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SUMMARY

Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal
residual (N-GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent
preconditioning variants are proposed. The first employs a line search, whereas the second employs a
predefined small step. A simple global convergence proof is provided for the N-GMRES optimization algo-
rithm with the first steepest descent preconditioner (with line search), under mild standard conditions on
the objective function and the line search processes. Steepest descent preconditioning for N-GMRES opti-
mization is also motivated by relating it to standard non-preconditioned GMRES for linear systems in the
case of a standard quadratic optimization problem with symmetric positive definite operator. Numerical
tests on a variety of model problems show that the N-GMRES optimization algorithm is able to very
significantly accelerate convergence of stand-alone steepest descent optimization. Moreover, performance
of steepest-descent preconditioned N-GMRES is shown to be competitive with standard nonlinear conju-
gate gradient and limited-memory Broyden–Fletcher–Goldfarb–Shanno methods for the model problems
considered. These results serve to theoretically and numerically establish steepest-descent preconditioned
N-GMRES as a general optimization method for unconstrained nonlinear optimization, with performance
that appears promising compared with established techniques. In addition, it is argued that the real potential
of the N-GMRES optimization framework lies in the fact that it can make use of problem-dependent nonlin-
ear preconditioners that are more powerful than steepest descent (or, equivalently, N-GMRES can be used as
a simple wrapper around any other iterative optimization process to seek acceleration of that process), and
this potential is illustrated with a further application example. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a recent paper on canonical tensor approximation [1], we have proposed an algorithm that accel-
erates convergence of the alternating least squares (ALS) optimization method for the canonical
tensor approximation problem considered there. The algorithm proceeds by linearly recombining
previous iterates in a way that approximately minimizes the residual (the gradient of the objective
function), using a nonlinear generalized minimal residual (N-GMRES) approach. The recombina-
tion step is followed by a line search step for globalization, and the resulting three-step N-GMRES
optimization algorithm is shown in [1] to significantly speed up the convergence of ALS for the
canonical tensor approximation problem considered.

As explained in [1] (which we refer to as Paper I in what follows), for the tensor approxima-
tion problem considered there, ALS can also be interpreted as a preconditioner for the N-GMRES
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optimization algorithm. The question then arises what other types of preconditioners can be consid-
ered for the N-GMRES optimization algorithm proposed in Paper I and whether there are universal
preconditioning approaches that can make the N-GMRES optimization algorithm applicable to non-
linear optimization problems more generally. In the present paper, we propose such a universal
preconditioning approach for the N-GMRES optimization algorithm proposed in Paper I, namely,
steepest descent preconditioning. We explain how updates in the steepest descent direction can,
indeed, naturally be used as a preconditioning process for the N-GMRES optimization algorithm.
In fact, we show that steepest descent preconditioning can be seen as the most basic precondi-
tioning process for the N-GMRES optmization method, in the sense that applying N-GMRES to a
quadratic objective function with symmetric positive definite (SPD) operator corresponds mathe-
matically to applying standard nonpreconditioned GMRES for linear systems to the linear system
corresponding to the quadratic objective function. We propose two variants of steepest descent pre-
conditioning, one with line search and one with a predefined small step. We give a simple global
convergence proof for the N-GMRES optimization algorithm with our first proposed variant of
steepest descent preconditioning (with line search), under standard mild conditions on the objec-
tive function and for line searches satisfying the Wolfe conditions. The second preconditioning
approach, without line search, is of interest because it is more efficient in numerical tests, but
there is no convergence guarantee. Numerical results are employed for a variety of test problems
demonstrating that N-GMRES optimization can significantly speed up stand-alone steepest descent
optimization. Performance of N-GMRES with steepest descent preconditioning is compared with
the standard steepest descent method and with two well-known and widely used nonlinear optimiza-
tion methods, namely the nonlinear conjugate gradient (N-CG) method and the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method.

1.1. Numerical methods for unconstrained nonlinear optimization

We consider the following unconstrained nonlinear optimization problem with associated first-order
optimality equations:

Optimization Problem I:

find u� that minimizesf .u/. (1.1)

First-order optimality equations I:

rf .u/D g.u/D 0. (1.2)

Many of the most widely used nonlinear unconstrained optimization methods are formulated either
within the line search or within the trust region frameworks [2]. In the line search framework, the
algorithm computes a search direction pk and searches along this direction for a new iterate ukC1
with a lower function value, starting from the current iterate, uk . Two prototypical choices for the
search direction are provided by the steepest descent direction, pk D �rf .uk/, and the Newton
direction, pk D �.r2f .uk//�1 rf .uk/. The steepest descent method is simple (it only requires
computation of the gradient) and is inexpensive per step, but its convergence can be very slow.
Newton’s method has a quadratic local convergence rate, but it is expensive per step (it requires
computing the Hessian matrix and inverting it), and fast convergence only kicks in once iterates
are sufficiently close to the solution. For both methods, the line search process is an essential
“globalization” mechanism that guides the algorithm to the solution, guarding against erratic behav-
ior and divergence. Line search procedures typically generate a limited number of trial step lengths,
until a step length is found that satisfies certain conditions on sufficient decrease in function value
and gradient size. A well-known set of line search conditions are the so-called Wolfe conditions
[2]. These line search conditions are also often used in convergence analysis. For example, when
line searches are employed that satisfy the Wolfe conditions, global convergence can be proved for
steepest descent and for Newton’s method with suitably modified Hessian matrix (see Chapter 3
of [2]).

As an alternative to the full Newton method, so-called quasi-Newton methods attempt to attain
a superlinear convergence rate while avoiding computation of the Hessian. In place of the true
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Hessian r2f .uk/, they use an approximation that is updated after each step by using gradient infor-
mation, often satisfying a secant equation. One of the most popular methods in this class is the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, which updates the Hessian with a rank-two
matrix in every step. Storing the full Hessian is memory-inefficient for large problems, and a limited-
memory version of BFGS (L-BFGS) has been developed which stores only a few vectors that
implicitly represent the approximate Hessian. Another approach within the line search framework
is provided by nonlinear versions of the conjugate gradient method, which was originally developed
for solving symmetric positive definite systems of linear equations. Like our N-GMRES algorithm,
N-CG is a generalization to nonlinear optimization of a Krylov method for linear equations. N-CG
is attractive because it does not require matrix storage, and it improves significantly on steepest
descent in terms of convergence speed.

An alternative to the line search globalization mechanism is provided by the trust region approach.
This approach is not considered in this paper, but we mention it for completeness. In the trust region
approach, a quadratic model function is constructed in each step whose behavior near the current
iterate uk is similar to that of the objective function, f .u/. A minimizer of the quadratic model
is sought in a trust region about uk with radius �k . If this minimizer does not produce a suffi-
cient decrease, �k is reduced until a suitable minimizer ukC1 is found, after which the quadratic
model function is computed for ukC1 in the next step of the iterative procedure. Popular approaches
for building the quadratic model function are to use the Hessian (trust-region Newton method) or
approximations to it (trust region quasi-Newton methods).

Our new N-GMRES method uses line search as the globalization mechanism. In this paper, we
compare our N-GMRES method with the N-CG and L-BFGS line search methods, which are two
well-established algorithms for nonlinear optimization that are widely used in practice.

1.2. The nonlinear generalized minimal residual optimization algorithm from [1]

The N-GMRES optimization algorithm proposed in Paper I for accelerating ALS for canonical
tensor approximation consists of three steps that can be summarized as follows. (Figure 1 gives
a schematic representation of the algorithm, and it is described in pseudo-code in Algorithm 1.)
In the first step, a preliminary new iterate NuiC1 is generated from the last iterate ui by using a
one-step iterative update process M../, which can be interpreted as a preconditioning process (see
Paper I and Section 2). ALS preconditioning is used for M../ in Paper I. In the second step, an
accelerated iterate OuiC1 is obtained by linearly recombining previous iterates in a window of size
w, .ui�wC1, : : : , ui /, using an N-GMRES approach. (The details of this step will be recalled in
Section 2.) In the third step, a line search is performed that minimizes objective function f.u/ on a
half line starting at the preliminary iterate NuiC1, which was generated in Step I, and connecting it
with accelerated iterate OuiC1, which was generated in Step II, to obtain the new iterate uiC1.

(Note that the w initial iterates required in Algorithm 1 can naturally be generated by applying
the algorithm with a window size that gradually increases from 1 up to w, starting from a single
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Figure 1. Schematic representation of one iteration of the nonlinear generalized minimal residual opti-
mization algorithm (from [1]); see Algorithm 1. Given previous iterates u0, u1, and u2, new iterate u3
is generated as follows. In Step I, preliminary iterate Nu3 is generated by the one-step update process M../:
Nu3 DM.u2/. In Step II, the nonlinear generalized minimal residual step, accelerated iterate Ou3 is obtained
by determining the coefficients ˛j in Ou3 D Nu3C˛0d0C˛1d1C˛2d2 such that the gradient of the objective
function in Ou3 is approximately minimized. In Step III, the new iterate, u3, is finally generated by a line

search that minimizes the objective function f . Nu3C ˇ. Ou3 � Nu3//.
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initial guess. Also, as in [1], we perform a restart and reset the window size back to 1 whenever
OuiC1 � NuiC1 is not a descent direction.)

The second step in the N-GMRES optimization algorithm (Step II in Algorithm 1) uses the non-
linear extension of GMRES for solving nonlinear systems of equations that was proposed by Washio
and Oosterlee in [3] in the context of nonlinear partial differential equation systems (see also [4] and
[5] for further applications to partial differential equation systems). It is a nonlinear extension of the
celebrated GMRES method for iteratively solving systems of linear equations [6, 7]. Washio and
Oosterlee’s nonlinear extension is related to flexible GMRES as described in [8] and is also related
to the reduced rank extrapolation method [9]. An early description of this type of nonlinear iterate
acceleration ideas for solving nonlinear equation systems appears in the so-called Anderson mixing,
see, for example, [10,11]. More recent applications of these ideas to nonlinear equation systems and
fixed-point problems are discussed in [10,11]. In Paper I, we formulated an N-GMRES optimization
algorithm for canonical tensor decomposition that uses this type of acceleration as one of its steps,
combined with an ALS preconditioning step and a line search for globalization. The type of non-
linear iterate acceleration in Step II of Algorithm 1 has thus been considered several times before
in the context of solving nonlinear systems of equations, but we believe that its combination with
a line search to obtain a general preconditioned nonlinear optimization method as in Algorithm 1
(see Paper I) is new in the optimization context. In the present paper, we show how this N-GMRES
optimization approach can be applied to a broad class of sufficiently smooth nonlinear optimization
problems by using steepest descent preconditioning. We establish theoretical convergence properties
for this approach and demonstrate its effectiveness in numerical tests.

The rest of this paper is structured as follows. In Section 2, we propose two types of steepest
descent preconditioners for N-GMRES optimization Algorithm 1. We briefly recall the details of
the N-GMRES optimization step, give a motivation and interpretation for steepest descent precon-
ditioning that relate it to nonpreconditioned GMRES for SPD linear systems, and give a simple
proof for global convergence of the N-GMRES optimization algorithm using steepest descent pre-
conditioning with line search. In Section 3, we present extensive numerical results for N-GMRES
optimization with the two proposed steepest descent preconditioners, applied to a variety of nonlin-
ear optimization problems, and compare with the stand-alone steepest descent method, N-CG and
L-BFGS. Finally, Section 4 concludes.

2. STEEPEST DESCENT PRECONDITIONING FOR N-GMRES OPTIMIZATION

In this section, we first propose two variants of steepest descent preconditioning. We then briefly
recall the details of the N-GMRES recombination step (Step II in Algorithm 1) and relate N-GMRES
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optimization to standard nonpreconditioned GMRES for linear systems in the case of a simple
quadratic optimization problem with SPD operator. Finally, we give a simple global convergence
proof for the N-GMRES optimization algorithm in the case of steepest descent preconditioning
with line search.

2.1. Steepest descent preconditioning process

We propose a general steepest descent preconditioning process for Step I of N-GMRES optimization
Algorithm 1 with the following two variants:

Steepest descent preconditioning process:

NuiC1 D ui � ˇ
rf .ui /
krf .ui /k

with

Option A: ˇ D ˇsdls, (2.1)

Option B: ˇ D ˇsd Dmin.ı , krf .ui /k /. (2.2)

For option A, ˇsdls is the step length obtained by a line search procedure. For definiteness, we con-
sider a line search procedure that satisfies the Wolfe conditions. We refer to the steepest descent
preconditioning process with line search (2.1) as the “sdls” preconditioner. For option B, we pre-
define the step ˇsd as the minimum of a small positive constant ı and the norm of the gradient.
In the numerical results to be presented later in the paper, we use ı D 10�4, except where noted.
We refer to the steepest descent preconditioning process with predefined step ˇsd (2.2) as the “sd”
preconditioner. These two options are quite different, and some discussion is in order.

Preconditioning process A can be employed as a stand-alone optimization method (it can converge
by itself), and N-GMRES can be considered as a wrapper that accelerates this stand-alone process.
We will show later that N-GMRES with preconditioning process A has strong convergence proper-
ties, but it may be expensive because the line search may require a significant number of function
and gradient (f=g) evaluations. However, the situation is very different for preconditioning pro-
cess B. Here, no additional f=g evaluations are required, but convergence appears questionable. It
is clear that preconditioning process B cannot be used as a stand-alone optimization algorithm; in
most cases, it would not converge. It can, however, still be used as a preconditioning process for
N-GMRES. As is well-known and will be further illustrated in the succeeding discussions, precon-
ditioners used by GMRES for linear systems do not need to be convergent by themselves, and this
suggests that it may be interesting to consider this for N-GMRES optimization as well. As will be
motivated further in Section 2.3, the role of the N-GMRES preconditioning process is to provide
new “useful” directions for the nonlinear generalization of the Krylov space, and the iteration can
be driven to convergence by the N-GMRES minimization, even if the preconditioner is not conver-
gent by itself. However, for this to happen in the three-step N-GMRES optimization algorithm with
preconditioning process B, it is required that NuiC1 eventually approaches ui and the step length ˇsd

approaches 0. For this reason, we select ˇsd D krf .ui /k as soon as krf .ui /k6 ı. The initial step
length ˇsd is chosen to be not larger than a small constant because the linear case suggests that a
small step is sufficient to provide a new direction for the Krylov space (see Section 2.3), and because
the minimization of the residual is based on a linearization argument, and small steps tend to lead
to small linearization errors (see Section 2.2).

2.2. Nonlinear generalized minimal residual recombination step

Before relating steepest-descent preconditioned N-GMRES to nonpreconditioned GMRES for lin-
ear systems, we first recall from [1] some details of the N-GMRES recombination step, Step II
in Algorithm 1. In this step, we find an accelerated iterate OuiC1 that is obtained by recombining
previous iterates as follows:

OuiC1 D NuiC1C
iX

jD0

˛j . NuiC1 � uj /. (2.3)
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The unknown coefficients ˛j are determined by the N-GMRES algorithm in such a way that the
two norm of the gradient of the objective function evaluated at the accelerated iterate is small, in the
following sense. In general, g../ is a nonlinear function of ˛j , and linearization is used to allow for
inexpensive computation of coefficients ˛j that may approximately minimize kg. OuiC1/k2. Using
the approximations

g. OuiC1/� g. NuiC1/C
iX

jD0

@g
@u

ˇ̌̌
ˇ
NuiC1

˛j . NuiC1 � uj /

� g. NuiC1/C
iX

jD0

˛j .g. NuiC1/� g.uj //, (2.4)

one arrives at the following minimization problem:

find coefficients .˛0, : : : ,˛i / that minimize

kg. NuiC1/C
iX

jD0

˛j .g. NuiC1/� g.uj //k2. (2.5)

This is a standard least-squares problem that can be solved, for example, by using the normal equa-
tions, as explained in [1, 3]. (In this paper, we solve the least-squares problem as described in [1].)
In a windowed implementation with window size w, the memory cost incurred by N-GMRES
acceleration is the storage of w previous approximations and residuals. The dominant parts of the
CPU cost for each acceleration step are the cost of building and solving the least-squares system
(which can be performed in approximately 2nw flops if the normal equations are used and some
previous inner products are stored, see [3]), and nw flops to compute the accelerated iterate. For
problems with expensive objective functions, this cost is often negligible compared with the cost
of the f=g evaluations in the line searches [1]. An alternative to the normal equations approach
would be to use QR decomposition, which has better stability properties. As is explained in [11]
for a similar algorithm applied to fixed-point iterations, computations can be organized such that
information can be reused from previous steps: the QR factorization in step i can efficiently be
obtained from the QR factorization in step i � 1 in O.nw/ operations, with the use of standard QR
factor-updating techniques.

2.3. Motivation and interpretation for steepest descent preconditioning

Consider a standard quadratic minimization problem with objective function

f .u/D
1

2
uTAu� bT u, (2.6)

whereA is an SPD matrix. It is well known that its unique minimizer satisfiesAuDb. Now, consider
applying the N-GMRES optimization algorithm with steepest descent preconditioner to the
quadratic minimization problem. The gradient of f at approximation ui is given by

rf .ui /D Aui � bD�ri with ri D b�Aui , (2.7)

where ri is the residual of the linear system Au D b in ui . N-GMRES steepest descent
preconditioner (2.1)–(2.2) then reduces to the form

NuiC1 D ui C ˇ
ri
krik

, (2.8)

where NuiC1 is the preliminary new iterate, see Figure 1, and it can easily be shown that this cor-
responds to the stationary iterative method that generates the Krylov space in nonpreconditioned
linear GMRES applied to Au D b. We now briefly show this because it provides further insight
(recalling parts of the discussion in [1,3]). (Note also that GMRES reduces to the Minimal Residual
(MINRES) algorithm in the case of SPD matrices, see, e.g., [6].)
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We first explain how preconditioned GMRES for Au D b works. Consider stationary iterative
methods for AuD b of the following form:

uiC1 D ui CM�1 ri . (2.9)

Here, matrixM is an approximation ofA that has an easily computable inverse, that is,M�1 � A�1.
For example, M can be chosen to correspond to Gauss–Seidel or Jacobi iteration, or to a multigrid
cycle [3].

Consider a sequence of iterates u0, : : : , ui generated by update formula (2.9), starting from some
initial guess u0. Note that the residuals of these iterates are related as

ri D b�Aui D .I �AM�1/ ri�1 D .I �AM�1/i r0. (2.10)

This motivates the definition of the following vector spaces:

V1,iC1 D spanfr0, : : : , rig,

V2,iC1 D spanfr0,AM�1r0, .AM�1/2r0g, : : : , .AM�1/ir0g

DKiC1.AM
�1, r0/,

V3,iC1 D spanfM.u1 � u0/,M.u2 � u1/, : : : ,M.uiC1 � ui /g,

V4,iC1 D spanfM.uiC1 � u0/,M.uiC1 � u1/, : : : ,M.uiC1 � ui /g.

Vector space V2,iC1 is the so-called Krylov space KiC1.AM�1, r0/ of order i C 1, generated by
matrix AM�1 and vector r0. It is easy to see that these vector spaces are equal [3]:

Lemma 2.1
V1,iC1 D V2,iC1 D V3,iC1 D V4,iC1.

Proof
First, V1,iC1 D V2,iC1 by (2.10), which directly shows that rj 2 V2,iC1 for all j , and .AM�1/j r0 2
V1,iC1 for all j follows by recursion.
Second, V1,iC1 D V3,iC1 because M .uiC1 � ui /D ri , by (2.9).
Third, V3,iC1 D V4,iC1 because, for k < i C 1, uiC1 � uk D

PiC1
jDkC1 .uj � uj�1/, and

uk � uk�1 D .uiC1 � uk�1/� .uiC1 � uk/. �

Expression (2.9) shows that M.uiC1 � ui / 2 KiC1.AM�1, r0/. The GMRES procedure can be
seen as a way to accelerate stationary iterative method (2.9), by recombining iterates (or, equiva-
lently, by reusing residuals). In particular, we seek a better approximation OuiC1, with M. OuiC1�ui /
in the Krylov space KiC1.AM�1, r0/, such that OriC1 D b�A OuiC1 has minimal two norm. In other
words, we seek optimal coefficients ˇj in

M. OuiC1 � ui /D
iX

jD0

ˇjM.uiC1 � uj /,

and it is easy to show that this corresponds to seeking optimal coefficients ˛j in

OuiC1 D uiC1C
iX

jD0

˛j .uiC1 � uj /, (2.11)

such that kOriC1k2 is minimized (which leads to a small least-squares problem equivalent to (2.5)).
Note that V1,iC1 and V2,iC1 do not easily generalize to the nonlinear case, but the image of V4,iC1

under M�1, spanfuiC1 � u0, uiC1 � u1, : : : , uiC1 � uig, does generalize naturally and is taken as
the “generalized Krylov space” that is used to seek the approximation in the nonlinear case.

Up to this point, we have presented GMRES as a way to accelerate one-step stationary iterative
method (2.9). A more customary way, however, to see GMRES is in terms of preconditioning. The
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approach described earlier reduces to “nonpreconditioned” GMRES when one sets M D I . Apply-
ing nonpreconditioned GMRES to the preconditioned linear equation system AM�1.Mu/ D b
also results in the expressions for preconditioned GMRES derived previously. In this viewpoint, the
matrix M�1 is called the preconditioning matrix, because its role is viewed as to precondition the
spectrum of the linear system operator such that the (nonpreconditioned) GMRES method applied to
.AM�1/yD b becomes more effective. It is also sometimes said that the stationary iterative process
preconditions GMRES (e.g., Gauss–Seidel, Jacobi, or multigrid can precondition GMRES [3]). We
can summarize that the role of the stationary iterative method is to generate preconditioned residu-
als that build the Krylov space. (Note that considering right-preconditioning [7] leads to the desired
equivalence here, similar as in the case of flexible GMRES [8], where right-preconditioning enables
the use of preconditioners that vary from step to step, as in the case of N-GMRES.)

In our presentation, all iterates uj for j D 0, : : : , i (e.g., in the right-hand side of (2.11)) referred
to the unaccelerated iterates generated by stationary iterative method (2.9). However, the formulas
remain valid when accelerated iterates are used instead; this does change the values of the coef-
ficients ˛j but leads to the same accelerated iterates [3]. This is so because the Krylov spaces
generated in the two cases are identical due to linearity (see (2.10)), and consequently, GMRES
selects the same optimal improved iterate.

This brings us to the point where we can compare steepest-descent preconditioned N-GMRES
applied to quadratic objective function (2.6) with SPD operator A with nonpreconditioned linear
GMRES applied to Au D b. Assume we have w previous iterates ui and residuals ri . Stationary
iterative process (2.9) without preconditioner (M D I ) would add a vector to the Krylov space
which has the same direction as the vector that would be added to it by the steepest descent precon-
ditioning process (2.8). This means that the accelerated iterate OuiC1 produced by N-GMRES with
steepest descent preconditioner applied to quadratic objective function (2.6) with SPD operator
A is the same as the accelerated iterate OuiC1 produced by linear GMRES with identity precondi-
tioner applied to AuD b. This motivates our proposal to use steepest descent preconditioning as the
natural and most basic preconditioning process for the N-GMRES optimization algorithm applied
to general nonlinear optimization problems.

Note that, in the case of linear systems, the efficiency of GMRES as an acceleration technique
for stationary iterative methods can be understood in terms of how optimal polynomials can damp
modes that are slow to converge [3, 7]. In the case of N-GMRES for nonlinear optimization, if
the approximation is close to a stationary point and the nonlinear residual vector function g../
can be approximated well by linearization, then it can be expected that the use of the subspace
spanfuiC1�u0, uiC1�u1, : : : , uiC1�uig for acceleration may give efficiency similar to the linear
case [3]. Also, restarting N-GMRES is analogous to restarting GMRES [7]. Note, finally, that the
discussion in this section also explains why a small step is allowed in the sd preconditioner of (2.2)
(basically, in the linear case, the size of the coefficient does not matter for the Krylov space, in exact
arithmetic), and the linearization argument of (2.4) indicates that a small step may be beneficial.

2.4. Convergence theory for N-GMRES optimization with steepest descent preconditioning

We now formulate and prove a convergence theorem for N-GMRES optimization Algorithm 1 using
steepest descent preconditioning with line search (2.1). We assume that all line searches provide step
lengths that satisfy the Wolfe conditions [2]:

Sufficient decrease condition:

f .ui C ˇipi /6 f .ui /C c1ˇirf .ui /T pi , (2.12)

Curvature condition:

rf .ui C ˇipi /T pi > c2rf .ui /T pi , (2.13)

with 0 < c1 < c2 < 1. Condition (2.12) ensures that large steps are taken only if they lead to a
proportionally large decrease in f . Condition (2.13) ensures that a step is taken large enough to
sufficiently increase the gradient of f in the line search direction (make it less negative). Global
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convergence (in the sense of convergence to a stationary point from any initial guess) can then be
proved easily using standard approaches [2, 12]:

Theorem 2.2 (Global convergence of N-GMRES optimization algorithm)
Consider N-GMRES optimization Algorithm 1 with steepest descent line search preconditioning
(2.1) for Optimization Problem I and assume that all line search solutions satisfy the Wolfe condi-
tions, (2.12) and (2.13). Assume that the objective function f is bounded below in Rn and that f is
continuously differentiable in an open set N containing the level set LD fu W f .u/6 f .u0/g, where
u0 is the starting point of the iteration. Assume also that the gradient rf is Lipschitz continuous
on N , that is, there exists a constant L such that krf .u/�rf . Ou/k 6 Lku� Ouk for all u, Ou 2 N .
Then the sequence of N-GMRES iterates fu0, u1, : : :g is convergent to a fixed point of Optimization
Problem I in the sense that

lim
i!1
krf .ui /k D 0. (2.14)

Proof
Consider the sequence fv0, v1, : : :g formed by the iterates u0, Nu1, u1, Nu2, u2, : : : of Algorithm I, but
with Nui removed if Oui � Nui is not a descent direction in Step III of the algorithm ( Nui equals ui in
this case). Then, all iterates vi are of the form vi D vi�1 C ˇi�1pi�1, with pi�1 a descent direc-
tion and ˇi�1 such that the Wolfe conditions are satisfied. According to Theorem 3.2 of [2] (p. 38,
Zoutendijk’s Theorem), we have that

1X
iD0

cos2 �ikrf .vi /k2 <1, (2.15)

with

cos �i D
�rf .vi /T pi
krf .vi /kkpik

, (2.16)

which implies that

lim
i!1

cos2 �ikrf .vi /k2 D 0. (2.17)

Consider the subsequence fkrf .ui /kg of fkrf .vi /kg. Because all the ui are followed by a
steepest descent step in the algorithm, the �i corresponding to all the elements of fkrf .ui /kg sat-
isfy cos �i D 1. Therefore, it follows from (2.17) that limi!1 krf .ui /k D 0, which concludes
the proof. �

Note that the notion of convergence (2.14) we prove in Theorem 2.2 for N-GMRES optimization
with steepest descent line search preconditioning is stronger than the type of convergence that can
be proved for some N-CG methods [2, 12], namely,

lim
i!1

inf krf .ui /k D 0. (2.18)

Note also that in Theorem 2.2, we do not prove that sequence fkrf . Nui /kg converges to 0. It
may be possible to prove this under the stated conditions by using more advanced tools, but it is
also possible that stronger conditions are required to guarantee that fkrf . Nui /kg ! 0. In any case,
we are able to prove the strong global convergence result (2.14) for the iterates ui of N-GMRES
optimization with steepest descent line search preconditioning under the conditions of Theorem 2.2:
sequence fkrf .ui /kg converges to 0.

3. NUMERICAL RESULTS

We now present extensive numerical results for the N-GMRES optimization algorithm with steepest
descent preconditioners (2.1) and (2.2), compared with stand-alone steepest descent optimization,
N-CG and L-BFGS.
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In all tests, we utilize the Moré–Thuente line search method [13] and the N-CG and L-BFGS
optimization methods as implemented in the Poblano toolbox for MATLAB (MathWorks, Inc.,
Natick, Massachusetts, USA) [14]. For all experiments, the Moré–Thuente line search parame-
ters used were as follows: function value tolerance c1 D 10�4 for (2.12), gradient norm tolerance
c2 D 10�2 for (2.13), starting search step length ˇ D 1, and a maximum of 20 f=g evaluations
are used. These values were also used for the N-CG and L-BFGS comparison runs. Note that the
Moré–Thuente line search is designed to compute a line search step length that satisfies the Wolfe
conditions. We use the N-CG variant with Polak-Ribière update formula and the two-loop recursion
version of L-BFGS [2]. We normally choose the N-GMRES window size w equal to 20, which is
confirmed to be a good choice in the numerical tests described in this section. The L-BFGS window
size chosen is equal to 5 (we found that larger window sizes tend to harm L-BFGS performance for
the tests we considered). All initial guesses are determined uniformly randomly with components in
the interval Œ0, 1�, and when we compare different methods, they are given the same random initial
guess. All numerical tests were run on a laptop with a dual-core 2.53 GHz Intel Core i5 processor
and 4 GB of 1067 MHz DDR3 memory. MATLAB version 7.11.0.584 (R2010b) 64-bit (maci64) was
used for all tests.

3.1. Test problem description

We first describe the seven test problems we consider. In what follows, all vectors are chosen in Rn,
and all matrices in Rn�n.

Problem A. Quadratic objective function with SPD diagonal matrix.

f .u/D
1

2
.u� u�/TD.u� u�/C 1, (3.1)

withD D diag.1, 2, : : : ,n/.

This problem has a unique minimizer u� in which f � D f .u�/ D 1. We choose u� D .1, : : : , 1/.
Note that g.u/DD.u�u�/, and the condition number ofD is given by � D n. It is well known that
for problems of this type, large condition numbers tend to lead to slow convergence of the steepest
descent method due to a zig-zag effect. Problem A can be used to show how methods such as N-CG
and N-GMRES improve over steepest descent and mitigate this zig-zag effect.

Problem B. Problem A with paraboloid coordinate transformation.

f .u/D
1

2
y.u� u�/TDy.u� u�/C 1, (3.2)

withD D diag.1, 2, : : : ,n/ and y.x/ given by

y1.x/D x1 and yi .x/D xi � 10x21.i D 2, : : : ,n/.

This modification of Problem A still has a unique minimizer u� in which f � D f .u�/ D 1.
We choose u� D .1, : : : , 1/. The gradient of f .u/ is given by g.u/ D D y.u � u�/ � 20
.u1 � u

�
1/.
Pn
jD2.Dy.u � u�//j /Œ1, 0, : : : , 0�T . This modification of Problem A increases nonlin-

earity (the objective function is now quartic in u) and changes the level surfaces from ellipsoids
into parabolically skewed ellipsoids. As such, the problem is more difficult for nonlinear opti-
mization methods. For n D 2, the level curves are modified from elliptic to “banana-shaped”. In
fact, the objective function of Problem B is a multidimensional generalization of Rosenbrock’s
“banana” function.

Problem C. Problem B with a random nondiagonal matrix with condition number � D n.

f .u/D
1

2
y.u� u�/T T y.u� u�/C 1, (3.3)

with T DQ diag.1, 2, : : : ,n/ QT , where Q is a

random orthogonal matrix and y.x/ is given by

y1.x/D x1 and yi .x/D xi � 10x21 .i D 2, : : : ,n/.
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This modification of Problem B still has a unique minimizer u� in which f � D f .u�/ D 1.
We choose u� D .1, : : : , 1/. The gradient of f .u/ is given by g.u/ D T y.u � u�/ � 20
.u1�u

�
1/.
Pn
jD2.T y.u�u�//j /Œ1, 0, : : : , 0�T . The random matrixQ is theQ factor obtained from

a QR-factorization of a random matrix with elements uniformly drawn from the interval Œ0, 1�. This
modification of Problem B introduces nonlinear “mixing” of the coordinates (cross-terms) and fur-
ther increases the difficulty of the problem.

Problem D. Extended Rosenbrock function, problem (21) from [15].

f .u/D
1

2

nX
jD1

t2j .u/, with n even and

tj D 10.ujC1 � u
2
j / (j odd),

tj D 1� uj�1 (j even).

Note that g.u/ can easily be computed using gk.u/D
Pn
jD1 tj @tj =@uk (k D 1, : : : ,n).

Problem E. Extended Powell singular function, problem (22) from [15].

f .u/D
1

2

nX
jD1

t2j .u/, with n a multiple of 4 and (3.4)

t4i�3 D u4i�3C 10u4i�2,

t4i�2 D
p
5.u4i�1 � u4i /,

t4i�1 D .u4i�2 � 2u4i�1/
2,

t4i D
p
10.u4i�3 � u4i /

2 for i D 1, : : : ,n=4.

Problem F. Trigonometric function, problem (26) from [15].

f .u/D
1

2

nX
jD1

t2j .u/, with

tj D n�

 
nX
iD1

cosui

!
� j.1� cosuj /� sinuj .

Problem G. Penalty function I, problem (23) from [15].

f .u/D
1

2

0
@
0
@ nX
jD1

t2j .u/

1
AC t2nC1.u/

1
A , with

tj D
p
10�5.uj � 1/ .j D 1, : : : ,n/,

tnC1 D

 
nX
iD1

u2i

!
� 0.25.

3.2. Numerical results for Problems A–C

Before presenting average performance comparisons for the different methods applied to Problems
A–C in Table I, we first present some convergence plots for instances of Problems A–C. Figure 2
shows results for an instance of Problem A. (To make the plots less dense and avoid cluttered
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Table I. Average number of f=g evaluations needed to reach jf .ui / � f �j < 10�6 for 10 instances of
Problems A–C with random initial guess and with different sizes. Numbers in brackets give the number of

random trials (out of 10) that did not converge to the required tolerance within 1500 iterations (if any).

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS

A n=100 242 111 84 73
A n=200 406 171 127 104
B n=100 1,200 395 198 170
B n=200 1,338 752 606 321
C n=100 926(1) 443 13,156(7) 151
C n=200 1,447 461 26,861(9) 204

N-GMRES, nonlinear generalized minimal residual method; sdls, steepest descent preconditioning with line
search; sd, steepest descent preconditioning with predefined step; N-CG, nonlinear conjugate gradient method;
L-BFGS, limited-memory Broyden–Fletcher–Goldfarb–Shanno.
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Figure 2. Problem A (n D 100). Convergence histories of the 10 logarithms of jf .ui / � f �j and
kg.ui /k as a function of iterations and f=g evaluations. N-GMRES-sdls is the nonlinear generalized min-
imal residual (N-GMRES) optimization algorithm using steepest descent preconditioning with line search,
N-GMRES-sd is the N-GMRES optimization algorithm using steepest descent preconditioning with prede-
fined step, N-CG is the Polak-Ribière nonlinear conjugate gradient method, L-BFGS is the limited-memory
Broyden–Fletcher–Goldfarb–Shanno method, and sdls is the stand-alone steepest descent method with line
search. (a) convergence to f*; (b) convergence of the gradient norm; (c) convergence to f*, with f and g

evaluations; and (d) convergence of the gradient norm, with f and g evaluations.

plotting symbols, we only plot data points corresponding to every fifth iteration.) We see that
stand-alone sdls converges slowly, which is expected because the condition number of matrix D is
� D 100. Both N-GMRES optimization using steepest descent preconditioning with line search (2.1)
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(N-GMRES-sdls) and N-GMRES optimization using steepest descent preconditioning with prede-
fined step (2.2) (N-GMRES-sd) are significantly faster than stand-alone sdls, in terms of iterations
and f=g evaluations, confirming that the N-GMRES acceleration mechanism is effective, and steep-
est descent is an effective preconditioner for it. As could be expected, the preconditioning line
searches of N-GMRES-sdls add significantly to its f=g evaluation cost, and N-GMRES-sd is more
efficient. N-GMRES accelerates steepest descent up to a point where performance becomes com-
petitive with N-CG and L-BFGS. It is important to note that convergence profiles such as the ones
presented in Figure 2 tend to show significant variation depending on the random initial guess. The
instances presented are arbitrary and not hand-picked with a special purpose in mind (they simply
correspond to random seed 0 in our MATLAB code), and we show them because they do provide
interesting illustrations and show patterns that we have verified to be quite general over many ran-
dom instances. However, they cannot reliably be used to conclude on detailed relative performance
of various methods. For this purpose, we provide tables that compare performance averaged over a
set of random trials.
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Figure 3. Problem A (n D 100). Effect of varying window size w on jf .ui / � f �j and kg.ui /k conver-
gence for nonlinear generalized minimal residual method using steepest descent preconditioning with line
search (N-GMRES-sdls) and N-GMRES method using steepest descent preconditioning with predefined
step (N-GMRES-sd) as a function of f=g evaluations. Window size w D 20 emerges as a suitable choice,
leading to rapid convergence. These results give some general indication that, if sufficient memory is avail-
able, w D 20 may be a good choice. However, if memory is scarce, w D 3 already provides good results,
especially for N-GMRES-sd. (a) Convergence to f*, N-GMRES with sd preconditioner; (b) gradient norm
convergence, N-GMRES with sd preconditioner; (c) convergence to f*, N-GMRES with sdls preconditioner;

and (d) gradient norm convergence, N-GMRES with sdls preconditioner.
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Figure 3 shows the effect of varying the window size w on jf .ui / � f �j and kg.ui /k conver-
gence for N-GMRES-sdls and N-GMRES-sd optimization as a function of f=g evaluations, for an
instance of Problem A. Window size w D 20 emerges as a suitable choice if sufficient memory is
available, leading to rapid convergence. However, window sizes as small as w D 3 already provide
good results, especially for N-GMRES-sd. This indicates that satisfactory results can be obtained
with small windows, which may be useful if memory is scarce. We use window size w D 20 for all
numerical results in this paper.

Figure 4 shows results for an instance of Problem C, which is a modification of Problem A
introducing a nonlinear coordinate transformation (as in Problem B) and random nonlinear mix-
ing of the coordinate directions. The figure shows that stand-alone sdls is very slow, confirms that
N-GMRES-sdls and N-GMRES-sd significantly speed up steepest descent, and shows that
N-GMRES-sd and L-BFGS perform much better than N-CG for this problem.

Table I confirms the trends that were already present in the specific instances of test problems A
and C that were shown in Figures 2 and 4. The table gives the average number of f=g evaluations
that were needed to reach jf .ui / � f �j < 10�6 for 10 random instances of Problems A–C with
different sizes. For Problems A and B, N-GMRES-sdls and N-GMRES-sd consistently give f=g
evaluation counts that are of the same order of magnitude as N-CG. N-GMRES-sd comes close to
being competitive with N-CG. L-BFGS is the fastest method for all problems in Table I. For the
more difficult Problem C, N-GMRES-sdls, N-GMRES-sd, and L-BFGS are significantly faster than
N-CG, which appears to have convergence difficulties for this problem. N-GMRES-sd is clearly
faster than N-GMRES-sdls for all tests.
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Figure 4. Problem C (n D 100). Convergence comparison. (a) convergence to f*; (b) convergence of the
gradient norm; (c) convergence to f*, with f and g evaluations; and (d) convergence of the gradient norm,

with f and g evaluations.
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In these comparisons, it is also interesting to consider the computational cost per iteration in addi-
tion to the cost of the f=g evaluations. The cost of the f=g evaluations may dominate in many cases,
but sometimes the other costs are not negligible. As discussed before, N-GMRES requires approxi-
mately 3nw operations per step to solve the least-squares problem and update the solution, L-BFGS
requires approximately 5nw operations per step (the two-loop recursion version, see [2]), and N-CG
requires approximately 4n operations. We use somewhat larger window size for N-GMRES than for
L-BFGS, and their additional costs per iteration are expected to be comparable (within a factor of 2
or so). The additional cost per N-CG iteration is expected to be about 10 times smaller.

3.3. Numerical results for Problems D–G

Figure 5 gives convergence plots for a single instance of Problem D. It confirms the observa-
tions from Figures 2 and 4: for this standard test problem from [15], stand-alone sdls again is
very slow, and N-GMRES-sdls and N-GMRES-sd significantly speed up steepest descent conver-
gence. N-GMRES-sdls and N-GMRES-sd have iteration and f=g counts that are of the same order
of magnitude as N-CG and L-BFGS, and in particular, N-GMRES-sd is competitive with N-CG
and L-BFGS. Convergence plots for instances of Problems E–G show similar behavior and are
not presented.

Figure 6 gives convergence plots for an instance of Problem D investigating the effect of varying
the steepest descent parameter ı in ˇsd of (2.2) for N-GMRES-sd optimization. It can be seen that
there is a rather broad range about our choice of ı D 10�4 that appears suitable, but choosing ı
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Figure 5. Problem D (n D 1000). Convergence comparison. (a) convergence to f*; (b) convergence of the
gradient norm; (c) convergence to f*, with f and g evaluations; and (d) convergence of the gradient norm,

with f and g evaluations.
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Figure 6. Problem D (n D 1000). Effect of varying steepest descent parameter ı on jf .ui / � f �j conver-
gence for the nonlinear generalized minimal residual optimization method using steepest descent precondi-
tioning with predefined step (N-GMRES-sd) as a function of f=g evaluations. Steepest descent parameter

ı D 10�4 emerges as a suitable choice, leading to rapid convergence.

too large (like 1) or too small (like 10�7) leads to much decreased performance. We have found
ı D 10�4 to be a suitable choice for the test problems reported in this paper.

Tables II and III on f=g evaluation counts for Problems E–G again confirm the trends that were
observed before. N-GMRES-sdls and N-GMRES-sd give f=g evaluation counts that are of the
same order of magnitude as N-CG and L-BFGS, and N-GMRES-sd in particular is competitive with
N-CG and L-BFGS. Table II includes some tests with larger problem size.

3.4. Numerical results for a tensor optimization problem

We conclude this section with some numerical results for a difficult tensor optimization problem, in
particular, the canonical tensor approximation problem of Figures 1.2 and 1.3 in Paper I ([1]). In this
problem, a rank-three canonical tensor approximation (with 450 variables) is sought for a three-way
data tensor of size 50 � 50 � 50. The data tensor is generated starting from a canonical tensor with
specified rank and random factor matrices that are modified to have prespecified column collinear-
ity, and noise is added. This is a standard canonical tensor decomposition test problem [16]. See

Table II. Average number of f=g evaluations needed to reach jf .ui / � f �j < 10�6 for 10 instances of
Problems D and E with random initial guess and with different sizes. Numbers in brackets give the number

of random trials (out of 10) that did not converge to the required tolerance within 500 iterations (if any).

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS

D n=500 525 172 222 166
D n=1,000 445 211 223 170
D n=50,000 461 251 236 216
D n=100,000 661 220 237 243
E n=100 294 259 243 358
E n=200 317 243 240 394
E n=50,000 832 494 496 1592
E n=100,000 933 650 556 1752

N-GMRES-sdls, nonlinear generalized minimal residual method using steepest descent preconditioning with line
search; N-GMRES-sd, N-GMRES method using steepest descent preconditioning with predefined step; N-CG,
nonlinear conjugate gradient method; L-BFGS, limited-memory Broyden–Fletcher–Goldfarb–Shanno.
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Table III. Average number of f=g evaluations needed to reach jf .ui / � f �j < 10�6 for 10 instances of
Problems F and G with random initial guess and with different sizes. Numbers in brackets give the number

of random trials (out of 10) that did not converge to the required tolerance within 500 iterations (if any).

problem N-GMRES-sdls N-GMRES-sd N-CG L-BFGS

F n=200 140 102(1) 102 92
F n=500 206(1) 175(1) 135 118
G n=100 1,008(2) 152 181 358
G n=200 629(1) 181 137 240

N-GMRES-sdls, nonlinear generalized minimal residual method using steepest descent preconditioning with line
search; N-GMRES-sd, N-GMRES method using steepest descent preconditioning with predefined step; N-CG,
nonlinear conjugate gradient method; L-BFGS, limited-memory Broyden–Fletcher–Goldfarb–Shanno.
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Figure 7. Convergence histories of the 10 logarithm of jf .ui /�f �j as a function of f=g evaluations, for the
canonical tensor approximation problem of Figures 1.2 and 1.3 in [1]. Panel (a) shows that stand-alone steep-
est descent with line search (sdls) is very slow for this problem. The nonlinear generalized minimal residual
(N-GMRES) method using sdls and N-GMRES using steepest descent preconditioning with predefined step
(sd) significantly speed up steepest descent. However, for this difficult problem, it is beneficial to use a more
powerful nonlinear preconditioner. Using the alternating least squares (ALS) preconditioner in stand-alone
fashion already provides faster convergence than N-GMRES-sdls and N-GMRES-sd. The zoomed view
in panel (b) shows that the nonlinear conjugate gradient method (N-CG) and limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) are faster than stand-alone ALS when high accuracy is required, but
N-GMRES preconditioned with the powerful ALS preconditioner is the fastest method by far, beating N-
CG and L-BFGS by a factor of 2 to 3. This illustrates that the real power of the N-GMRES optimization
algorithm may lie in its ability to employ powerful problem-dependent nonlinear preconditioners (ALS in

this case).
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Paper I for a full description of the problem and for pointers to background information on tensor
decomposition.

This problem is interesting because it illustrates how N-GMRES allows for the use of powerful
problem-specific nonlinear preconditioners (M../ in Step I of Algorithm 1), as an alternative to the
generic steepest-descent based preconditioners that are the main topic of this paper. In particular, as
in [1], we use the ALS optimization method for the canonical tensor approximation problem as the
nonlinear preconditioning process. It is also interesting to note that ALS is, in fact, a nonlinear block
Gauss–Seidel iteration for the first-order optimality equations of the canonical tensor optimization
problem, and as such its use in N-GMRES constitutes a direct generalization to the nonlinear case
of GMRES preconditioned by Gauss–Seidel.

Panel (a) of Figure 7 shows how stand-alone steepest descent with line search (sdls) is very slow
for this tensor decomposition problem: it requires more than 30,000 f=g evaluations. (The ten-
sor calculations are performed in MATLAB using the Tensor Toolbox [17]. For this problem, we
use ı D 10�3 in (2.2).) The N-GMRES-sdls and N-GMRES-sd convergence profiles confirm, once
more, one of the main messages of this paper: steepest-descent preconditioned N-GMRES speeds up
stand-alone steepest descent very significantly. However, steepest descent preconditioning (which
we have argued is in some sense equivalent to nonpreconditioned GMRES for linear systems) is
not powerful enough for this difficult problem, and a more advanced preconditioner is required.
Indeed, panel (a) of Figure 7 shows that the stand-alone ALS process is already more efficient than
steepest-descent preconditioned N-GMRES. Panel (b) indicates, however, that N-GMRES precon-
ditioned by ALS is a very effective method for this problem: it speeds up ALS very signficantly
and is much faster than N-CG and L-BFGS, by a factor of 2 to 3. (Panel (b) of Figure 7 illustrates
the findings from extensive tests comparing ALS, N-CG, and ALS-preconditioned N-GMRES that
were reported in Paper I and [16].)

4. CONCLUSION

In this paper, we have proposed and studied steepest descent preconditioning as a universal pre-
conditioning approach for the N-GMRES optimization algorithm that we recently introduced in
the context of a canonical tensor approximation problem and ALS preconditioning [1] (Paper I).
We have considered two steepest descent preconditioning process variants, one with a line search,
and the other one with a predefined step length. The first variant is significant because we showed
that it leads to a globally convergent optimization method, but the second variant proved more
efficient in numerical tests, with no apparent degradation in convergence robustness. Numerical
tests showed that the two steepest-descent preconditioned N-GMRES methods both speed up stand-
alone steepest descent optimization very significantly and are competitive with standard N-CG and
L-BFGS methods, for a variety of test problems. These results serve to theoretically and numer-
ically establish steepest-descent preconditioned N-GMRES as a general optimization method for
unconstrained nonlinear optimization, with performance that appears promising compared with
established techniques.

However, we argue that the real potential of the N-GMRES optimization framework lies in the
fact that it can use problem-dependent nonlinear preconditioners that are more powerful than steep-
est descent. Preconditioning of N-CG in the form of (linear) variable transformations is an area of
active research [18]. However, it is interesting to note that our N-GMRES optimization framework
naturally allows for a more general type of preconditioning: any nonlinear optimization process
M../ can potentially be used as a nonlinear preconditioner in the framework, or, equivalently,
N-GMRES can be used as a simple wrapper around any other iterative optimization process M../
to seek acceleration of that process. The potential of this approach was illustrated by applying
N-GMRES with nonlinear block Gauss–Seidel preconditioning to a difficult tensor optimization
problem (as in Paper I), significantly outperforming N-CG and L-BFGS.

In the case of GMRES for linear systems, nonpreconditioned GMRES (or GMRES with the
identity preconditioner) is often just a starting point. For many difficult problems, it converges too
slowly, and there is a very extensive and ever-expanding research literature on developing advanced
problem-dependent preconditioners that in many cases speed up convergence very significantly.

Copyright © 2012 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2012)
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In the same way, the present paper is likely not more than a starting point in theoretically and
numerically establishing the N-GMRES optimization method with general steepest descent precon-
ditioning process. As the results shown in Figure 7 already indicate, we expect that the real power
of the N-GMRES optimization framework will turn out to lie in its ability to use powerful problem-
dependent nonlinear preconditioners. This suggests that further exploring N-GMRES optimization
with advanced preconditioners may lead to efficient numerical methods for a variety of nonlinear
optimization problems.
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