of the
advantages of the PageRank regularization is that the Power method converges with
asymptotic convergence factor smaller than 1 − α, independent of the problem size,
n. Fig. 3.4 shows the modulus of the second eigenvalue of the three different regular-
izations of the web matrix, for various problem sizes from n = 250 to n = 4000, and
for coupling factors α = 0.15 and α = 0.01.

The test problems were generated as subsets of a standard set of real web data,
namely, the Stanford Web Matrix with 281903 pages and approximately 2.3 million
links, which was gathered in a September 2002 crawl [28]. We reordered the Stan-
ford web matrix such that the page numbering reflects a breadth-first crawl from a
root page. After reordering in this way, well-defined subproblems of any size can be
obtained by taking appropriate submatrices.

The plots confirm that, for BPR, |λ2| = 1−α independent of n, for n sufficiently
large. The same can be observed for the BBL regularization. However, the BBB

regularization, which is achieved by adding only local backlinks, behaves differently:
|λ2| is much closer to 1 than 1 − α, appearing to approach 1 as n increases. This is
further investigated in Fig. 3.5, for α = 0.15 and larger problem sizes. Fig. 3.5(b)
indicates that λ2 ≈ 1 − O(1/n), with fitted slope ≈ −1.0480 in the log− log plot.
This means that slow convergence of the Power method can be expected for the BBB

regularization, with convergence speed decreasing as n grows. This could be expected,
due to the local link structure of the BBB regularization, but it is somewhat surprising
that the slope in Fig. 3.5(b) is so close to linear, because changes in submatrix size for
the subproblems of the Stanford web matrix may go along with significant changes in
topology, in addition to the effect of the change in size.

3.5. Efficient implementation of the MAA method for the PageRank

regularization. One of the disadvantages of the PageRank regularization is that
BPR loses its sparsity due to the addition of the all-to-all connections. However, this
need not lead to increased computational complexity in the MAA algorithm, because
one can keep the additional terms separate on all recursive levels. For the PageRank
and BackLink regularizations, matrix A in Ax = 0 can be written as

A = Asparse + h fT , (3.6)

18

0 500 1000 1500 2000 2500 3000 3500 4000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

n

|λ
2|

(a) PageRank

0 500 1000 1500 2000 2500 3000 3500 4000
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

n

|λ
2|

(b) BackLink

0 500 1000 1500 2000 2500 3000 3500 4000
0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

n

|λ
2|

(c) BackButton

Fig. 3.4. Modulus of the second eigenvalue, λ2, for the three types of web matrix regularization
as a function of problem size n, for coupling factors α = 0.15 (*) and α = 0.01 (o).

19

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

n

|λ
2|

(a)

10
3

10
4

10
5

10
−4

10
−3

10
−2

log(n)

lo
g(

1−
|λ

2|)

(b)

Fig. 3.5. Modulus of the second eigenvalue, λ2, for the BackButton regularization as a function
of problem size n, for coupling factor α = 0.15. The log− log plot (fitted slope ≈ −1.0480) indicates
that 1 − |λ2| ≈ O(1/n).

with h and f the column vectors that define the rank-one update to the sparse part
of the matrix, Asparse. The coarse operator matrix is then given by

Ac = Asparse,c + hc fT
c , (3.7)

with

Asparse,c = PT Asparse diag(x)P diag(PT x)−1, (3.8)

hc = PT h, (3.9)

and

fT
c = fT diag(x)P diag(PT x)−1. (3.10)

20

The vectors that define the rank-one update can, thus, be kept separate on all coarse
levels. Moreover, presence of the rank-one update does not preclude GS or JAC re-
laxation sweeps with O(n) complexity, because the relaxation implementations can
easily be modified such that O(n) complexity is retained. With respect to agglomera-
tion, we found that satisfactory results can be obtained for the MAA method by only
considering the sparse part of A for strength matrix calculation and agglomeration
on all levels, and the numerical results reported below use this simplification.

3.6. Symmetrization for the regularized problem. It is interesting to point
out the following symmetrization for the regularized problem. Let B be column-
stochastic and irreducible, and let x, with components xi > 0 ∀i, be the unique
stationary probability vector of B. Assume that web surfers are allowed to follow
links back with probabilities based on where they were likely to have come from.
The column-stochastic matrix that describes the probabilities of following backlinks
is given by

diag(x)BT diag(x)−1. (3.11)

If backlinks are followed with probability α, then

Bα = (1 − α)B + α diag(x)BT diag(x)−1 (3.12)

gives the transition matrix for the resulting Markov chain.
Interestingly, the stationary probability vector, x, of B is also a stationary prob-

ability vector of Bα, for any α, as can be verified easily. Moreover, for α = 1/2,

C := B1/2 diag(x) =
1

2
B diag(x) +

1

2
diag(x)BT , (3.13)

and, thus,

C = CT . (3.14)

It may be possible to exploit the symmetry of C in iterative algorithms for calculat-
ing the stationary probability vector of Markov chains, as it may be expected that
algorithms like MAA can be made to perform better when problem matrices are
symmetric. This will be explored in future work.

4. Performance of MAA and WJAC for page ranking. In this section we
study the performance of the MAA method for the three types of stochastic matrices
that provide models for web page ranking that were discussed in Sec. 3. The MAA
performance results are compared with the fine-grid WJAC method. For all MAA
tests, we use V(1,1) cycles (with one pre-relaxation and one post-relaxation), WJAC
relaxation with weight w = 0.8, agglomeration strength threshold θ = 0.8, and a
direct solve on the final coarse grid with size less than 20 states. For the various test
problems, we perform MAA cycles until the error is reduced by a factor 10−5. The
error is calculated as the 1-norm of the difference between the current iterate and a
highly accurate numerical approximation to the exact solution of B x = x. All errors
and convergence factors are measured in the 1-norm. For comparison, we perform
WJAC sweeps on the fine grid only, for the same time as the total time of execution
of MAA, or until the error is reduced by a factor 10−5, whichever comes first. The
legend for the tables in this section is as follows:

21

n γMAA itMAA cgrid,MAA γWJAC f
(tot)
MAA−WJAC f

(as)
MAA−WJAC

PageRank, α = 0.15
2000 0.355124 10 1.67 0.815142 1/2.74 1/3.13
4000 0.335889 9 1.67 0.805653 1/2.52 1/3.59
8000 0.387411 9 1.65 0.821903 1/2.79 1/4.14

16000 0.554686 12 1.78 0.836429 1/4.07 1/6.89
32000 0.502008 11 1.83 0.833367 1/3.94 1/6.20
64000 0.508482 11 1.75 0.829696 1/3.86 1/6.21

128000 0.532518 12 1.75 0.829419 1/4.31 1/7.01
PageRank, α = 0.01

2000 0.321062 10 1.77 0.956362 3.42 1.32
4000 0.658754 20 1.75 0.980665 2.16 1.03
8000 0.758825 22 1.65 0.976889 1.88 1/1.65

16000 0.815774 27 1.77 0.979592 1.45 1/2.31
32000 0.797182 29 1.82 0.979881 1.35 1/2.09
64000 0.786973 33 1.79 0.980040 1.19 1/1.96

128000 0.854340 38 1.72 0.980502 1.05 1/2.88
Table 4.1

MAA performance results for the PageRank regularization. For α = 0.15, MAA is 2-4 times
less efficient than WJAC (using the total efficiency measure, f(tot)), and for α = 0.01, MAA is 1-3
times more efficient, depending on the particular problem.

• n: problem size
• γMAA: MAA convergence factor for the final cycle
• itMAA: number of MAA iterations until the error is reduced by a factor

10−5

• cgrid,MAA: MAA grid complexity for the final cycle
• γWJAC : WJAC convergence factor for the final cycle

• f
(tot)
MAA−WJAC : total efficiency factor which measures how much faster MAA

converges than WJAC, for the same amount of work

• f
(as)
MAA−WJAC : asymptotic efficiency factor which measures how much faster

an MAA V-cycle reduces the error than a WJAC sweep, for the same
amount of work

The MAA grid complexity, cgrid,MAA, is defined as the sum of the number of
degrees of freedom on all levels, divided by the number of fine-level degrees of freedom.

The total efficiency factor f
(tot)
MAA−WJAC is defined as

f
(tot)
MAA−WJAC =

log(rMAA)/tMAA

log(rWJAC)/tWJAC
, (4.1)

where rMAA and rWJAC are the factors by which errors are reduced by the MAA
and WJAC methods, respectively, and tMAA and tWJAC are their running times. For
example, when MAA attains an error reduction rMAA = 10−4 in time tMAA = 2,
and WJAC attains rWJAC = 10−1 in time tWJAC = 1, the total efficiency factor

f
(tot)
MAA−WJAC = 2, and MAA can be expected to be approximately twice as effective

as WJAC, because WJAC would have to be executed twice as long as MAA in order
to obtain the same error reduction. The other total efficiency factors in the tables are

22

n γMAA itMAA cgrid,MAA γWJAC f
(tot)
MAA−WJAC f

(as)
MAA−WJAC

BackLink, α = 0.15
2000 0.331226 11 1.67 0.839540 1/3.11 1/3.04
4000 0.344225 11 1.75 0.851397 1/3.30 1/3.18
8000 0.361255 11 1.69 0.858532 1/3.04 1/3.24

16000 0.358282 11 2.03 0.866344 1/3.75 1/4.11
32000 0.369351 11 2.26 0.868116 1/3.99 1/4.39
64000 0.368789 11 1.88 0.868889 1/3.30 1/3.53

128000 0.369744 11 1.78 0.871525 1/3.07 1/3.22
BackLink, α = 0.01

2000 0.452383 16 1.89 0.952865 2.01 1/1.21
4000 0.778003 28 1.76 0.953782 1.41 1/4.23
8000 0.749847 20 1.72 0.970096 2.23 1/2.23

16000 0.745776 23 1.96 0.976919 1.87 1/2.11
32000 0.855323 28 1.93 0.981223 1.66 1/3.04
64000 0.868049 32 1.96 0.983076 1.45 1/3.15

128000 0.837747 31 1.83 0.985161 1.65 1/2.09
Table 4.2

MAA performance results for the BackLink regularization. For α = 0.15, MAA is 3-4 times
less efficient than WJAC, and for α = 0.01, MAA is 1-2 times more efficient, depending on the
particular problem.

n γMAA itMAA cgrid,MAA γWJAC f
(tot)
MAA−WJAC f

(as)
MAA−WJAC

BackButton, α = 0.15
2000 0.746000 35 1.74 0.981331 2.36 1/1.41
4000 0.800454 39 1.64 0.982828 2.70 1/1.36
8000 0.786758 40 1.53 0.992129 3.15 1.17

16000 0.851671 50 1.62 0.992330 3.00 1/1.38
32000 0.988423 214 1.64 0.998366 4.92 1/2.88
64000 0.973611 185 1.59 0.999013 9.95 1.40

128000 0.943160 116 1.55 0.999693 34.64 9.90
BackButton, α = 0.01

2000 0.658032 23 1.68 0.999563 106.02 46.05
4000 0.794123 29 1.71 0.999345 73.02 19.78
8000 0.841182 39 1.70 0.997624 23.49 2.64

16000 0.835592 44 1.78 0.998696 19.72 4.42
32000 0.845457 56 1.83 0.999114 39.58 8.22
64000 0.959561 81 1.75 0.999660 75.05 5.74

128000 0.921870 42 1.70 0.999963 816.62 103.79
Table 4.3

MAA performance results for the BackButton regularization. For α = 0.15, MAA is 2-35 times
more efficient than WJAC, and for α = 0.01, MAA is 20-817 times more efficient, depending on
the particular problem.

calculated in the same way.

23

Similarly, the asymptotic efficiency factor f
(as)
MAA−WJAC is defined as

f
(as)
MAA−WJAC =

log(γMAA)/tMAA

log(γWJAC)/tWJAC
, (4.2)

where γMAA and γWJAC are the asymptotic convergence factors of one MAA V-cycle
and one WJAC sweep, respectively, and tMAA and tWJAC are their running times.

Note that these efficiency measures allow us to compare the real efficiency of the
methods, as they take into account both work (compute time) and error reduction.
The measures may depend somewhat on the implementation of the algorithms, but, for
our results, this influence is likely to be small because the same WJAC implementation
is used in the MAA V-cycles and in the fine-grid WJAC sweeps.

Tables 4.1, 4.2 and 4.3 show numerical performance results for the MAA method
compared with WJAC. Table 4.1 shows that the MAA method converges adequately
for PageRank-normalized test problems of various sizes. Note that the efficiency
factors are presented in the tables in the following format: f (tot) = 3.42, for example,
means that MAA is 3.42 times more efficient than WJAC, while f (tot)=1/2.74 means
that MAA is 2.74 times less efficient than WJAC. For α = 0.15, MAA is less efficient
than WJAC, but MAA is more efficient than WJAC for α = 0.01. This is as expected:
the numerical results indicate that WJAC convergence factors are bounded by 1−α.
For α = 0.15, WJAC, thus, converges fast. MAA cycles are much more expensive than
WJAC cycles (by a factor of about 20 to 30), and the improved MAA convergence
factors cannot make up for this cost increase in this case. For α = 0.01, however,
WJAC converges more slowly and, in this case, it pays to use MAA. Note that for
PageRank regularization the MAA advantage appears to diminish for growing problem
size. Note also that the total and asymptotic efficiency factors, f (tot) and f (as),
may differ significantly. This is because, during the first few iterations, convergence
factors may differ substantially from their asymptotic values. It appears that, during
this initial transitional phase, MAA normally converges faster than WJAC, relative
to the asymptotic convergence factors, and this effect is accumulated in the total
efficiency factors, which are generally greater than the asymptotic efficiency factors.
The BackLink results in Table 4.2 show a pattern similar to the PageRank results in
Table 4.1 (WJAC convergence factors are bounded by 1−α for the BackLink case as
well).

MAA results for the BackButton regularization are more interesting, however
(see Table 4.3). For this problem type, MAA shows very large improvements over
WJAC: MAA is 2 to 35 times more efficient than WJAC for α = 0.15, and 20 to
817 times more efficient for α = 0.01. Again, we see that convergence factors and
grid complexities are well-behaved. The number of iterations required to reach the
relative error tolerance shows some erratic behavior. This is likely due to the fact
that increasing problem size in Table 4.3 does not merely reflect a change in size,
but also may involve significant changes in link topology. Indeed, the problems are
nested and the larger problems, thus, contain all smaller problems, but each increase
in size may change the global link topology significantly. This can be observed when
looking at spy plots of the problem matrices, which show several localized structures
of various types that appear as the problems become larger. For instance, groups
of pages that are cross-linked or that all link back to a master page are common
in web datasets, and may show several levels of nesting. Also, it is interesting to
see that the BackButton problems with smaller α appear easier for MAA than the
problems with larger α, while this is not so for WJAC or for MAA applied to the

24

other two regularizations. An explanation may lie in the fact that the BackButton
regularization does not add global links and that, for α = 0.01, a larger fraction of
the probability resides in the dangling nodes and clusters of the original matrix for
the BackButton case than for the other regularizations (see below), but this remains
puzzling. Overall, it appears that MAA is far superior to WJAC for this problem
type, for which the second eigenvalue of the problem matrix λ2 ≈ 1−O(1/n).

The differences in performance of MAA and WJAC for the various web matrix
regularizations can also be understood intuitively as follows. Global links are added
in the PageRank and BackLink regularizations, and the resulting Markov chains have
global links on all scales. These global links enable traditional single-level iterative
methods like WJAC to be effective, so that the multiple levels employed by the MAA
algorithm do not lead to a significant advantage. The BackButton regularization,
however, adds only local backlinks, and the lack of global links means that single-
level iterative methods are not effective. The multilevel nature of the MAA method
allows us to bridge the scales for these types of problems, resulting in dramatic gains
in performance.

It is also interesting to compare the convergence rates of Tables 4.1–4.3 to the
rates that are typically obtained for AMG applied to standard elliptic PDEs. It is
fair to say that the MAA rates we obtain are poorer than what AMG achieves for
basic two- and three-dimensional elliptic test problems, for which convergence rates
as low as 0.1 can be obtained. The MAA rates we obtain for these web ranking
problems also appear less scalable than typical AMG results for elliptic PDEs. This
is not unexpected, as the web ranking problems do not have the clear elliptic nature
that allows optimal AMG convergence, and also because we use piecewise-constant
interpolation. While the results in Table 4.3 clearly show that MAA is far superior
to WJAC for the problem type considered there, it is also clear that there may still
be room for improvement of our algorithm, and future work will include exploration
of more accurate interpolation.

5. Comparison of web matrix regularizations as a function of coupling

factor α. It is interesting to compare the behavior of the three different regulariza-
tions of the web matrix as a function of the coupling factor α. Intuitively, the ranking
would seem to be more realistic when the ‘artificial’ coupling factor is small, and
1−α approaches 1. Fig. 5.1 shows web page rankings for a problem with n = 20, 000,
calculated using the three regularizations for varying coupling factor, α.

Several interesting effects can be noted. First, it turns out that BBL is not a
very good choice for web matrix regularization. All backlinks end in the root page
of the crawl, which results in too much probability being assigned to this root page.
As shown in Fig. 5.2, the root page gets assigned an unrealistically large probability
for almost all values of α. (Fig. 5.1(b) is a detail of Fig. 5.2.) Also, pages that are
close to the root page in the downstream direction inherit some of the root’s inflated
pagerank. It is thus clear that links to the root page create an unrealistic asymmetric
bias in the page ranking. We therefore do not discuss this regularization further.

Second, it turns out that it may not be such a good idea to take α very close
to 0. For the PageRank regularization, some pages acquire spurious probability as α
approaches 0. These are not the dangling nodes, which remain connected to all other
nodes as the coupling factor α approaches 0. They are clusters of nodes that could be
called ‘dangling clusters’ (irreducible closed subsets), which act as probability sinks.
Fig. 5.1(a) shows that these probability sink clusters start to dominate for small α,
as they remove all of the probability from the other nodes. It is clear that this is

25

0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1−α

x

(a) PageRank

0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1−α

x

(b) BackLink

0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1−α

x

(c) BackButton

Fig. 5.1. Stationary probability vector as a function of 1 − α. The pages with the five largest
PageRanks for α = 0.15 are indicated by the following symbols: o, ×, *, �, ∇. Note that the five
pages with largest PageRank do not receive a high ranking for the BackLink regularization. They do
receive a high ranking for the BackButton regularization, but only when 1−α is far enough removed
from 1. Note also that, for PageRank, the relative ranking of the five highest pages changes as α
changes.

26

undesirable, so it seems wise not to take α too close to 0.

For the BackButton regularization, this probability sink problem is present as
well. The probability sinks now include all of the irreducible closed subsets of the
original web matrix, G, including the dangling nodes. Moreover, the probability starts
to sink to the dangling nodes and clusters for values of α that are much further away
from 0 than for PageRank, because the backlinks only redirect probability locally
Fig. 5.1(c) shows that unimportant pages, related to dangling nodes and clusters,
clutter the ranking of important pages for a large range of α values (e.g., α = 0.15).
This problem only appears for α much closer to 0 for the PageRank normalization
(Fig. 5.1(a)). It seems, thus, that PageRank’s global redistribution of probability is
a better way to mitigate the problem of probability sinks than BackButton’s local
redistribution.

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1−α

x

BackLink

Fig. 5.2. Stationary probability vector as a function of 1 − α for the BackLink regularization.
The root page obtains by far the largest part of the probability, except when 1−α approaches 1. Fig.
5.1(b) zooms in on the lower part of this plot.

6. Conclusion. We have presented the Multilevel Adaptive Aggregation (MAA)
method for calculating the stationary probability vector of an irreducible stochastic
matrix. The method uses the same agglomeration equations as iterative aggrega-
tion/disaggregation methods for Markov chains, but the agglomeration procedure we
propose is new because it is based on strength of connection in a problem matrix
with columns scaled by the current iterate. The MAA method is fully adaptive, with
optimized aggregates chosen in each step of the iteration and at all recursive levels.
As such, the method is closely related to adaptive smoothed aggregation and adaptive
algebraic multigrid methods for sparse linear systems.

We have applied the MAA method to a set of stochastic matrices that provide
models for web page ranking. In our numerical results, we compared three regular-
izations of the web matrix that can be used to calculate a ranking of web pages. The
PageRank regularization with α not too close to 0 (e.g., α = 0.15) seems to be the
best regularization of the web graph for page ranking purposes of the three regular-
izations we tested. The value of α = 0.15 seems to be a good choice for two reasons:
it mitigates the probability sink problem without diffusing probability differences too

27

much, and it allows for fast convergence of the Power method.
It was shown that MAA can be more efficient than the Power or Weighted Jacobi

methods by very large factors for Markov chains for which the modulus of the second
largest eigenvalue, |λ2|, is close to 1, and especially when |λ2(n)| → 1 for large n.
When |λ2| is constant in n and significantly smaller than 1, WJAC outperforms the
MAA method presented. It may be possible to improve the aggregation strategy, but
it is probably hard to find an adaptive aggregation strategy that would make MAA
more efficient than WJAC for problems of this kind. For example, for the PageRank-
regularized matrix BPR with α = 0.15, the convergence factor γWJAC ≈ 0.85. It is
fair to expect that MAA-like algorithms will always require the equivalent of at least
10, and probably rather 20, fine-level WJAC sweeps per V-cycle. That means that the
MAA convergence factor has to be smaller than 0.8510 ≈ 0.2, in order for the MAA
approach to become competitive with WJAC. This advantage must be maintained
on parallel computers, which is difficult for large numbers of processors. AMG can
achieve convergence factors of 0.1 for some problems, but it may be hard to develop
an MAA method that can consistently achieve convergence factors of around 0.1 for
general irreducible Markov chains, or for the subclass of general PageRank matrices
(which in itself is a subclass of the Markov chains that have |λ2| bounded away from
1). However, MAA can be expected to achieve results far superior to the WJAC and
Power methods for general Markov chains that have |λ2(n)| → 1 for large n. This was
demonstrated for a regularization of the web graph that adds local backlinks with a
small coupling probability.

In future work we plan to refine the strength-based adaptive agglomeration ap-
proach introduced in this paper. In particular, we want to investigate more system-
atically how it performs for general Markov matrices for which the second eigenvalue
approaches one, and we intend to explore theoretically the convergence properties of
the MAA method for general Markov chains. While we have shown in this paper
that order of magnitude speedups can be achieved for certain Markov chain problems
compared to traditional one-level iterative methods, it may be possible to improve
the convergence rates and scalability of the algorithm, perhaps by considering non-
constant interpolation.

Future work will also include parallelization of the MAA method. Efficient par-
allelizations of AMG methods exist that are nearly linearly scalable up to very large
problem sizes with billions of unknowns on parallel computers with thousands of pro-
cessors [22]. Many components of these existing parallel AMG implementations can
be reused for parallelization of the MAA method. The WJAC relaxation used in this
paper is fully parallelizable, but a parallel version of the MAA aggregation procedure
needs to be developed.

28

REFERENCES

[1] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive smoothed aggregation (aSA) multigrid, SIAM Review 47:317-346, 2005.

[2] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive algebraic multigrid, SIAM J. Sci. Comp. 27:1261-1286, 2006.

[3] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix
equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, 1984.

[4] J. Ruge, Algebraic multigrid (AMG) for geodetic survey problems, in Proceedings of the In-
ternational Multigrid Conference, Copper Mountain, CO, 1983.

[5] H.A. Simon and A. Ando, Aggregation of variables in dynamic systems, Econometrica 29:111-
138, 1961.

[6] Yukio Takahashi, A lumping method for numerical calculations of stationary distributions
of Markov chains, Research Report B-18, Department of Information Sciences, Tokyo
Institute of Technology, 1975.

[7] J.R. Koury, D.F. McAllister, and William J. Stewart, Iterative Methods for Comput-
ing Stationary Distributions of Nearly Completely Decomposable Markov Chains, SIAM
Journal of Algebraic and Discrete Methods 5:164-186, 1984.

[8] William J. Stewart and W.L. Cao, Iterative Aggregation/Disaggregation Techniques for
Nearly Uncoupled Markov Chains, Journal of the ACM 32:702-719, 1985.

[9] Paul J. Schweitzer and Kyle W. Kindle, An iterative aggregation-disaggregation algorithm
for solving linear equations, Applied Mathematics and Computation 18:313-354, 1986.

[10] U. R. Krieger, B. Mller-Clostermann, and M. Sczittnick, Modeling and Analysis of
Communication Systems Based on Computational Methods For Markov Chains, IEEE
Journal on Selected Areas in Communication, 8-9:1630-1648, 1990.

[11] William J. Stewart, An Introduction to the Numerical Solution of Markov Chains, Princeton
University Press, Princeton, 1994.

[12] U. R. Krieger, On a two-level multigrid solution method for finite Markov chains, Linear
Algebra and its Applications 223/224:415-438, 1995.

[13] Ivo Marek and Petr Mayer, Convergence analysis of an iterative aggregation/disaggregation
method for computing stationary probability vectors of stochastic matrices, Numerical Lin-
ear Algebra with Applications 5:253-274, 1998.

[14] Tuugrul Dayar and William J. Stewart, Comparison of Partitioning Techniques for Two-
Level Iterative Solvers on Large, Sparse Markov Chains, SIAM J. Sci. Comput. 21:1691,
2000.

[15] Ivo Marek and Petr Mayer, Convergence theory of some classes of iterative aggrega-
tion/disaggregation methods for computing stationary probability vectors of stochastic ma-
trices, Linear Algebra and its Applications 363:177-200, 2003.

[16] Amy N. Langville and Carl D. Meyer, Updating the Stationary Vector of an Irreducible
Markov Chain with an Eye on Google’s PageRank, SIAM Journal on Matrix Analysis
27:968-987, 2005.

[17] Yangbo Zhu, Shaozhi Ye, and Xing Li, Distributed PageRank computation based on iterative
aggregation-disaggregation methods, Proceedings of the 14th ACM international conference
on Information and knowledge management, 578-585, 2005.

[18] Graham Horton and Scott T. Leutenegger, A Multi-Level Solution Algorithm for Steady-
State Markov Chains, ACM SIGMETRICS, 191-200, 1994.

[19] Scott T. Leutenegger and Graham Horton, On the Utility of the Multi-Level Algorithm
for the Solution of Nearly Completely Decomposable Markov Chains, In W. Stewart, ed.,
Numerical solution of Markov chains, Kluwer Publishers, 425-443, 1995.

[20] U. R. Krieger, Numerical solution of large finite Markov chains by algebraic multigrid tech-
niques, in W. Stewart, ed., Numerical solution of Markov chains, Kluwer Publishers, 403-
424, 1995.

[21] Claudia Isensee and Graham Horton, A Multi-Level Method for the Steady State Solution
of Markov Chains, Simulation und Visualisierung, SCS European Publishing House, 2004.

[22] Hans De Sterck, Ulrike Meier Yang, and Jeffrey J. Heys, Reducing Complexity in Paral-
lel Algebraic Multigrid Preconditioners, SIAM Journal on Matrix Analysis and Applications
27:1019-1039, 2006.

[23] L. Page, S. Brin, R. Motwani and T. Winograd, The PageRank Citation Ranking: Bringing
Order to the Web, Technical Report 1999-0120, Computer Science Department, Stanford,
1999.

[24] Sergey Brin and Lawrence Page, The Anatomy of a Large-Scale Hypertextual Web Search

29

Engine, Computer Networks and ISDN Systems 33:107-117, 1998.
[25] Amy N. Langville and Carl D. Meyer, A Survey of Eigenvector Methods of Web Informa-

tion Retrieval, SIAM Review 47:135-161, 2005.
[26] Amy N. Langville and Carl D. Meyer, Deeper Inside PageRank, Internet Mathematics

1:335-380, 2005.
[27] Taher H. Haveliwala and Sepandar D. Kamvar, The Second Eigenvalue of the Google

Matrix, Technical Report 2003-0020, Computer Science Department, Stanford, 2003.
[28] Stanford Web Matrix, http://nlp.stanford.edu/∼sdkamvar/data/stanford-web.tar.gz.
[29] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comp. 19:23-56,

1986.
[30] A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick, G. Mi-

randa, and J. Ruge, Robustness and algorithmic scalability of algebraic multigrid (AMG),
SIAM J. Sci. Comp. 21:1886-1908, 2000.

[31] J. Ruge and K. Stueben, Algebraic multigrid, in: S.F. McCormick (Ed.), Multigrid Methods,
Frontiers in Applied Mathematics, vol. 3, SIAM, Philadelphia, PA, 73-130, 1987.

