
CLUSTER NEWTON METHOD FOR SAMPLING MULTIPLE
SOLUTIONS OF UNDERDETERMINED INVERSE PROBLEMS:

APPLICATION TO A PARAMETER IDENTIFICATION PROBLEM
IN PHARMACOKINETICS∗

YASUNORI AOKI† , KEN HAYAMI‡ , HANS DE STERCK § , AND AKIHIKO KONAGAYA ¶

Abstract. A new algorithm is proposed for simultaneously finding multiple solutions of an
underdetermined inverse problem. The algorithm was developed for an ODE parameter identification
problem in pharmacokinetics for which multiple solutions are of interest. The algorithm proceeds by
computing a cluster of solutions simultaneously, and is more efficient than algorithms that compute
multiple solutions one-by-one because it fits the Jacobian in a collective way using a least squares
approach. It is demonstrated numerically that the algorithm finds accurate solutions that are suitably
distributed, guided by a priori information on which part of the solution set is of interest, and that it
does so much more efficiently than a baseline Levenberg-Marquardt method that computes solutions
one-by-one. It is also demonstrated that the algorithm benefits from improved robustness due to an
inherent smoothing provided by the least-squares fitting.

Key words. Inverse Problems, Method of Least Squares, Pharmacokinetics, Underdetermined
Problems

AMS subject classifications. 65L09, 92C45

1. Introduction. Since the information we can obtain clinically from a live pa-
tient going through treatment is often much less extensive than the complexity of
the internal activity in a patient’s body, underdetermined inverse problems naturally
appear in the field of mathematical medicine. Our interest in underdetermined in-
verse problems of this kind was initiated by the parameter identification problem of a
pharmacokinetics model for the anti-cancer drug CPT-11 (also known as Irinotecan)
[2]. This pharmacokinetics model is an ODE-based mathematical model for the trans-
portation, metabolization and excretion of the drug in a human body. In this problem,
a large set of parameters needs to be estimated from a very small number of measure-
ments that correspond to integrated (accumulated) quantities (area-under-the-curve)
at a single final time T. Konagaya has proposed a framework called “virtual patient
population convergence” [14] (see [15] for the English translation), whose essential
idea is to estimate the parameters of a whole body pharmacokinetics model from the
clinically observed patient data. The essential difference of this framework with other
approaches is that instead of finding a single set of parameters that is suitable for
the pharmacokinetics model to reproduce the clinically observed data, its aim is to
find multiple sets of such parameters, because the ranges and extremal values of the
parameters that can be obtained from multiple solutions are of significant value in
the context of the pharmacokinetics problem.

∗This work was supported by the Grant-in-Aid for Scientific Research (C) of the Ministry of
Education, Sports, Science and Technology, Japan, and by the Natural Science and Engineering
Research Council of Canada. This paper is based on technical report [1].
†University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada, N2L 3G1, now

at Uppsala University, Box 591 75124 Uppsala, Sweden, (yaoki@uwaterloo.ca).
‡National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan, 101-8430

(hayami@nii.ac.jp).
§University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada, N2L 3G1

(hdesterck@uwaterloo.ca).
¶Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan, 226-8503

(kona@dis.titech.ac.jp).

1

2 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

For highly underdetermined inverse problems, which may have a large set of exact
solutions for a given right-hand-side, it is customary to add extra constraints to make
the solution unique (e.g., one may seek the solution closest to some initial point, or
one may add regularization terms). If only one of many solutions is considered, it
is often hard to know to which degree the characteristics of that specific solution
are representative of all solutions, and in how much they are a consequence of the
particular choice of the extra constraints. Hence, we wish to sample many solutions
from the solution set of the underdetermined inverse problem for the application at
hand. However, for a problem as complicated as a pharmacokinetics model aiming to
model whole body drug kinetics, even to find one set of model parameters that fits
a clinical observation can be time consuming. Thus, trying to find multiple sets of
model parameters one set by one set can take computational time that is unrealistic
for practical use, if a traditional method like the single-shooting Levenberg-Marquardt
(LM) method is used.

With this motivation, we have constructed an algorithm to simultaneously find
multiple solutions of an underdetermined inverse problem, in a new way that is sig-
nificantly more efficient than solving many separate inverse problems with different
initial iterates, and that benefits from improved robustness. Our iterative scheme
starts with a set (cluster) of initial points and computes the forward problem at each
point. It then fits a hyperplane to the solution values in the sense of least squares
and obtains a linear approximation of the function that corresponds to the forward
problem. This linear approximation aims to approximate the function in the broad
domain covered by the cluster of initial points. Using this single linear approximation
for all cluster points, we collectively move the cluster of points closer to the solution of
the inverse problem in an update step that is similar to a Newton step. By repeating
this iteratively, the cluster of points becomes stationary and the points are close to
being solutions of the inverse problem. In the second stage of our algorithm we use
Broyden’s method to improve the accuracy of the approximate solutions in the clus-
ter by moving each cluster point individually using different approximated Jacobians,
until the desired accuracy is achieved. Throughout this paper, we shall refer to this
method we have constructed as the Cluster Newton method (CN method).

Through numerical experiments, we have found that the Cluster Newton method
requires far less function evaluations than using the LM method to compute multiple
solution points separately starting from different initial iterates. The Cluster New-
ton method is similar to Newton’s method in the sense that it iteratively improves
the approximation by approximating the forward problem by a linear function and
inverting the linear approximation. Aside from moving a cluster of points instead
of a single point, the Cluster Newton method differs from the traditional Newton’s
method in the sense that instead of approximating the Jacobian locally, we estimate
it more globally in the domain covered by the cluster of points. The global approxi-
mation of the Jacobian acts as a regularization and we have observed that the Cluster
Newton algorithm is robust against noise in the function evaluations (e.g., caused
by the inaccuracy of solving the forward problem), compared to a method like LM.
As can be seen in recent works, for example [11, 19, 20], optimization problems and
parameter identification problems with rough functions or noisy data can be challeng-
ing and are of interest to the scientific computing community. Such roughness can
appear in the coefficient identification problem of a system of ODEs when the system
is solved numerically, hence robustness against this type of roughness is important
when identifying the parameters of ODE-based pharmacokinetics models.

CLUSTER NEWTON METHOD 3

In this paper, we demonstrate the effectiveness of the CN method on a simple
model problem in an abstract setting, and on a real highly underdetermined parameter
identification problem from pharmacokinetics for which multiple solutions are of inter-
est [2]. For both problems, we compare the CN method with the LM method, which is
a universal nonlinear solver that can be applied to our problem in a general setting. In
the context of our parameter identification problem, we combine forward ODE solves
with LM in a so-called single-shooting LM approach that obtains solutions one-by-one,
and compare this with the collective CN results. While this provides a baseline com-
parison, it has to be noted that parameter identification methods exist that are more
efficient and more robust than single-shooting LM. These more advanced methods
may combine approaches like multiple shooting and accurate Jacobian computation
via additional ODEs, and may take advantage of the structure of particular ODE sys-
tems, resulting in faster and more robust solution methods than single-shooting LM
[4, 7]. While it may be possible to adapt some of these advanced methods to obtain
solution methods for the problem of finding multiple solutions of underdetermined
inverse problems that are more efficient than computing the solutions one-by-one,
it appears that this has not been done yet. In this paper, we propose a different
and novel approach for this problem based on collectively computing many solutions
by fitting a linear approximation using a least-squares approach. As we will show,
this approach is much more efficient than computing multiple solutions one-by-one
(for example, using LM), and has improved robustness due to an inherent smoothing
provided by the least-squares fitting. Our numerical results demonstrate that the col-
lective CN method is much more efficient than computing solutions one-by-one using
single-shooting LM, and we will argue that the same conclusion is expected to hold
for one-by-one methods that may be faster than single-shooting LM, for the simple
reason that the total number of forward ODEs solved in our collective approach is
much smaller than the number of ODEs that need to be solved in any one-by-one
method. On the other hand, it may be possible to extend our new collective method
using techniques from advanced parameter identification methods like multiple shoot-
ing and statistical analysis, in order to make our new method more robust and more
widely applicable. This is a topic of further research.

1.1. Motivation for seeking multiple solutions of the underdetermined
pharmacokinetics problem. The motivation for seeking multiple solutions instead
of a single solution for the underdetermined inverse problem of parameter identifica-
tion for Arikuma et al.’s pharmacokinetics model for the anti-cancer drug CPT-11 [2]
can be further illustrated as follows. Figure 1.1 shows the concentrations of CPT-
11 and SN-38 (a metabolite of CPT-11) in blood simulated by the pharmacokinetics
model using a set of model parameters found by the single-shooting LM method based
on clinically measured data. The LM method iteratively finds a solution of the under-
determined inverse problem near the initial iterate. We have chosen the initial iterate
as the “typical” values of the model parameters listed in Arikuma et al. [2]. These
“typical” values are best available estimates for the average values of the parameters
over human populations. From Figure 1.1, we observe that the peak concentration
in both CPT-11 and SN-38 occurs at time t = 1.5 (we denote this time as Tmax).
Also, observe that the peak concentration is around 1.3 µmol/L for CPT-11 and 0.08
µmol/L for SN-38. (We denote peak concentrations by Cmax)

In order to investigate further whether these obtained values are specific to the
choice of the initial iterate or similar for most of the solutions of this underdeter-
mined inverse problem, we have computed multiple solutions (multiple sets of model

4 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

C
on

ce
nt

ra
tio

n
of

 C
PT

-1
1

in
 B

lo
od

(μ
m

ol
 /

 L
)

Time Elapsed (hours)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
0 5 10 15 20 25

en
d

of
 d

ru
g

ad
m

in
ist

ra
tio

n peak concentration

(a) Concentration of the anti-cancer drug
CPT-11.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
on

ce
nt

ra
tio

n
of

 S
N

-3
8

in
 B

lo
od

(μ
m

ol
 /

 L
)

Time Elapsed (hours)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0 5 10 15 20 25

en
d

of
 d

ru
g

ad
m

in
ist

ra
tio

n peak concentration

(b) Concentration of the metabolite SN-38.

Fig. 1.1. Drug and Metabolite concentration simulation based on a single set of model param-
eters found by the LM Method.

parameters) using the LM method with different initial iterates close to the “typical”
values listed in [2]. Figure 1.2 shows the concentrations of CPT-11 and SN-38 in
blood simulated by the pharmacokinetics model using 1,000 sets of model parameters
found by the LM method with 1,000 different initial iterates. We observe from Fig-
ure 1.2 that only the observation that Tmax = 1.5 for CPT-11 seems independent of
the choice of the initial iterate and may be a common feature among the solutions in
the solution set of this underdetermined inverse problem. Other values (e.g., Cmax for
both CPT-11 and SN-38 and Tmax for SN-38) are heavily dependent on the choice of
the initial iterate. That is to say, these values cannot be determined precisely due to
the underdetermined nature of the inverse problem. Although these values cannot be
determined precisely, information on the range of Cmax and Tmax as obtained from
the multiple solutions shown in Figure 1.2 is still of significant value in the context of
the application problem.

The values of Cmax and Tmax can be measured, even though this is only realistic
in a clinical experiment setting (e.g., 16 blood samples are required from a patient in
a day) and not necessarily reliable. For example, Slatter et al. have obtained for 8
patients that Cmax of CPT-11 is on average 2.26 µmol/L (with standard deviation of
0.21), Cmax of SN-38 is on average 0.04 µmol/L (with standard deviation of 0.017),
Tmax of CPT-11 is 1.5 hours (with zero standard deviation) and Tmax of SN-38 is on
average 2.3 hours (with standard deviation of 1.0). All of the measured values except
Tmax of CPT-11 are different from what can be predicted from the single solution
of Figure 1.1. However, Table 1.1 shows that these measured values for a small set
of patients are almost within the range of the values of Cmax and Tmax obtained by
solving for multiple solutions of the underdetermined inverse problem as shown in
Figure 1.2. While the numbers in Table 1.1 indicate that the pharmacokinetics model
is not perfect yet, this example does show that obtaining multiple solutions of the
underdetermined inverse problem is useful for determining the general characteristics
of the solutions in the solution set of the underdetermined inverse problem. Ideally,
ODE models and available data should be such that parameter identification problems
have unique and well-defined solutions, but in biology and medicine this may not
always be the case in practice, and there is a need for reliable numerical methods that
can deal with underdetermined parameter identification problems when they arise.

The MATLAB implementation of the LM method we used took 3.3 minutes to

CLUSTER NEWTON METHOD 5

Table 1.1
Summary of Cmax and Tmax predicted from Figures 1.1 and 1.2, and clinically measured values.

Predicted value Range from Measured value
Figure 1.1 Figure 1.2 in [17] (avg ± sd)

Cmax of CPT-11 (µmol/L) 1.3 1.0∼2.5 2.26 ±0.21
Cmax of SN-38 (µmol/L) 0.08 0.02∼0.23 0.04 ± 0.017
Tmax of CPT-11 (hours) 1.5 1.5 1.5 ± 0
Tmax of SN-38 (hours) 1.5 1.5∼6 2.3 ± 1.0

(a) Concentration of the anti-cancer drug
CPT-11.

(b) Concentration of the metabolite SN-38.

Fig. 1.2. 1,000 model parameter sets found by multiple application of the LM Method.

compute the single set of model parameters that was used to simulate the concentra-
tion of CPT-11 in blood plotted in Figure 1.1, using one core of an Intel Xeon X7350
3GHz processor. It took about 7 hours with a server machine with two quad-core In-
tel Xeon X7350 3GHz processors to find the 1,000 model parameters used to produce
Figure 1.2. Our goal in this paper is to develop an algorithm that can find such sets
of parameters with significantly less computational cost.

1.2. Problem Statement. In this paper, we consider the following underdeter-
mined inverse problem:
Find parameter vector x such that

f(x) = y∗ , (1.1)

where y∗ is a given constant vector in Rn, and f is a C1 vector function from X ⊂ Rm
to Rn with m > n. We seek m parameters from n equations with m > n, so the
solution is in general not unique. (See Appendix A for an explanation of the matrix
and vector notation used in this paper.) We assume this inverse problem has the
following properties:

• The evaluation of f (solving the forward problem) is computationally expen-
sive. Thus, we would like to minimize the number of function evaluations.

• The Jacobian of f is not explicitly known.
In the pharmacokinetics application we target (see Section 4), the right-hand-

side quantity y∗ contains measurements that are subject to measurement errors. In
this particular context it is reasonable to assume that the standard deviations of the
measured values are proportional to the quantities measured [2]. In general, other

6 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

error models can also be considered. Note that, for the highly undetermined inverse
problems we target, Equation (1.1) typically has a large set of exact solutions for
any fixed value of y∗. It is our goal to compute many solutions to problem (1.1)
simultaneously, with an accuracy that is dictated by the measurement errors on the
right-hand side. We thus seek solutions in the subset X ∗ε of X , which is the set
containing all the values of X which approximately satisfy (1.1) with maximum norm
relative residual less than ε, i.e.,

X ∗ε := {x ∈ X ⊂ Rm : max
i=1,...,n

| (fi(x)− y∗i) /y∗i | < ε} . (1.2)

Here, we have used a relative error in (1.2) because for the application we target the
standard deviations of measured values can be assumed proportional to the quantities
measured. More generally, a scaling by standard deviation could be used to define X ∗ε
[4]. We note that in most cases X ∗ε is an infinite set and often it is an unbounded set. In
practice, we are interested in a part of this set X ∗ε , namely the part that is relevant in
the context of the problem and that corresponds to a range of reasonable physiological
parameters. For real physiological parameter identification applications, experiments
described in the literature often provide a typical value for each of the parameters
in the parameter vector x, and a range in which each parameter can be expected to
vary. The goal is to find multiple sets of parameter values in X ∗ε guided by these
physiologically relevant values in the following sense. We use these typical values and
ranges to define a box in X in which the initial cluster of points for our method is
chosen in a uniformly random manner. This cluster is used to initialize the algorithm,
and the location and size of this initial box will also influence the location and size
of the final solution cluster obtained by the algorithm. As explained below, the
algorithm moves the initial cluster points towards the solution set by solving least
squares problems in a way that minimizes the distance between successive iterates for
each cluster point. The algorithm thus targets finding cluster points in the solution
set that remain close to the centre of the initial box, and have a range that is similar
to the range of the initial box. In this way, the selection of cluster points in the
solution set is guided by the physiologically relevant parameter values that define
the initial box. To summarize, we assume that we know the following regarding the
physiologically relevant values of x ∈ X :

• a typical value of x is known (we denote this value as x̂, and it is used as the
centre of the initial cluster of points for our algorithm)

• the typical relative ranges of the parameter values in x are known and we
denote the typical relative range of the ith parameter in the parameter vector
as vi (see Equation 2.1 below; the ranges vi are used to define the size of the
initial cluster centred about x̂).

The remainder of this paper is structured as follows. In Section 2, we give a
detailed description of the Cluster Newton method, and explain its relation to existing
methods. In Section 3 we illustrate the method using a simple model problem. Section
4 explains how the method can be applied to a large pharmacokinetics model, and
compares performance with the LM method and other algorithms. Section 5 briefly
describes two extensions of the Cluster Newton method. Conclusions are formulated
in Section 6 followed by an Appendix on notation.

2. Algorithm: Cluster Newton Method. The Cluster Newton method for
finding a cluster of parameter vectors x in the desired solution set X ∗ε proceeds in two
stages.

CLUSTER NEWTON METHOD 7

Starting from an initial cluster of points chosen uniformly randomly in the initial
box centred about the typical value x̂ for the parameter vector, the first stage of the
algorithm iteratively moves the initial cluster of points towards the desired solution
set X ∗ε . In each iteration, a linear approximation of f(x) is constructed in the neigh-
bourhood of the current cluster using the solutions of the forward problem at all the
points in the cluster, and then this linear approximation is used to move the cluster
closer to the desired solution set X ∗ε in an update step that is similar to a Newton
step. The linear approximation is created using least squares fitting of a hyperplane
to the solutions of the forward problem. A visual illustration of this iterative process
is provided for a simple example problem in Section 3 (see Figure 3.3), and detailed
pseudocode for all the steps of the algorithm is provided below.

Since Stage 1 of our algorithm moves all the points in the cluster collectively using
one linear approximation, the improvement in the accuracy of the approximation
eventually stalls after a number of iterations have been conducted. If the accuracy
achieved in the first stage of the algorithm is not sufficient, we proceed to Stage 2
of the algorithm. In the second stage of the algorithm, we further move each point
towards the desired solution set X ∗ε but now individually, using Broyden’s method.
For each point, we take the collective linear approximation of f(x) from Stage 1 to
obtain an initial approximation for the Jacobian in Broyden’s method. This avoids
the large number of function evaluations that would be required for approximating
the initial Jacobian for Broyden’s method for each solution, for example by a finite
difference scheme.

2.1. Algorithm pseudocode (see also Figure 3.3 for graphical illustra-
tion of the algorithm). Recall that we seek multiple solutions of the underdeter-
mined inverse problem f(x) = y∗ with m parameters and n equations (m > n).
Stage 1
1: Set up the initial cluster points and the target values.

1-1: Uniformly randomly generate an initial cluster of l points {x(0)
·j }lj=1 in

Rm in a box defined by the following inequalities:∣∣∣∣∣x
(0)
ij − x̂i
x̂i

∣∣∣∣∣ < vi for i = 1, 2, . . . ,m, j = 1, 2, . . . , l , (2.1)

where x̂i is the typical value of the ith parameter and vi is the typical
relative range of the ith parameter. We require the number of points
in the cluster to satisfy l ≥ m + 1 so that we can construct a linear
approximation to f(x) using the values of f at all the points in the
cluster. We typically choose l to be much larger than m + 1 in order
to make the algorithm more robust against small scale roughness in the
function values and because we are interested in obtaining many more

solutions than m + 1. The vectors x
(0)
·j are stored in the columns of

matrix X(0) = [x
(0)
·1 ,x

(0)
·2 , . . . ,x

(0)
·l] ∈ Rm×l.

1-2: Generate randomly perturbed target vectors {y∗·j}lj=1 near y∗. We
choose each vector y∗·j so that

max
i=1,2,...,n

∣∣∣∣y∗ij − y∗iy∗i

∣∣∣∣ < η , (2.2)

with η = 0.1. The random perturbation is necessary in line 2-3 to keep
line 2-2 of the algorithm well-defined, as explained in Section 2.2.3.

8 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

2: For k = 0, 1, 2, . . . ,K1

2-1: Solve the forward problem for each point x
(k)
·j , i.e., compute

y
(k)
·j = f(x

(k)
·j) for j = 1, 2, . . . , l , (2.3)

with Y (k) = [y
(k)
·1 ,y

(k)
·2 , . . . ,y

(k)
·l].

2-2: Construct a linear approximation of f , i.e.,

f(x) ≈ A(k)x + y(k)
o , (2.4)

by fitting a hyperplane to {(x(k)
·j ,y

(k)
·j)}lj=1. Recalling that we have

chosen the number of the points in the cluster to be l, where l ≥ m+ 1,

the slope matrix A(k) ∈ Rn×m and the shift constant y
(k)
o ∈ Rn can be

found as the least squares solution of an overdetermined system of linear
equations:

min
A(k)∈Rn×m ,y

(k)
o ∈Rn

||Y (k) − (A(k)X(k) + Y (k)
o)||F , (2.5)

where Y
(k)
o is a n× l matrix whose columns are all y

(k)
o .

2-3: Find an update vector s·j for each x
(k)
·j using the linear approximation,

i.e., find s·j s.t.

y∗·j = A(k)(x
(k)
·j + s

(k)
·j) + yo

(k) for j = 1, 2, . . . , l , (2.6)

and x
(k+1)
·j = x

(k)
·j + s

(k)
·j . As can be seen from the fact that matrix

A(k) ∈ Rn×m is a rectangular matrix with more columns than rows, this
is an underdetermined system of linear equations. Hence, we cannot

uniquely determine s
(k)
·j that satisfies Equation (2.6). Instead, we choose

the vector s
(k)
·j with the shortest scaled length, among all the solutions

of Equation (2.6), as follows:

min
s
(k)
·j ∈Rm

||(diag(x̂))−1s
(k)
·j ||2 (2.7)

s.t. y∗·j = A(k)(x
(k)
·j + s

(k)
·j) + y(k)

o , (2.8)

for j = 1, 2, . . . , l, where x̂ = [x̂1, x̂2, . . . , x̂m]T.
We note that we have scaled Expression (2.7) with the diagonal matrix
diag(x̂)−1 since the order of magnitude of the parameter values in vector
x̂ can vary significantly, and finding the vector with shortest scaled
length leads to a more robust method.

2-4: Find new points approximating the solution set X ∗ by updating X(k).

If necessary, we first shrink the length of the vector s
(k)
·j until the point

x
(k)
·j + s

(k)
·j is in the domain of the function f by the following simple

procedure:
For j = 1, 2, . . . , l

While (x
(k)
·j + s

(k)
·j) /∈ X

s
(k)
·j =

1

2
s

(k)
·j (2.9)

CLUSTER NEWTON METHOD 9

End while
End for
Then

x
(k+1)
·j = x

(k)
·j + s

(k)
·j for j = 1, 2, . . . , l , (2.10)

with X(k+1) = [x
(k+1)
·1 ,x

(k+1)
·2 , . . . ,x

(k+1)
·l].

End for.
Stage 2: Broyden’s method

3: Set up the initial Jacobian approximation for each point x
(k)
·j :

J
(K1+1)
(j) = A(K1) for j = 1, 2, . . . , l . (2.11)

4: For k = K1 + 1, . . . ,K2

4-1: Solve the forward problem for each point x
(k)
·j , i.e.,

y
(k)
·j = f(x

(k)
·j) for j = 1, 2, . . . , l . (2.12)

4-2: If k 6= K1 + 1 then update the Jacobian for each point using Broyden’s
method (see [12] or [7]) as follows:

J
(k)
(j) = J

(k−1)
(j) + (y

(k)
·j − y∗)

(s
(k−1)
·j)T

||s(k−1)
·j ||2

for j = 1, 2, . . . , l.

(2.13)

4-3: Find the search direction vector s
(k)
·j for each x

(k)
·j using the approxi-

mate Jacobian, i.e., s
(k)
·j is given by the minimum norm solution of an

underdetermined linear system:

min
s
(k)
·j ∈Rm

||(diag(x̂))−1s
(k)
·j ||2 (2.14)

s.t. y∗ − y
(k)
·j = J

(k)
(j) s

(k)
·j (2.15)

for j = 1, 2, . . . , l.
4-4: Find new points approximating the solution set X ∗ by updating X(k),

i.e.,
For j = 1, 2, . . . , l

While (x
(k)
·j + s

(k)
·j) /∈ X

s
(k)
·j =

1

2
s

(k)
·j (2.16)

End while
End for
Then

x
(k+1)
·j = x

(k)
·j + s

(k)
·j for j = 1, 2, . . . , l . (2.17)

End for.

10 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

2.2. Further details on some key steps in the algorithm.

2.2.1. Finding the linear approximation (line 2-2). When constructing
the linear approximation in Stage 1, we solve for the least squares solution of the
overdetermined system of linear equations (2.5). To show how this computation can
be done, we first rewrite (2.5) in standard matrix-vector multiplication form and then
solve a set of least squares problems. We first rewrite the matrix in expression (2.5),
by considering its n rows:

Y (k) − (A(k)X(k) + Y (k)
o)

=

y

(k)
1·

y
(k)
2·
...

y
(k)
n·

−

a
(k)
1·

a
(k)
2·
...

a
(k)
n·

X(k) +

y

(k)
o1 . . . y

(k)
o1

y
(k)
o2 . . . y

(k)
o2

...

y
(k)
on . . . y

(k)
on

 , (2.18)

where y
(k)
i· ∈ R1×l and a

(k)
i· ∈ R1×m. By taking the transpose of both sides we obtain

the following expression:

(Y (k) − (A(k)X(k) + Y (k)
o))T

=
[
y

(k)T
1· . . .y

(k)T
n·

]
−

X(k)T
[
a

(k)T
1· . . .a

(k)T
n·

]
+

y

(k)
o1 . . . y

(k)
on

y
(k)
o1 . . . y

(k)
on

...

y
(k)
o1 . . . y

(k)
on

 , (2.19)

where y
(k)T
i· ∈ Rl×1, X(k)T ∈ Rl×m and a

(k)T
i· ∈ Rm×1. We now observe that expres-

sion (2.5) is equivalent to n independent least squares problems:

min
a

(k)
i· ∈Rm, y

(k)
oi ∈R

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
y

(k)T
i· −

X(k)Ta
(k)T
i· +

y

(k)
oi

y
(k)
oi
...

y
(k)
oi

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
2

for i = 1, 2, . . . , n.

(2.20)

This can be concisely written as follows

min
ã

(k)
i· ∈Rm+1

||y(k)T
i· − X̃(k)Tã

(k)T
i· ||2 for i = 1, 2, . . . , n, (2.21)

where

x̃
(k)
ij =

{
x

(k)
ij for i ≤ m

1 for i = m+ 1
ã

(k)
ij =

{
a

(k)
ij for j ≤ m
y

(k)
oi for j = m+ 1 .

(2.22)

Noting that X̃(k)T is an l×(m+1) matrix, the solutions of the least squares problems
(2.21) are the least squares solutions of overdetermined systems of linear equations if
l > m+ 1. Assuming rank(X̃(k)T) = m+ 1 (see Section 2.2.3), the normal equations
of the first kind (see [3]) provide the least squares solution:

ã
(k)T
i· = (X̃(k)X̃(k)T)−1(X̃(k)y

(k)T
i·) for i = 1, 2, . . . , n. (2.23)

CLUSTER NEWTON METHOD 11

The actual computation is done using QR decomposition for numerical stability rea-

sons. As a result we obtain the matrix A(k) and the vector y
(k)
o such that y

(k)
·j ≈

A(k)x
(k)
·j + y

(k)
o for j = 1, 2, . . . , l.

2.2.2. Solving the underdetermined system of linear equations (line 2-
3). The minimum norm solution of the underdetermined systems of linear equations
(2.7)-(2.8) can be computed as the solution of the normal equation of the second kind
(see [3]). Equation (2.8) can be rewritten as follows:

y∗·j −A(k)x
(k)
·j − y(k)

o = A(k)(diag(x̂))(diag(x̂))−1s
(k)
·j (2.24)

for j = 1, 2, . . . , l. Thus, by using the normal equations of the second kind, s
(k)
·j can

be expressed as follows:

s
(k)
·j = (diag(x̂))2A(k)T

(
A(k)(diag(x̂))2A(k)T

)−1

(y∗·j −A(k)x
(k)
·j − y(k)

o) ,

(2.25)

for j = 1, 2, . . . , l. Again, the actual computation is done using QR decomposition.

2.2.3. Randomly perturbed target values (line 1-2). In line 1-2 of the
algorithm, we generate randomly perturbed target values {y∗·j}lj=1. This step is nec-

essary in order to iteratively repeat Stage 1 of the algorithm: matrix X(k) in line 2-2
is required to be full rank to make the overdetermined system (2.5) uniquely solvable,
and the randomly perturbed target values {y∗·j}lj=1 guarantee that X(k) computed
in line 2-3 is indeed full rank, as we now explain. A graphical interpretation of this
requirement is given in Section 3.3 (Figures 3.3(c) and 3.3(d)) for a simple model prob-
lem. We first observe that each of the overdetermined systems (2.21) has a unique
least squares solution if and only if rank X̃(k) = m+ 1. Further, rank X̃(k) = m+ 1
requires rank X(k) = m. On the other hand, when solving the underdetermined sys-
tem of linear equations (2.7)-(2.8), if we had not randomly perturbed the target (i.e.,
if we take y∗·j = y∗ for all j), then we would have the following relationships:

A(k)
(
x

(k)
·i + s

(k)
·i

)
= A(k)

(
x

(k)
·j + s

(k)
·j

)
≡ b for any i, j = 1, 2, . . . l.

(2.26)

In other words,

[A(k),−b]

(
x

(k)
·j + s

(k)
·j

1

)
= 0 for j = 1, 2, . . . , l . (2.27)

Hence, if we define Ã(k) = [A(k),−b] ∈ Rn×(m+1), then(
x

(k)
·j + s

(k)
·j

1

)
∈ N (Ã(k)) for j = 1, 2, . . . l, (2.28)

where N (Ã(k)) denotes the null space of Ã(k). Also note that dim N (Ã(k)) = m +
1 − rank Ã(k) < m + 1 unless Ã(k) = 0. (Note that rank Ã(k) = rank A(k).) Hence,

if x
(k+1)
·j is chosen to be x

(k)
·j + s

(k)
·j , rank X̃(k+1) ≤ dim N (Ã(k)) < m + 1. This

would imply that each least squares problem (2.21) in the the k + 1th iteration is
rank deficient and does not have a unique solution. On the other hand, if we seek the
minimum norm solution of the underdetermined system of linear equations (2.7)-(2.8)
for randomly perturbed targets {y∗·j}lj=1, then generically rank X̃(k+1) = m + 1 and
each least squares problem (2.21) in the k+1th iteration will have a unique solution.

12 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

Fig. 3.1. Example 1: the function f and the solution set X ∗ (in the first quadrant).

2.2.4. Some further implementation details. Note that the function evalu-
ations at each point in the cluster in lines 2-1 and 4-1 are independent of each other.
Hence, these lines can be implemented in an embarrassingly parallel way. Since
most of the computational cost is spent on computing the function values in these
two lines, the computation time required by the Cluster Newton method is almost
inversely proportional to the number of CPU cores that can be utilized. Also, for sim-
plicity of presentation, we have fixed the number of iterations for each of the stages
(via parameters K1 and K2). However, one can easily modify the implementation so
that the iteration stops once a desired accuracy has been achieved (e.g., x ∈ X ∗ε in
Equation (1.2)).

3. Simple model problem (Example 1). Before we attempt to solve the
parameter identification problem of the pharmacokinetics model, we illustrate our
algorithm using a simple example that is easy to visualize.

3.1. Model problem description. Our model problem is as follows: find a set
of l points in R2 near a box X 0, such that

f(x) = y∗ , (3.1)

where

f(x) = (x2
1 + x2

2) +
1

100
sin(10000x1) · sin(10000x2) , (3.2)

y∗ = 100 , (3.3)

X 0 = {x ∈ R2 : max
i=1,2

| (xi − 2.5) /2.5| < 1} . (3.4)

The function is a paraboloid perturbed by a wildly oscillatory perturbation with a
small amplitude. As depicted in Figure 3.1, the solution set of this inverse problem X ∗
is approximately a circle of radius 10 centred at the origin in the x1-x2 plane. Thus,
we aim to find the points on this curve X ∗ near the box X 0. The perturbation mimics
‘roughness’ or ‘noise’ that can be found in many realistic high-dimensional applica-
tions. For example, as we will illustrate in the following section, when the forward
problem involves numerical solution of a system of ODEs, a similar kind of ‘rough-
ness’ can be observed for the function evaluation, caused by numerical error. The
initial box X 0 may signify some a priori knowledge about where physically relevant
solutions are expected. We choose l = 100 in the numerical examples below.

CLUSTER NEWTON METHOD 13

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) Initial points in X 0.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(b) Final Points obtained by the
LM method.

Fig. 3.2. Example 1: an attempt with the LM method.

3.2. Levenberg-Marquardt Method. We first discuss how the well-known
LM method (see, e.g., [3]) performs when applied to this problem. We create l random
points in X 0 and then apply the LM method using each random point as an initial
point. We have used the LM implementation in the MATLAB optimization toolbox
(version 2010b) with default parameters for our numerical experiment. We observe
that the algorithm terminates with the error “Algorithm appears to be converging to
a point that is not a root” for all initial points we tried. As can be seen in Figure 3.2,
we fail to find points close to the solution set X ∗.

3.3. Cluster Newton (CN) Method. We now use the Cluster Newton method
to find multiple points on the level curve. Noting that this example is a special case
of (1.1) with m = 2 and n = 1, we directly apply the algorithm presented in Section 2
with the following user-defined parameters:

typical values for x x̂ = [2.5, 2.5]T , (3.5)

relative ranges for x v = [1, 1]T , (3.6)

domain of f X = R2 , (3.7)

number of Stage 1 iterations K1 + 1 = 6 (so K1 = 5) , (3.8)

number of total iterations K2 + 1 = 24 (so K2 = 23) . (3.9)

In order to illustrate the fundamental idea of the algorithm, Stage 1 of the Cluster
Newton method is graphically explained in Figure 3.3 using this example. As can be
seen in Figure 3.3(b), the Cluster Newton method constructs a linear approximation
from points in the cluster and computes the gradient using all points in the cluster.
Also, it constructs only one linear approximation in each iteration, so only one function
evaluation per iteration per point in the cluster is required. In contrast, when using
MATLAB’s LM with the default finite-difference Jacobian computation, each iteration
requires m + 1 = 3 function evaluations per point. This illustrates the first major
point in comparing our collective CN method with one-by-one LM: the one-by-one
approach requires about m+1 times more function evaluations per nonlinear iteration
than the collective approach.

Panels (c) and (d) of Figure 3.3 show how new points x1
·j are generated on the

intersections of the linear approximation y = a(0)Tx+y
(0)
o and the constant planes y =

y∗j , by determining update vectors s·j that are orthogonal to those intersections (line

14 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

(a) Line 2-1: Evaluate f at each point in X(0) to
generate Y (0).

(b) Line 2-2: Construct a linear approximation

y = a(0)Tx + y
(0)
o .

(c) Line 2-3: Find the update vectors s·j . (d) Line 2-4: Find a new cluster of points X(1).

(e) Line 2-1: Evaluate f at each point in X(1) to
generate Y (1).

(f) Line 2-2,...,2-4: Obtain X(2)

Fig. 3.3. Example 1: Graphical description of Stage 1 of the Cluster Newton method.

2.3 of the pseudocode). This also explains graphically why it is necessary to use target
values y∗j that are randomly perturbed from y∗: without random perturbation, all

points in the cloudX(1) would lie on the line y∗ = a(0)Tx+y
(0)
o , and matrixX(1) would

be rank-deficient. This would preclude the computation of a linear approximation to
f(X(1)) in line 2-2 and the algorithm would break down.

CLUSTER NEWTON METHOD 15

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) X(0)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(b) X(1)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(c) X(2)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(d) X(5)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(e) X(6)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(f) X(7)

Fig. 3.4. Example 1: Plots of the points in X(k). X(0) to X(5) correspond to Stage 1, and
X(6) and X(7) to Stage 2.

Figure 3.4 shows how the two stages of our algorithm locate solutions in the
solution set guided by the initial cluster. The size of the final cluster in the direction
parallel to the solution set is similar to the size of the initial cluster as specified by
the typical relative range v.

Recall from Figure 3.2 that the LM method was not able to find solutions for
this problem. In fact, this is not surprising due to the wildly oscillating nature of
the function f(x), and it would not be difficult to make LM converge better by
applying some kind of smoothing to f(x). However, the fact that the CN method
can find solutions without such smoothing points to an important advantage of the
CN method in addition to its low computational cost per nonlinear iteration: the CN
method benefits from an inherent smoothing provided by the least-squares fitting,
which results in improved robustness.

4. Pharmacokinetics ODE Coefficient Identification Problem (Exam-
ple 2). We now introduce the original problem that led us to construct the Cluster
Newton algorithm for simultaneously finding multiple solutions of an underdetermined
inverse problem. This inverse problem can be categorized as a coefficient identification
problem of a system of ODEs.

4.1. Forward Problem: Physiologically Based Pharmacokinetics Model.
Physiologically Based Pharmacokinetics (PBPK) models are ODE-based mathemati-
cal models for transportation, metabolization, and elimination of a drug in the human
body. In this paper, we consider the whole-body PBPK model of the anti-cancer drug

16 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

: CPT-11
: SN-38
: SN-38G
: NPC
: APC

: concentration
: excretion quantity

: blood ow pathway
: metabolization pathway
: excretion pathway

N
ET

Blood
Liver

Adipose Urine

Bile

G
I

CPT-11

o

: i.v. drip feed pathway

blood flow pathway

metabolization pathway

excretion pathway

i.v. drip feed pathway

Fig. 4.1. Schematic diagram of the PBPK model.

CPT-11 by Arikuma et al. [2]. This PBPK model is presented as a schematic diagram
in Figure 4.1. The model considers five body compartments and the concentration
of the drug (CPT-11) and its metabolites (SN-38, SN-38G, NPC, and APC) in the
five organs are represented as the time-dependent variables u1(t), u2(t), . . . , u25(t).
The blood flow pathway links between the organs are represented by l1, l2, . . . , l40

and these flows are modelled by diffusion processes. The metabolic reactions in the
liver are represented by l41, l42, . . . , l45 and these reactions are modelled by Michaelis-
Menten kinetics. The excretion pathways are represented by l46, l47, . . . , l55 and these
pathways are also modelled by diffusion processes. For more details about the PBPK
model we refer the reader to Appendix B of technical report [1], which is freely avail-
able online. In particular, explicit expression for the interaction terms l1, l2, . . . , l55

of Figure 4.1 are given in Equations B.2-B.4 of [1].

Since drug and metabolites have different diffusion rates for different organs and
different metabolic reaction rates for different enzymes, the model contains many
kinetic parameters. In addition to these parameters, the PBPK model contains pa-
rameters associated with the physiological characteristics of the patient and the drug
administration schedule. In the PBPK model of interest, there are 60 parameters
and we denote these parameters by x1, x2, . . . , x60. These parameters have some con-
straints originating from the biological quantities that they are representing, which
are discussed in Section 4.2.2. The model parameters with their typical values are
described in Tables B.1-B.5 of [1]. To save space we refer the reader to [1] for the
precise expressions of the ODEs for the unknown functions u1(t), u2(t), . . . , u25(t),
but we fully specify the ODE here for one of the 25 unknown functions, u18(t), the

CLUSTER NEWTON METHOD 17

Table 4.1
Computational costs of numerically solving the forward problem for Example 2. The computa-

tional time was measured on a server machine with Intel Xeon X7350 3GHz processors.

Absolute/Relative tolerance δODE Computational time (sec)
10−3 0.12
10−6 0.37
10−9 0.76

concentration of SN-38G in the Liver, as an illustrative example:

du18(t)

dt
=

(l18 + l38 + l44)− (l13 + l53)

x57
, (4.1)

where

l18 = x53 u3(t) , l38 =
x52

x8
u13(t) , l44 =

x45 x50 x57
x40 x12

x22 u17(t) + 1
, (4.2)

l13 =
x52 + x53

x13
u18(t) , l53 =

x33 x23

x13
u18(t) . (4.3)

With ODE expressions similar to (4.1) for all variables, we obtain the ODE system

du(t;x)

dt
= h(u(t;x);x) , (4.4)

where u is a 25-dimensional vector-valued function, h is the nonlinear function as-
sociated with the right-hand side of the ODE system (see Equation B.5 of [1] for a
complete description of h) and x is a parameter vector in R60.

Next, we construct a function f that maps the parameters of the PBPK model
x to the total quantities of CPT-11 and its metabolites excreted in urine and bile
(faeces), which are the quantities that are experimentally measured and correspond
to y∗ in our inverse problem f(x) = y∗. We shall refer to a set of total quantities
of excreted CPT-11 and its metabolites as an excretion profile. As we will discuss
in the next section, these quantities are clinically measurable through mass-balance
studies, and the main problem of this chapter boils down to estimating the model
parameters from a clinically measured excretion profile. The excretion profile values
(which are labeled y1, y2, . . . , y10 in Figure 4.1) are obtained by long-time integration
of a subset of the ODE functions, so the function that maps the parameters to the
excretion profile are defined by the following integrals:

fi(x) =

{ ∫ T
0
xi+25 · xi+20 · ui(t;x) dt for i = 1, . . . , 5∫ T

0
(xi+25 · xi+15)/xi+5 · ui+10(t;x) dt for i = 6, . . . , 10

(4.5)

where f maps from R60 to R10 and T = 105 s. Note that f1, f2, . . . , f5 are proportional
to the area under the curves (AUCs) of the drug and metabolites concentrations in
the blood compartment, and f6, f7, . . . , f10 are proportional to the AUCs of the drug
and metabolites concentrations in the Liver compartment. We shall refer to the map
f to be the forward problem.

In practice, we compute the integrals in Equation (4.5) numerically by adding ten
additional ODEs to the ODE system for u. In this way, we end up with a forward

18 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

Table 4.2
The amount of drug and its metabolite in excreta in units [nmol/kg] calculated from published

data of Slatter et al. [17].

Patient 1
CPT-11 in Urine y∗1 859.0
SN-38 in Urine y∗2 35.5
SN-38G in Urine y∗3 473.9
NPC in Urine y∗4 3.55
APC in Urine y∗5 305.0
CPT-11 in Bile + Faeces y∗6 975.4
SN-38 in Bile + Faeces y∗7 127.1
SN-38G in Bile + Faeces y∗8 105.4
NPC in Bile + Faeces y∗9 24.5
APC in Bile + Faeces y∗10 219.4

total dosage
∑10
i=1 y

∗
i 3946

ODE system with q = 35 equations and m = 60 parameters, and with n = 10
measured values that are all measured at a single time t = T , resulting in a highly
underdetermined inverse problem to compute the m = 60 parameters from the n = 10
measured values. In each forward computation we solve this system of q = 35 ODEs
using the MATLAB 2010b stiff ODE solver ODE15s [16] with error tolerance δODE ,
i.e., we set RelTol= δODE and AbsTol= δODE for MATLAB ODE solver ODE15s,
where δODE is chosen as a function of the required numerical accuracy, see below.
The computational costs of numerically solving this system of ODEs with various
integration tolerances δODE are tabulated in Table 4.1.

4.2. Inverse Problem: Parameter Identification of the Pharmacokinet-
ics Model. We now wish to identify model parameters x1, x2, . . . , x60 using clinically
measured excretion profiles. Since there are m = 60 model parameters and n = 10
clinically measurable excretion profile quantities, we have a highly underdetermined
inverse problem.

4.2.1. Clinically measured excretion profile. We use the clinical data pub-
lished by Slatter et al. [17]. Based on their data, we calculate the excretion profile of a
patient as shown in Table 4.2. We use the clinically measured data of Patient 1 as the
target for the output of the pharmacokinetics model: the goal is to determine multiple
sets of parameter values that are consistent with the excretion profile of Patient 1.

4.2.2. Model parameters: Constraints, Typical value, and relative range.
Model parameters x1, x2, . . . , x60 correspond to the biological quantities of a patient,
and there are some constraints on these values. Firstly, all the parameters have to be
positive real numbers. Secondly, as the volume of the adipose compartment is calcu-
lated by 1000− (x55 +x56 +x57 +x58), and the volume cannot be negative, we require
x55 + x56 + x57 + x58 ≤ 1000. We use the typical values of the model parameters
derived through literature search and educated estimates by Arikuma et al. [2] and
denote them as x̂1, x̂2, . . . , x̂60. These values are used to define the centre of the initial
cluster in X ⊂ Rm, see Equation (2.1) These values are re-tabulated in Tables B.1-
B.5 of [1]. We choose the typical relative ranges vi for the initial cluster in X ⊂ Rm
(see Equation (2.1)) to be ±50% for the kinetic parameters (x1, x2, ..., x50), ±30% for
the physiological parameters (x51, x52, ..., x58) and ±5% for the drug administration

CLUSTER NEWTON METHOD 19

parameters (x59, x60), i.e., the relative ranges are

vi =

 0.5 for i = 1, 2, . . . , 50
0.3 for i = 51, 52, . . . , 58
0.05 for i = 59, 60.

(4.6)

The typical relative range of the kinetic parameters was chosen guided by the fact
that the inter-subject variability of these values is usually less than ±50% as shown in
[8, 9, 10, 18]. The typical relative range of the physiological parameters was motivated
by [21]. The typical relative range of the drug administration parameters is chosen
to be small since it is only influenced by the experimental precision of the drug
administration procedure.

4.2.3. Statement of the inverse problem. We now state the PBPK model
parameter identification problem as follows: find a set of l points in X ⊂ R60 near a
box X 0, such that

f(x) = y∗ , (4.7)

where

f : X ⊂ R60 → R10 a function that maps the model parameters

to the excretion profile, as defined in Section 4.1 , (4.8)

y∗ : clinically measured data from patient 1 as in Table 4.2 , (4.9)

X = {x ∈ R60 : xi > 0 and

58∑
i=55

xi ≤ 1000} , (4.10)

X 0 = {x ∈ R60 : max
i=1,2,...,60

| (xi − x̂i) /(x̂ivi)| < 1} . (4.11)

So m = 60 and n = 10 for this problem. We note that evaluating the function value
f(x) involves numerically solving the system of ODEs.

4.3. Levenberg-Marquardt Method. We first create random points in X 0

and then apply the single-shooting LM method using each point as an initial guess.
We do this computation in parallel as each run of the LM method is independent
of the others. Due to a limitation of the MATLAB Parallel Computing Toolbox, we
utilize at most 8 cores. A visual representation of the 1,000 randomly chosen points
in X 0 is given in Figure 4.2. Each red × indicates the average of the normalized
parameter over all points. We have used the LM method implementation in the
MATLAB optimization toolbox (version 2010b) with default parameters to find the
root of the following function in our numerical experiment:

f̃(x̃) =

{
(diag(y∗))−1f(diag(x̂)x̃)− 1 if (diag(x̂)x̃) ∈ X
105 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

T
otherwise

, (4.12)

where x̃ is a normalized model parameter vector. Note that we have used the normal-
ization by diag(y∗) because it improved convergence. The way adopted in (4.12) to
force solutions to lie in the domain of the function f turns out to work satisfactorily.

4.3.1. Visual representation of the solution found by the Levenberg-
Marquardt method. Figure 4.3 visually represents the final set of points found
by the LM method after 469,439 function evaluations using an error tolerance of

20 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

Fig. 4.2. Example 2: Initial set of points in X 0.

Fig. 4.3. Final set of points found by the LM method.

δODE = 10−9 when solving the system of ODEs. Note that this small tolerance is
required for the LM method to converge, while the Cluster Newton method converges
with a significantly less restrictive tolerance (see below). Note also that each function
evaluation corresponds to one forward solve of the ODE system with q = 35 equations.

4.3.2. Speed and accuracy obtained with the single-shooting Levenberg-
Marquardt method. In Figure 4.4(a), the relative residual was plotted against the
number of iterations. For Example 2, we define the relative residual of parameter

vector x
(k)
·j as

r(x
(k)
·j) = max

i=1,2,...,10

∣∣∣∣∣y
(k)
ij − y∗i
y∗i

∣∣∣∣∣ , (4.13)

where y
(k)
·j = f(x

(k)
·j) with δODE = 10−11. We use δODE = 10−11 for computing y

(k)
·j

in these residuals to make sure we obtain a residual that is close to the true residual
that would be obtained when the function f is evaluated exactly. As can be seen
in Figure 4.4(a), it takes on average seven iterations to find solutions accurate up
to the accuracy of the function evaluation (δODE = 10−9). We note that since the
Jacobian of the function is not explicitly given, the MATLAB implementation of the
LM method estimates the Jacobian by finite differences. Hence, in each iteration, the
function is evaluated at least m+ 1 = 61 times. In each function evaluation, we solve

CLUSTER NEWTON METHOD 21

the system of ODEs to high accuracy. Thus, this method can be computationally very
expensive (e.g., to obtain the solution presented in Figure 4.4(b), about 8 hours of
computation is used on a server machine with two quad-core Intel Xeon X7350 3GHz
processors).

In Figure 4.4(b), the number of points in the final set obtained by the LM method
(after 469,439 function evaluations) whose relative residual is less than the relative
residual tolerance ε is plotted. As can be seen in Figure 4.4(b), about 95% of the
points achieve a relative residual less than 10−6 and about 65% of the points achieve
a relative residual less than 10−8.

As already stated in Section 1.1, we can obtain 1,000 different model parameter
vectors of interest through multiple application of the LM method. However, this
requires accurate function evaluation with tolerance δODE = 10−9 and a large number
of function evaluations per iteration. Thus, multiple application of the LM method
to obtain multiple model parameter vectors is computationally very expensive.

It has to be noted, however, that more efficient and more robust parameter esti-
mation methods exist than single-shooting LM: over the past decades many significant
advances have brought the field of ODE parameter estimation methods to a high level
of sophistication; see, for example, the works by Deuflhard [7] and Bock et al. [4]. In
particular, one of the techniques that improve robustness is to consider a multiple-
shooting strategy, which results in methods with increased robustness for cases where
ODE solutions may not exist over the entire interval, and for cases where numerical
stability issues may occur when solutions grow fast. A second important technique
that may increase robustness is to compute the Jacobian numerically by adding qm
additional equations (the so-called variational equations) to the set of ODEs to be
solved. While this approach generally results in more accurate Jacobian evaluation
than when using finite differences, it may be cumbersome to derive the additional
ODEs (automatic integration may be used), and the resulting right-hand sides may
be expensive to evaluate. For example, for our PBPK model, computing the Jacobian
in this way would require solving an ODE system with q(m + 1) = 35 × 61 = 2, 135
ODEs for each forward solve for the solution and the Jacobian. Even though these
more advanced methods may be significantly more efficient and accurate than single-
shooting LM with finite difference Jacobians, they would still require the equivalent
of m+ 1 forward solves per solution point and per nonlinear iteration if applied in a
one-by-one approach. Since our collective CN method only requires 1 forward solve
per solution point and per nonlinear iteration, it is clear that the one-by-one approach
would still be significantly slower even if more advanced methods than single-shooting
LM are used.

4.4. Cluster Newton Method. We now show that our Cluster Newton method
is a much more computationally efficient way to find multiple solutions of the un-
derdetermined inverse problem than multiple applications of the LM method in a
one-by-one fashion. The computational efficiency of the Cluster Newton method is
due to the significantly smaller number of required function evaluations per iteration,
with the added benefit of good robustness against ‘roughness’ (numerical error) in the
forward evaluation. These characteristics follow from the collective way in which the
points are updated and linear approximations are computed in Stage 1 of the Cluster
Newton method. We directly apply the algorithm presented in Section 2 with m = 60

22 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

R
el

at
iv

e
re

sid
ua

l

Number of iterations
0 5 10 15 20 25 30

102

100

10-2

10-4

10-6

10-8

10-10

median

(a) Relative residual reduction.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

100

200

300

400

500

600

700

800

900

10001000
900
800
700
600
500
400
300
200
100

0

10
-1

0

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Relative residual tolerance

N
um

be
r

of
 p

oi
nt

s
w

ho
se

re

la
tiv

e
re

sid
ua

ls
ar

e
le

ss
 t

ha
n

(b) Accuracy of the final set of points af-
ter 469,439 function evaluations with er-
ror tolerance δODE = 10−9.

Fig. 4.4. Speed and accuracy of the LM method applied to Example 2.

Fig. 4.5. Example 2: Set of points X(30) found by the Cluster Newton method.

and n = 10 and with the following user-defined parameters:

number of points in the cluster l = 1,000 , (4.14)

number of Stage 1 iterations K1 + 1 = 11 (so K1 = 10) , (4.15)

number of total iterations K2 + 1 = 30 (so K2 = 29) . (4.16)

4.4.1. Visual representation of the solution found by the Cluster New-
ton method. Figure 4.5 visually represents the final set of points found by the Clus-
ter Newton method using a total of 30,000 function evaluations with δODE = 10−9.
The 30,000 function evaluations correspond to 30,000 forward solves of the ODE sys-
tem with q = 35 ODEs: there are 1,000 solution points and 30 nonlinear iterations,
with one forward solve of the ODE system per solution point and per nonlinear it-
eration. By comparing Figure 4.5 with Figure 4.3, one can observe that the sets of
parameters found by the Cluster Newton method are generally similar to the sets of
parameters found by multiple applications of the LM method.

4.4.2. Speed and accuracy obtained with the Cluster Newton method.
In Figure 4.6(a), the relative residual calculated as in Equation (4.13) is plotted
against the number of iterations. It can be seen that 30 iterations are sufficient to find

CLUSTER NEWTON METHOD 23

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2
R

el
at

iv
e

re
sid

ua
l

Number of iterations

102

100

10-2

10-4

10-6

10-8

10-10
0 5 10 15 20 25 30

median

(a) Relative residual reduction.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

100

200

300

400

500

600

700

800

900

10001000
900
800
700
600
500
400
300
200
100

0

10
-1

0

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Relative residual tolerance

N
um

be
r

of
 p

oi
nt

s
w

ho
se

re

la
tiv

e
re

sid
ua

ls
ar

e
le

ss
 t

ha
n

(b) Accuracy of the final set of points af-
ter 30,000 function evaluations with error
tolerance δODE = 10−9.

Fig. 4.6. Example 2: Speed and accuracy of the Cluster Newton method.

the solution accurate up to the accuracy of the function evaluation (δODE = 10−9).
We note that the Cluster Newton method only requires one function evaluation per
point in the cluster per iteration. Thus, to get the final solution, only 30,000 function
evaluations are necessary (recall that the LM method required 469,439 function evalu-
ations). In Figure 4.6(b), the number of points in the final set obtained by the Cluster
Newton method whose relative residuals are less than the relative residual tolerance
ε is plotted. As can be seen in Figure 4.6(b), almost all the points achieve relative
residual less than 10−6 and about 75% of the points achieve relative residual less than
10−8. As the Cluster Newton method requires only one function evaluation per point
in the cluster per iteration, we can obtain the solution presented in Figure 4.6(b) in
about 30 minutes on a server machine with two quad-core of Intel Xeon X7350 3GHz
processors, which is a factor of 16 faster than the LM method.

4.5. Comparison between the Levenberg-Marquardt method and the
Cluster Newton method. We now further compare the LM method and the Cluster
Newton method.

4.5.1. Robustness against small errors in the function evaluation. In
Figure 4.7(a), we have plotted the median relative residual against the number of
iterations with different accuracy of the function evaluation (δODE). As can be seen
from Figure 4.7(a), the function needs to be evaluated accurately in order for the LM
method to find solutions with small relative residual. These numerical experiments
show that δODE = 10−9 or smaller is required for the MATLAB implementation
of the LM method to stably find the solution. Note that this high accuracy of the
forward problem (δODE = 10−9) is required for single-shooting LM even when the
solution to the inverse problem is sought with low accuracy, e.g., ε = 10−3 or larger.
This is so because with larger δODE the nonlinear solver may not converge to an
approximate solution at all, due to numerical robustness issues. On the other hand,
as can be seen from Figure 4.7(b), the Cluster Newton method finds solutions with
accuracy close to the accuracy of the function evaluation for all values of δODE .
Thus, we observe that the Cluster Newton method is robust against small errors in
the function evaluation caused by the numerical solution of the system of ODEs. This
characteristic is especially advantageous if the desired accuracy for the solution of the
inverse problem is not very high, so that we can reduce the accuracy of the numerical

24 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

M
ed

ia
n

re
la

tiv
e

re
sid

ua
l

Number of iterations
0 5 10 15 20 25 30

102

100

10-2

10-4

10-6

10-8

10-10

Accuracy of
function evaluation

(a) Levenberg-Marquardt method.

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

M
ed

ia
n

re
la

tiv
e

re
sid

ua
l

Number of iterations
0 5 10 15 20 25 30

102

100

10-2

10-4

10-6

10-8

10-10

Accuracy of
function evaluation

(b) Cluster Newton method.

Fig. 4.7. Influence of the accuracy of the function evaluation (δODE).

solution of the ODEs to save computational cost. Note again, however, that more
advanced parameter identification methods could be used than single-shooting LM
for computing solutions one-by-one, and they would be more efficient and accurate
per solution than single-shooting LM [7, 4].

4.5.2. Computational cost. In Figure 4.8, we have plotted the relative residual
versus the computational time. We have conducted this numerical experiment on a
server machine with two quad-core Intel Xeon X7350 3GHz processors with fully-
parallelized code using the MATLAB parallel computing toolbox for both methods.

In order for the Cluster Newton method to take advantage of the robustness
against the numerical error of the function evaluation, we have implemented the Clus-
ter Newton method so that the error tolerance of the function evaluation is initially
set to 10−3 and then decreases as the number of iterations increases. The LM method
requires 61 times more function evaluations per iteration in order to estimate the Ja-
cobian by finite differences, and the function evaluation tolerance has to be less than
10−9 in order for the method to converge. Thus the computational time required by
the LM method is significantly greater than the time required for the Cluster New-
ton method when seeking multiple solutions of the underdetermined inverse problem.
This difference in computational time becomes prominent if the desired accuracy of
the solution is not very high. For example, if one only requires to find solutions whose
relative residual is around 10−3, then the Cluster Newton method takes only about
5 minutes to find 1,000 solution vectors. However, the MATLAB implementation of
the LM method requires over 7 hours in order to find a similar set of solutions. Here
too, however, we have to caution that the execution time for the one-by-one approach
may be reduced significantly if more advanced methods than single-shooting LM are
used [7, 4]. Nevertheless, it is expected that our collective CN approach will still
be more efficient, because the collective approach requires only 1 forward solve per
solution point and per nonlinear iteration, while the one-by-one approaches require
the equivalent of m + 1 forward solves per solution point and per nonlinear itera-
tion. It is also interesting to say a few more words about the robustness of the CN
method compared to advanced parameter estimation methods. The CN method is ro-
bust against numerical noise in the forward ODE solves due to the natural smoothing
induced by the least-squares estimation of the Jacobian. This is in some sense a mech-

CLUSTER NEWTON METHOD 25

0 1 2 3 4 5 6 7 8
−14

−12

−10

−8

−6

−4

−2

0

2

M
ed

ia
n

re
la

tiv
e

re
sid

ua
l

Computation time (hours)
0 1 2 3 4 5 6 7 8

102

100

10-2

10-4

10-6

10-8

10-10

10-12

10-14

Cluster Newton method (left)
Levenberg Marquardt method (right)Levenberg-Marquardt method (right)

Fig. 4.8. Comparison of computational cost between the Levenberg-Marquardt method and the
Cluster Newton method.

anism for increased robustness that is an alternative to computing the Jacobian using
additional ODEs in multiple shooting methods (rather than using finite differences),
which improves robustness for those types of methods. On the other hand, our current
implementation of the CN method is still subject to other types of robustness issues
that may arise in the forward problem in cases where ODE solutions may not exist
over the entire interval, and in cases where numerical stability may be compromised
due to fast growth of the solution. (These are the issues that multiple-shooting meth-
ods are more robust against.) These issues did not occur for the PBPK problem we
considered, but they may arise for other problems. It may be possible to improve the
robustness of our collective CN method using ideas from multiple shooting methods,
or, alternatively, to derive collective versions of multiple-shooting methods making
use of the principles behind the CN method, and this is subject of further research.

4.6. A brief numerical comparison with other algorithms. In addition to
the LM method, we have conducted numerical experiments using two other nonlinear
solvers combined with single shooting: Broyden’s method and a Genetic Algorithm.

When the Cluster Newton method is run without Stage 1, it is essentially Broy-
den’s method. We first use a finite difference scheme to approximate the Jacobian
at each initial point. Using this as the initial Jacobian approximation, we have con-
ducted a numerical experiment using Stage 2 of the Cluster Newton method (Broy-
den’s method). From the numerical experiments, we have observed that, even after
as many as 50 iterations, Broyden’s method finds only about 350 points (out of 1,000
points) in X ∗10−8 compared to about 750 points for the Cluster Newton method. Also,
as this approach requires approximating the initial Jacobian by a finite difference
scheme, it takes 110,000 function evaluations in total (compared to 30,000 for the
fully converged Cluster Newton result). Thus, we observe that Stage 1 of the Cluster
Newton method is essential for its accuracy and computational efficiency.

Also, we have attempted to solve this inverse problem using the Genetic Algorithm
implemented in the MATLAB optimization toolbox. Even after much trial and error
with different parameters for the algorithm, we were only able to obtain solutions with
relative residual larger than 10−1 after 72,000 function evaluations, and the method
was not able to find any solution in X ∗10−1 . Thus the Genetic Algorithm was not able
to obtain accurate solutions.

5. Extensions of the Cluster Newton method. In this section we describe
two extensions of the Cluster Newton method, namely, a nonlinear preconditioning

26 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

approach to improve convergence for highly nonlinear problems, and an approach to
obtain solution points spread out over the entire solution set.

5.1. Preconditioned Cluster Newton method. Since our algorithm tries to
approximate the function f by a hyper-plane in a large domain, the accuracy of the
solution obtained by our algorithm is influenced by how close f is to a linear function.
By choosing an appropriate preconditioning function g so that f◦g−1 is close to linear,
and applying the Cluster Newton method to the composite function f ◦ g−1, we can
increase the speed of the algorithm and the chance of finding a solution. It is often
not trivial to find such a function. However, for our ODE coefficient identification
problem, it is not very difficult to find one. For example, from Equation (4.1), we can
observe that the xi interact with each other mostly by multiplications and divisions.
Thus, by redefining the parameters xi by xi = ex̆i we can make them interact by
additions and subtractions, i.e.,

d

dt
u18 =

(
ex̆53−x̆57 · u3(t) + ex̆52−x̆8−x̆57 · u13(t) +

ex̆45+x̆50

ex̆40+x̆12−x̆22/u17(t) + 1

)
−
(
(ex̆52−x̆13−x̆57 + ex̆53−x̆13−x̆57) · u18(t)− ex̆33+x̆23−x̆13 · u18(t)

)
.

In addition to making the parameters of the function f interact almost linearly, this
choice of redefinition of x has the benefit that the values of x remain positive. This
helps us reduce the complication of points going outside of the domain where the
function f is defined. This redefinition of x can be done easily for our algorithm by
setting the preconditioning function as g(x) = ln(x) and directly applying the Cluster
Newton method to f ◦ g−1.

The effect of this preconditioning function can be demonstrated by solving Ex-
ample 2 with an initial set of points with larger than usual relative range that brings
the initial box close to the boundary of the domain X , i.e.,

vi =

 0.95 for i = 1, 2, . . . , 50
0.3 for i = 51, 52, . . . , 58
0.05 for i = 59, 60.

(5.1)

Figure 5.1 plots the median of the relative residual versus the number of iterations for
the Cluster Newton method with or without preconditioning. As can be seen from
Figure 5.1, without preconditioning, the Cluster Newton method fails to find the
parameters of interest. However, with preconditioning, the Cluster Newton method
finds a set of points with small relative residual. For the numerical results presented
in Sections 3 and 4 preconditioning was not necessary and was thus not used.

5.2. Global Cluster Newton method. Finding multiple solutions of the un-
derdetermined inverse problem near the initial cluster is useful when there is a priori
knowledge about which part of the solution set is of interest. However, it is a natural
question to ask whether we can sample multiple solutions in the solution set not nec-
essarily close to the initial cluster. We can do so using our Cluster Newton method
by small modifications to line 4-4 of the algorithm. We demonstrate this idea using
Example 1, that is to say, instead of just seeking points on the contour curve near
the initial cluster in box X 0, we aim to find points on the entire contour curve. In
order to achieve the above goal, we simply slide points in the direction tangent to
the solution set once they are sufficiently close to the solution set, as illustrated in
Figure 5.2. This can be done by replacing line 4-4 in Stage 2 of the algorithm with
the following lines.

CLUSTER NEWTON METHOD 27

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2
M

ed
ia

n
re

la
tiv

e
re

sid
ua

l

Number of iterations
0 5 10 15 20 25 30

102

100

10-2

10-4

10-6

10-8

10-10

without preconditioning
with preconditioning

Fig. 5.1. Median relative residual
with or without preconditioning.

Fig. 5.2. Main idea
of the Global Cluster Newton
method.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) X(6)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(b) X(7)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(c) X(8)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(d) X(40)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(e) X(79)

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(f) X(80)

Fig. 5.3. Example 1: Plots of the points X(k) found by the Global Cluster Newton method.
X(0) to X(5) are the same as in Figure 3.4 so the plots were omitted.

4-4: If k < K3

For j = 1, 2, . . . , l

If ||s(k)
·j ||2 < ξ

t1 = −s(k)
2j /||s

(k)
·j ||2

t2 = s
(k)
1j /||s

(k)
·j ||2

s
(k)
·j = s

(k)
·j + rt

End if.

28 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

(a) Concentration of the anti-cancer drug
CPT-11

(b) Concentration of the metabolite SN-38

Fig. 6.1. 1,000 model parameter sets found by the Cluster Newton method.

End for.
End if.

X(k+1) = X(k) + S(k) . (5.2)

Hence, the algorithm spreads the points in the direction tangential to the solution set
up to iteration K3, ξ is a parameter that selects points sufficiently close to the solution
set, and r is a randomly generated real number in a certain range symmetrically about
0 (see below) which is different every time it appears in the for-loop.

In Figure 5.3, we show the solutions found by the Global Cluster Newton method.
For this numerical experiment, we have chosen l = 100, K1 = 5, K2 = 100, K3 = 80,
ξ = 10−2 and r is a uniformly randomly generated number between −5 and 5. We
can observe that the points are placed on the entire contour curve.

An extension of this idea is possible for higher-dimensional problems (e.g., Ex-
ample 2). However, the tangential direction cannot be uniquely determined if the
dimention of the solution set is greater than one. In such a case, we can choose the
direction of the tangential vector t randomly within the tangent hyperplane each time
it appears in the for loop.

6. Conclusion. We have introduced a new computationally efficient, easy to
parallelize, and robust algorithm for simultaneously sampling multiple points from the
solution set of an underdetermined inverse problem, for problems for which multiple
solutions are of interest. Our algorithm was applied to a coefficient identification
problem of a system of nonlinear ODEs modelling the drug kinetics of an anti-cancer
drug, and we demonstrated that it efficiently traces the part of the solution set of
interest. The efficiency and robustness of the algorithm follow from the collective way
in which a linear approximation to the forward function is computed simultaneously
for all the points in the cluster in Stage 1 of the algorithm. Multiple parameter
vectors are of interest in this application because the ranges and extremal values of
the parameters and solution profiles that can be obtained from multiple parameter
vectors can potentially be used, for example, to assess or design treatment plans.

Using our algorithm, 1,000 sets of model parameters can be estimated with relative
accuracy 10−3 from clinically observed data in half an hour using a five year old
laptop computer (MacBook Pro with 2.33 GHz Intel Core2Duo processor with 4 GB
of RAM). Figure 6.1 shows the predicted concentration of CPT-11 and SN-38 in

CLUSTER NEWTON METHOD 29

blood calculated using the model parameters found by the Cluster Newton method.
Detailed comparison verifies that this solution and the solution obtained through
multiple applications of the single-shooting LM method (cf. Figure 1.2), after 8 hours
of computation using a server machine, are very similar. It is important to note
that more efficient parameter identification methods may be used to compute the
multiple solutions one-by-one than single-shooting LM, but it is expected that the
performance advantage of the CN method would still be significant for computing
many solutions at once, because CN requires only 1 ODE system solve (1 solve of
the forward problem) per solution point and per nonlinear iteration, whereas one-by-
one methods require the equivalent of m + 1 ODE system solves per solution point
and per nonlinear iteration, where m is the number of parameters to be determined.
We have demonstrated numerically that the CN method is highly efficient for an
area-under-the-curve parameter identification problem with very few measurements
for which many solutions are sought, but we believe that the CN method is a general
framework for solving underdetermined inverse problems that may prove useful in
many other problem areas.

We recognize that there are many ways to further improve our algorithm. For
example, we can choose the number of Stage 1 iterations based on the residual, or
we can use more sophisticated selection algorithms for the step size (i.e., the size of

the update vectors s
(k)
·j in lines 2-4 and 4-4). In the PBPK problem that motivated

our work, statistical properties of the computed solution set are not a primary con-
cern. However, in many other parameter identification problems statistical properties
are important. We believe that there is significant potential for extending our col-
lective CN method such that statistical properties can be taken into account (as is
done in advanced parameter identification methods, see, e.g., [4, 5]), but this would
require significant additional research and is subject of further work. Also, it would
be interesting to explore making the CN method more efficient for ODE parameter
identification problems by taking advantage of the structure of the ODE systems.
Similarly to what has been done for the inverse problem of the drug kinetics model,
we expect that applying our algorithm to other underdetermined inverse problems
will efficiently provide useful information, and will also lead to new insights about the
applicability of our algorithm.

7. Acknowledgements. We would like to thank Professor Kunio Tanabe of
Waseda University for his extensive advice and useful comments on our research. We
would like to thank Mr. Keiichi Morikuni of the Graduate University of Advanced
Studies for useful discussions. The first author would like to thank the National
Institute of Informatics and the University of Waterloo as the research opportunity
which led to this paper was given to him by their memorandum of understanding
internship program.

Appendix A. Matrix Notation. In general, we use a capital letter for a matrix,
a bold lowercase letter for a vector and a lower case letter for a scalar quantity. Also,

30 AOKI, HAYAMI, DE STERCK, AND KONAGAYA

we introduce the following matrix-related notations:

y : column vector, (A.1)

yi : ith component of column vector y, (A.2)

xi j : element of matrix X in column i and row j, (A.3)

x·j : jth column of matrix X as a column vector, (A.4)

xi· : ith row of matrix X as a row vector, (A.5)

diag(y) : diagonal matrix whose ith column, ith row entry is yi, (A.6)

||X||F : Frobenius norm of matrix X. (A.7)

REFERENCES

[1] Y. Aoki, K. Hayami, H. De Sterck, and A. Konagaya. Cluster Newton Method for Sampling
Multiple Solutions of an Underdetermined Inverse Problem: Parameter Identification for
Pharmacokinetics. NII Technical Report, National Institute of Informatics, Tokyo, 2011.
Available at http://www.nii.ac.jp/TechReports/11-002E.html.

[2] T. Arikuma, S. Yoshikawa, R. Azuma, K. Watanabe, K. Matsumura, and A. Konagaya. Drug
interaction prediction using ontology-driven hypothetical assertion framework for pathway
generation followed by numerical simulation. BMC Bioinformatics , 9(suppl 6), (2008),
S11.

[3] Å. Björck, Numerical methods for least squares problems. Society for Industrial and Applied
Mathematics, Philadelphia, 1996.

[4] H. G. Bock, E. Kostina, and J. P. Schloeder. Numerical Methods for Parameter Estimation in
Nonlinear Differential Algebraic Equations. GAMM-Mitteilungen, 30, (2007), pp. 376-408.

[5] M. Chung and E. Haber. Experimental Designfor Biological Systems. SIAM J.ControlOptim.,
50, (2012), pp. 471-489.

[6] F. A. de Jong, J. J. Kitzen, P. de Bruijn, J. Verweij, and W. J. Loos. Hepatic transport,
metabolism and biliary excretion of irinotecan in a cancer patient with an external bile
drain. Cancer Biology and Therapy 5(9) (2006), pp. 1105-1110.

[7] P. Deuflhard. Newton methods for nonlinear problems: affine invariance and adaptive algo-
rithm. Springer-Verlag, Berlin-Heidelberg, 2004.

[8] J. F. Gagne, V. Montminy, P. Belanger, K. Journault, G. Gaucher, and C. Guillemette.
Common human UGT1A polymorphisms and the altered metabolism of irinotecan ac-
tive metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Molecular Pharmacology , 62(3),
(2002), pp. 608-617.

[9] M. Haaz, L. Rivory, C. Rich, L. Vernillet, and J. Robert. Metabolism of Irinotecan (CPT-11) by
Human Hepatic Microsomes: Participation of Cytochrome P-450 3A and Drug Interactions.
Cancer Research, 58(3), (1998) , pp. 468-472.

[10] M. Haaz, C. Riche, L. P. Rivory, and J. Robert. Biosynthesis of an aminopiperidino metabo-
lite of irinotecan [7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecine] by
human hepaticmicrosomes. Drug Metabolism and Disposition, 26(8), (1998), pp. 769-774.

[11] C. T. Kelley, Implicit Filtering. Society for Industrial and Applied Mathematics, Philadelphia,
2011.

[12] C. T. Kelley, Iterative Methods for Optimization. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1999.

[13] L. Kirkwood, R. Nation, and A. Somogri. Characterization of the human cytochrome P450
enzymes involved in the metabolism of dihydrocodeine. British Journal of Clinical Phar-
macology, 44(6), (2003), pp. 549-555.

[14] A. Konagaya, Bioinformatics (in Japanese). The Institute of Electronics, Information and Com-
munication Engineering: Tokyo; 2009.

[15] A. Konagaya, Towards an In Silico Approach to Personalized Pharmacokinetics, in Meghea,
Molecular Interactions. InTech, (2012), pp. 263-282.

[16] L. F. Shampine, and M. W. Reichelt. The MATLAB ODE suite. SIAM Journal on Scientific
Computing, 18(1), (1997), pp. 1-22.

[17] J. G. Slatter, L. J. Schaaf, J. P. Sams, K. L. Feenstra, M. G. Johnson, P. A. Bombardt et
al. Pharmacokinetics, Metabolism, and Excretion of Irinotecan (CPT-11) Following I.V.
Infusion of [14C]CPT-11 in Cancer Patients. Drug Metabolism and Disposition, 28(4),
(2000) , pp. 423-433.

CLUSTER NEWTON METHOD 31

[18] J. G. Slatter, P. Su, J. Sams, L. Schaaf, and L. Wienkers. Bioactivation of the Anticancer
agent CPT-11 to SN-38 by human hepatic microsomal carboxylesterases and the in vitro
sssessment of potential drug interactions. Drug Metabolism and Disposition, 25(10), (1997),
pp. 1157-1164.

[19] B. Wang. Parameter Estimation for ODEs using a Cross-Entropy Approach. Master’s Degree
Thesis, University of Toronto, Toronto, Ontario, 2012.

[20] J. J. Moré and S. M. Wild. Estimating Computational Noise. SIAM Journal of Scientific
Computing, 33(3), (2011), pp. 1292-1314.

[21] S. Willmann, K. Hohn, A. Edginton, M. Sevestre, J. Solodenko, W. Weiss et al. Development of
a physiology-based whole-body population model for assessing the influence of individual
variability on the pharmacokinetics of drugs. Journal of Pharmacokinetics and Pharma-
codynamics, 34(3), (2007), pp. 401-431.

