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Abstract

A high-order accurate finite-volume scheme for the compressible ideal magnetohydrodynamics (MHD) equations is
proposed. The high-order MHD scheme is based on a central essentially non-oscillatory (CENO) method combined
with the generalized Lagrange multiplier divergence cleaning method for MHD. The CENO method usesk-exact
multidimensional reconstruction together with a monotonicity procedure that switches from a high-order recon-
struction to a limited low-order reconstruction in regionsof discontinuous or under-resolved solution content. Both
reconstructions are performed on central stencils, and theswitching procedure is based on a smoothness indicator.
The proposed high-order accurate MHD scheme can be used on general polygonal grids. A highly sophisticated
parallel implementation of the scheme is described that is fourth-order accurate on two-dimensional dynamically-
adaptive body-fitted structured grids. The hierarchical multi-block body-fitted grid permits grid lines to conform
to curved boundaries. High-order accuracy is maintained atcurved domain boundaries by employing high-order
spline representations and constraints at the Gauss quadrature points for flux integration. Detailed numerical results
demonstrate high-order convergence for smooth flows and robustness against oscillations for problems with shocks.
A new MHD extension of the well-known Shu-Osher test problemis proposed to test the ability of the high-order
MHD scheme to resolve small-scale flow features in the presence of shocks. The dynamic mesh adaptation capabili-
ties of the approach are demonstrated using adaptive time-dependent simulations of the Orszag-Tang vortex problem
with high-order accuracy and unprecedented effective resolution.
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1. Introduction

This paper proposes a high-order accurate finite-volume (FV) scheme for the compressible ideal magnetohy-
drodynamics (MHD) equations. The high-order MHD scheme is based on the central essentially non-oscillatory
(CENO) method that was introduced for the compressible Euler equations by Ivan and Groth [1], and has since been
extended to the Navier-Stokes equations [2, 3, 4]. The CENO method uses Barth’sk-exact reconstruction mecha-
nism [5] to obtain high-order solution accuracy in combination with a monotonicity procedure that switches between
a high-order reconstruction and a limited low-order reconstruction. Both reconstructions are performed on central
stencils, and the switching is based on a smoothness indicator [1]. The hybrid CENO approach is combined in this
paper with the generalized Lagrange multiplier (GLM) divergence cleaning method for MHD that was proposed by
Dedner et al. [6] to obtain a FV MHD scheme that is high-order accurate in smooth flow regions and robust against
spurious oscillations at discontinuities. The proposed high-order accurate MHD scheme has several desirable prop-
erties. First, it is suitable for general polygonal grids because Barth’s k-exact polynomial reconstruction procedure
is inherently multi-dimensional and can be used on general stencils that do not need to be grid-aligned. Second,
the scheme can in principle be implemented with arbitrary order. Third, it can be used directly on block-adaptive
grids, which can pose significant challenges to MHD schemes due to the∇ · ~B constraint. And fourth, high-order
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accuracy is maintained at curved domain boundaries of the body-fitted mesh by employing accurate spline repre-
sentations for the boundaries that enable high-order accurate surface flux computations. These features constitute
significant new developments in high-order finite-volume schemes for MHD. The particular implementation of the
proposed scheme that we present in this paper is a highly sophisticated fourth-order accurate parallel MHD method
on two-dimensional (2D) dynamically-adaptive multi-block body-fitted quadrilateral grids. Our adaptive 2D body-
fitted structured grids are composed of blocks with quadrilateral cells that are organized in a rectangular structure as
on a Cartesian grid and, thus, the grid blocks are sometimes also referred to as logically Cartesian. The body-fitted
meshes in our work can have grid lines conforming to curved boundary surfaces and stretching of the grid lines is
permitted to allow for anisotropic mesh spacing.

Development of high-order numerical methods for MHD is an active area of research. Just like for other nonlin-
ear hyperbolic systems, spurious oscillations at shocks are a major challenge in MHD, but an additional significant
challenge in MHD is that the high-order numerical method needs to handle the∇ · ~B constraint in a proper way.
Indeed, it is well-known that simply extending conservation law methods for the Euler equations to the MHD hy-
perbolic system does not work, since∇ · ~B may grow in an uncontrolled fashion (beyond truncation error levels),
which may result in unphysical forces and numerical instability [7, 8]. A variety of approaches have been proposed
to remedy this issue. One option is to employ an elliptic correction scheme, called the “Hodge Projection”, which
essentially projects a vector field onto its solenoidal part[7, 9]. While the elliptic correction scheme maintains
solenoidality up to machine accuracy (in the chosen discretization), it requires a Poisson equation to be solved at
each hyperbolic step. This is not natural in a ‘hyperbolic’ simulation code and can be inconvenient in terms of
implementation, especially in parallel since the discretePoisson potential variables are tightly coupled across the
whole computational domain. As an alternative, Powell [8] proposed a divergence control method that only attempts
to approximately satisfy the divergence constraint. In Powell’s approach, the ideal MHD system is rewritten into its
symmetrizable and Galilean-invariant form through the introduction of source terms proportional to the divergence
of the magnetic field. This modification maintains the hyperbolic character of the MHD equations, but comes at the
cost of conservation, and may lead to incorrect jumps for problems with strong discontinuities [10]. For this reason,
this approach has lost some of its initial popularity. A third method to control∇ · ~B is the class of schemes that fall
under the category of ‘constrained transport’ methods, which preserve the solenoidality of the magnetic field through
staggered spatial discretizations [11]. The normal components of the magnetic field are stored on cell faces, and in
every time-step the field is updated in such a way that∇ · ~B remains zero up to machine accuracy (in the chosen
discretization). This approach, however, requires the magnetic field variables to be treated differently from the fluid
variables, which may be inconvenient for implementation. The approach is attractive from a physics point of view
and is straightforward to derive and implement for second-order accurate codes on regular Cartesian grids. It can be
extended with second-order accuracy to logically Cartesian grids and to triangular or tetrahedral unstructured grids
[12, 13], but extensions beyond second order [14] and to general polygonal grids are far from trivial. In particular,
interpolation and restriction of the magnetic field at resolution changes on block-adaptive grids need to be treated
very carefully and sophisticated approaches have been developed for this [14, 15, 16].

More recently, Dedner et al. [6] proposed the GLM-based divergence cleaning technique. Through the introduc-
tion of a new transport variable, the divergence error is convected out of the domain, while keeping the hyperbolicity
of the system intact. Unlike the Powell source term method, conservation in all physical variables is maintained.
And unlike approaches following the constrained transportmethodology, there is no need to stagger the grid, or to
place the magnetic fields at locations different from those where the fluid variables are located. The GLM approach
can easily and naturally be applied on general polygonal grids, and there is no need to integrate complicated source
terms involving flow variable derivatives as in Powell’s approach. A particular version of GLM-MHD (the so-called
‘purely hyperbolic’ correction) results in numerical solutions that satisfy the∇ · ~B constraint up to machine accuracy
(in the chosen discretization) for stationary problems, and this property can also be obtained for time-dependent
solutions [17]. The GLM-MHD approach thus provides an attractive alternative to the more commonly established
ways of divergence control, because it is effective in controlling divergence error, is simple to implement, preserves
conservation, and can easily be applied on general grids. Wechoose GLM for our MHD scheme because, combined
with the CENO method, it leads to a high-order MHD scheme thatcan be applied on general grids (including our
adaptive multi-block body-fitted structured grid) and naturally handles resolution changes on block-adaptive grids.
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Adaptive mesh refinement has proven to be very effective for treating problems with disparate length scales,
providing the required spatial resolution while minimizing memory and storage requirements. Recently, Groth
and co-researchers [18, 19, 20, 21, 22] have developed a flexible block-based adaptive mesh refinement (AMR)
scheme allowing automatic solution-directed mesh adaptation on multi-block body-fitted meshes consisting of two-
dimensional quadrilateral and three-dimensional hexahedral computational cells. We have implemented our new
high-order MHD scheme that combines CENO and GLM into a hierarchical quadtree block-based AMR procedure
for multi-block body-fitted quadrilateral mesh that is based on this previous work [18, 19, 20, 22]. This block-based
approach has been shown to enable efficient and scalable parallel implementations for a variety of flow problems, as
well as to allow for local refinement of body-fitted mesh with anisotropic stretching. The latter aids in the treatment
of complex flow geometry and flows with thin boundary, shear, and mixing layers and/or discontinuities and shocks.
Extensions of the block-based body-fitted AMR approach for embedded boundaries not aligned with the mesh [23]
and with an anisotropic refinement strategy [24] are also possible and have been developed.

In recent years, various high-order schemes have been proposed for the MHD system. Many recent developments
employ discontinuous Galerkin (DG) finite element methods [25, 26, 27, 28], and others are based on essentially
non-oscillatory (ENO) FV schemes and on weighted ENO (WENO)FV schemes [13, 29, 30, 31, 32, 33, 34]. Most
of these high-order approaches were only described and implemented for regular Cartesian grids. Our high-order
MHD scheme uses a different approach. As already mentioned, it is based on Barth’sk-exact reconstruction pro-
cedure [5], which uses a least-squares approach on overdetermined stencils to compute polynomial reconstruction
coefficients, in a multi-dimensional way that can handle general polygonal grids. In order to control spurious oscil-
lations at shocks, we use the CENO monotonicity procedure that was introduced by Ivan and Groth [1] for the Euler
equations, and has since been extended to the Navier-Stokesequations [2, 3, 4]. Our implementation of this CENO
monotonicity procedure switches between an unlimited piecewise cubic reconstruction (fourth-order accurate) and
a limited piecewise-linear reconstruction (second-orderaccurate), with the switching based on the smoothness in-
dicator introduced in [1]. Note that the scheme we describe can in principle be implemented with arbitrary order,
but fourth-order accuracy is a suitable practical choice for the numerical results to be presented in this paper. The
smoothness indicator is computed in each cell to determine whether the flow is locally smooth and well-resolved.
For cells containing non-smooth or under-resolved solution content, the unlimitedk-exact reconstruction is switched
to limited piecewise linear reconstruction. The smoothness indicator can also be used directly to formulate a crite-
rion for AMR. The CENO scheme is called central because both the high-order and the low-order stencils are central
with respect to the cell. The method is called an ENO method because it satisfies the ENO property [35]:

TV(un+1) = TV(un) + O(∆xk+1), (1)

whereun denotes a solution variableu at time leveln, ∆x is the grid spacing,k is the order of polynomial reconstruc-
tion, andTV stands for total variation. The ENO property allows the presence of small spurious oscillations that have
a magnitude on the order of the truncation error, but it does not allow O(1) Gibbs-like oscillations at discontinuities
[35]. It is important to note that the CENO method proposed byIvan and Groth [1] does not choose between asym-
metric stencils as most other methods do that try to enforce the ENO property, but instead uses a hybrid approach
that chooses between high-order and low-order central reconstructions. Note that Harten and Chakravarthy [36] also
proposed a technique on Cartesian grids to obtain an ENO reconstruction using central stencils by hybridizing a
high-order reconstruction with a first-order formulation,and this served as an inspiration for the CENO approach
of [1, 2]. The fixed stencil used during the CENO reconstruction procedure avoids the complexity of considering
multiple non-central stencil configurations that characterizes traditional ENO schemes. Note also that the CENO
method of Ivan and Groth is not a central ENO method in the sense of Nessyahu and Tadmor’s staggered mesh
philosophy [37], but it uses non-staggered central stencils of different order. We note that our limited low-order
least-squares scheme for MHD with GLM divergence cleaning is similar to the discretization proposed by Yalim et
al. in [17] (implemented on unstructured grids), and our high-order method is a high-order extension of this approach
that combines least-squares reconstruction with GLM. Our CENO-GLM high-order MHD scheme thus provides an
alternative to high-order DG and ENO/WENO methods for MHD, and is attractive because it can naturally be ap-
plied on general grids. Also, while some high-order MHD schemes based on DG and WENO have been proposed
for unstructured meshes [25, 32], and several others can potentially be (non-trivially) extended to general geometry

3



[28, 31], none has yet presented a way to deal with curved boundaries. Our CENO implementation for MHD has
full capabilities to treat curved domain boundaries with high-order accuracy. Also, few existing high-order MHD
codes are parallel or adaptive, and most of them are limited to Cartesian grids. Our new high-order MHD scheme
significantly advances the state-of-the-art of high-orderfinite-volume MHD schemes because it is suitable for gen-
eral and adaptive grids. This is demonstrated by our parallel dynamically block-adaptive implementation of the new
high-order scheme with high-order accurate curved boundaries, which constitutes a significant advance over existing
high-order MHD codes.

This paper is organized as follows. The ideal MHD equations and the GLM formulation are described in Sect. 2.
In Sect. 3 we give a detailed description of our high-order MHD scheme, which is obtained by combining the
CENO method with GLM divergence cleaning. Section 4 describes detailed numerical results that demonstrate
high-order convergence for smooth flows, and robustness against oscillations for Riemann problems and other flows
with shocks. In particular, we also present a new MHD extension of the well-known Shu-Osher test problem [38] to
test the ability of our high-order MHD scheme to resolve small-scale flow features in the presence of shocks. Finally,
we demonstrate the dynamic mesh refinement capabilities of our implementation using adaptive time-dependent sim-
ulations of the Orszag-Tang vortex problem [39] with high-order accuracy and unprecedented effective resolution.
Concluding remarks are presented in Sect. 5.

2. Ideal MHD

2.1. Ideal MHD Equations

The ideal MHD system is described by the following equationsin conservation form:

∂ρ

∂t
+ ∇ · (ρ~v) = 0, (2)

∂(ρ~v)
∂t
+ ∇ ·

ρ~v~v+ ~I (p+
~B · ~B

2
) − ~B~B

 = 0, (3)

∂~B
∂t
+ ∇ · (~v~B− ~B~v) = 0, (4)

∂e
∂t
+ ∇ ·

(e+ p+
~B · ~B

2
)~v− (~v · ~B)~B

 = 0. (5)

Equations 2 to 5 are supplemented with a solenoidality condition for the magnetic field,

∇ · ~B = 0. (6)

The conserved quantities of the ideal MHD equation system are the density,ρ, the momentum,ρ~v (with ~v being the
velocity), the magnetic field,~B, and the energy,e. The plasma pressure,p, is given by the equation of state for a
perfect gas

p = (γ − 1)

(
e− 1

2
ρ|~v|2 − 1

2
|~B|2

)
(7)

whereγ is the adiabatic index. We useγ = 5/3 in our numerical tests except where noted.
The ideal MHD equations can also be written in quasi-linear form, which, in one dimension, is given as

∂U
∂t
+ A(U) · ∂U

∂x
= 0, (8)

whereU = (ρ, ρ~v, ~B, e)T . The matrixA can then be used to determine the eigenvalues of the system, which are given
as follows:

λ1,2 = vx ± cfx , (9)

λ3,4 = vx ± cAx, (10)
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λ5,6 = vx ± csx , (11)

λ7 = vx, (12)

λ8 = 0, (13)

where the three different wave speeds are: the fast magnetosonic wave speed,cfx, the Alfvén wave speed,cAx, and
the slow magnetosonic wave speed,csx, defined as

c2
fx
=

1
2


γp+ B2

ρ
+

√(
γp+ B2

ρ

)2

− 4
γpB2

x

ρ2

 , (14)

c2
Ax
=

B2
x

ρ
, (15)

c2
sx
=

1
2


γp+ B2

ρ
−

√(
γp+ B2

ρ

)2

− 4
γpB2

x

ρ2

 . (16)

2.2. GLM Control of the∇ · ~B Constraint

The GLM-MHD formulation can be described as follows. Following a similar approach as for the Maxwell
equations [40], the divergence constraint (Eq. 6) can be coupled with the induction equation through the introduction
of a new potential variable,ψ [6]. The equations describing the evolution of the magneticfield, Eq. 4 and Eq. 6, are
then replaced with the following equations

∂~B
∂t
+ ∇ · (~v~B− ~B~v) + ∇ψ = 0, (17)

D(ψ) + ∇ · ~B = 0. (18)

Different choices of the operatorD(ψ) determine whether the corrections are of so-called elliptic, parabolic or
hyperbolic type. Dedner et al. [6] found that the hybrid hyperbolic and parabolic correction scheme provides the best
balance of accuracy and stability, while at the same time keeping the system conservative in the physical variables.
The hybrid hyperbolic-parabolic correction scheme definesD(ψ) as

D(ψ) =
1

c2
h

∂ψ

∂t
+

1

c2
p
ψ. (19)

With D(ψ) as given by Eq. 19, the induction equation and the divergence constraint equation can be rewritten as

∂ψ

∂t
+ c2

h∇ · ~B = −
c2

h

c2
p
ψ. (20)

As can be seen from these equations, the system is still conservative except for the evolution equation ofψ, which
is not a physical variable. This preservation of conservation for physical variables is the main advantage of the GLM
method over the Powell method that was proposed earlier to approximately satisfy the divergence constraint [41].
Replacing the zero eigenvalue (Eq. 13), two new eigenvaluesarise in the GLM-MHD formulation, which are±ch.
The coefficientscp andch control the amount of diffusion inψ and the advection speed, respectively. The ‘purely
hyperbolic’ correction can be obtained by takingcp to infinity (no diffusion). Following [6], we choose these two
coefficients to be related in our numerical simulations through the following expression

cr =
c2

p

ch
, (21)
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with cr chosen to be 0.18. The coefficient ch, then, determines how fast the divergence of the magnetic field is
advected out of the domain, whereascp controls its dissipation. Therefore, to ensure that the error is advected as fast
as possible, it is desirable to setch as high as possible. However, because the two new eigenvalues have magnitude
ch, it is also important to setch small enough so that it will not affect the time-step criterion of the simulation. Thus,
ch is often chosen to be the largest of all MHD eigenvalues in thewhole domain over all cell interfaces (i, j), which
can be written as

ch = max
i, j

(
|vn| + cfn

)
, (22)

wherevn andcfn are the plasma velocity and the fast magnetosonic wave speed(Eq. 14) in the direction normal to
the interfaces (i, j).

2.3. Boundary Condition Treatment ofψ at Inflow and Outflow Boundaries

The choice ofch as given by Eq. 22 ensures that no eigenvalue will exceed the largest physical eigenvalue in the
domain, while at the same time, it guarantees that the divergence error will be advected out of the simulation domain
with the fastest physical wave speed in the flow solution. Since the two additional eigenvalues are±ch regardless of
the actual plasma velocities and wave speeds, eigenvalues of both signs will always exist at all cell interfaces. This
means that treatment similar to subsonic inlet and outlet boundary conditions (see [42]) is always required for inflow
and outflow boundary conditions. Since the waves with eigenvalues±ch only carry changes in the normal magnetic
field andψ [6], only these two variables need to be taken into account atboundaries to accommodate these waves. For
example, consider superfast inflow boundary conditions andassume without loss of generality thatvn > 0. Since the
inflow velocity is faster than the fast magnetosonic wave, all the MHD eigenvalues are positive (information travels
into the computational domain). However, for GLM-MHD one cannot just prescribe all variables, because one of
the eigenvalues,−ch, is necessarily negative, even when the flow is superfast at the inflow boundary. One of either
ψ or the normal magnetic field has to be extrapolated from the interior solution, and because the inflow magnetic
field is prescribed at the boundary, it isψ that has to be extrapolated from the interior. The same logicapplies to
superfast outflow. Assume again thatvn > 0. Without GLM, all of the variables would just be extrapolated from
the inside of the domain, since all eigenvalues are positive, hence no information is propagating into the domain.
However, due to the negative eigenvalue−ch, ψ needs to be prescribed at the outflow boundary. A suitable choice
for ψ is to set it to zero at superfast outflow boundaries. (This is consistent with Yalim et al. [17], who setψ to a
constant at the superfast outlet boundaries.) In our experience, the specification of boundary conditions has proven
to be important in properly applying the GLM method. We emphasize the proper treatment of inflow and outflow
boundary conditions here because this was not fully explained in [6]. Several MHD test cases with superfast inflow
and outflow boundary conditions [43] will be investigated inwhat follows to assess the accuracy and stability of the
scheme we propose in the next section.

3. High-Order CENO Scheme for Ideal MHD with GLM Divergence Cleaning

In this section we give a detailed description of the proposed high-order CENO scheme for MHD, which is
obtained by combining Ivan and Groth’s CENO approach with GLM divergence cleaning. We first describe the
high-order FV framework, followed by discussions on Barth’s k-exact reconstruction and the CENO reconstruction
selection process using the CENO smoothness indicator. Numerical flux calculation and source term integration
for our high-order MHD CENO method are described next, followed by a discussion on how our MHD CENO
implementation obtains high-order accuracy at curved boundaries.

3.1. High-Order Finite-Volume Formulation

Consider hyperbolic conservation law
∂U
∂t
+ ∇ · ~F = S, (23)

whereU is the vector of conserved variables,~F consists of the flux terms of the system, andS is a source term
vector. As mentioned before, our MHD CENO scheme can be applied on general grids with polygonal cells, but for
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simplicity we give the formulas for the case of quadrilateral cells in a body-fitted structured grid. For a quadrilateral
cell (i, j), the semi-discrete FV form of Eq. 23 is given as

dUi, j

dt
= − 1

Ai, j

4∑

l=1

Ng∑

m=1

(ω ~Fnum · ~n∆l)i, j,l,m + Si, j , (24)

whereUi, j is the numerical approximation of the average value ofU in cell (i, j), ~Fnum is the numerical flux function,
Ai, j is the area of the computational cell (i, j), Ng is the number of Gauss quadrature points on each cell face and
ω is the associated Gauss quadrature weight to each of the Gauss points. The actual number of flux quadrature
points,Ng, depends on the order of solution reconstruction, with two Gauss quadrature points per face for third- and
fourth-order accurate schemes, but only one Gauss quadrature point per face for second-order or lower [1]. The high-
order accurate calculation of the average source term,Si, j, requires the accurate integration ofS and is discussed in
Sect. 3.4. The form given by Eq. 24 separates the spatial and temporal discretizations, which essentially reduces the
system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in time for each
cell. The order of the polynomial reconstruction then determines the spatial accuracy of the solution by providing
more accurate approximations of the solution values at the Gauss quadrature points for flux calculation. In general,
an order-k polynomial reconstruction provides an order-(k + 1) accurate spatial discretization for smooth problems.
We use standard explicit second-order and fourth-order Runge-Kutta methods [42] to integrate the ODE system in
time for the second-order and fourth-order accurate spatial discretizations to be compared in our time-dependent
numerical test problems. For steady-state simulations, weuse a five-stage optimally smoothing method regardless
of the solution accuracy [44].

3.2. k-Exact Piecewise Polynomial Reconstruction

The spatial order of accuracy of the CENO FV scheme is determined by the order of the polynomial function
used to reconstruct the solution. Following Barth [5], the variation of a solution variable,u, at any location within
the quadrilateral computational cell (i, j), assumes the form

uk
i, j(~X) =

k∑

p1=0

k∑

p2=0
(p1+p2≤k)

(
x− xi, j

)p1
(
y− yi, j

)p2Dk
p1p2

, (25)

wherek is the order of the polynomial function,~X = (x, y) are the coordinates at which the solution is sought,
(xi, j , yi, j) are the coordinates of the centroid of cell (i, j), andDk

p1p2
are high-order polynomial coefficients that will

need to be determined for each of the primitive variables forevery cell, based on a set of cell averages,uγ,δ, in the
neighbourhood of cell (i, j). For the test cases presented in this paper, linear (k = 1) and cubic (k = 3) reconstructions
are chosen to obtain second- and fourth-order accurate schemes. The monotonicity-preserving procedure, which is
discussed in Sect. 3.3, reducesk to 1 and applies limiters in regions of the flow that are deemedunder-resolved or to
contain discontinuities.

The coefficientsDk
p1p2

are determined by solving an overdetermined system of linear equations in a least-squares
sense, fitting the reconstruction polynomial to the solution averages for cell (i, j) and for its neighbouring cells in the
stencil of cell (i, j). For akth-order polynomial, the number of coefficientsDk

p1p2
is given byND =

(k+1)(k+2)
2 [1, 2, 4].

Thus, there are 3 coefficients to be determined fork = 1 or linear reconstruction, 6 coefficients fork = 2 or quadratic
reconstruction, and 10 coefficients fork = 3 or cubic reconstruction. Following the requirements imposed by Barth
[5], it is important that these coefficients are determined in such a way that the following conditions are satisfied:

• Conservation of the mean. The average of the reconstructed polynomial function over cell (i, j) should
recover exactly the cell-averaged valueui, j:

ui, j =
1

Ai, j

∫∫

Ai, j

uk
i, j(~X) dA. (26)
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• k-exactness. The reconstructed polynomial function should be able to reconstruct polynomials of degreek or
less exactly [5], or

uk
i, j(~X) − uexact(~X) = O(∆xk+1). (27)

• Compact support. The reconstructed polynomial function should depend only on average values within
a relatively small neighbourhood [5]. Only the cell-averaged data within the supporting stencil is used for
reconstruction purposes.

In theory,ND determines the minimum size of the supporting stencil, but in practice more neighbours are included
to make the reconstruction more robust for complicated and stretched meshes [1, 2, 4]. On our 2D body-fitted
structured grid blocks, first-degree neighbours are included for k = 0 andk = 1 reconstruction stencils (a total of
8 neighbours), and first- and second-degree neighbours are included fork = 2 andk = 3 reconstruction stencils (a
total of 24 neighbours).

Consider reconstruction for cell (i, j). In the reconstruction step an overdetermined systemAD − B = 0 is solved
in the least-squares sense, together with the constraint ofEq. 26, which is imposed exactly. Here,D is the array of
polynomial coefficients,Dk

p1p2
, and the equationsAD − B = 0 are given by

(AD − B)γ,δ =


1

Aγ,δ

∫∫

Aγ,δ

uk
i, j(~X) dA

 − uγ,δ = 0. (28)

There is one equation for each cell (γ, δ) in the stencil of cell (i, j). Each equation matches the actual cell average
uγ,δ in cell (γ, δ) with the average over cell (γ, δ) of the reconstructed polynomialuk

i, j(
~X) for cell (i, j). Equation 26

is enforced analytically by replacinguk
i, j with Eq. 25 and expressing the first coefficient, Dk

00, as a function of the
otherM = ND − 1 polynomial unknowns as

Dk
00 = ui, j −

k∑

p1=0

k∑

p2=0
(p1+p2,0)

Dk
p1p2

(
xp1yp2

)
i, j
, (29)

where the geometric moment
(
xp1yp2

)
i, j

of powers (p1, p2) is given by

(
xp1yp2

)
i, j
=

1
Ai, j

∫∫

Ai, j

(
x− xi, j

)p1
(
y− yi, j

)p2
dA. (30)

Substitutinguk
i, j from Eq. 25 in Eq. 28 and using Eq. 29 forDk

00 the following overdetermined linear system for
the M unknowns is obtained



L1

L2
...

LJ
...

LNn


M×Nn



Dk
01

Dk
02
...

Dp1p2
...

Dk
k0


Nn×1

−



w1(u1 − uI )
w2(u2 − uI )

...

wJ(uJ − uI )
...

wNn(uNn − uI )


M×1

=



0
0
...

0
...

0


M×1

(31)

where a unique indexJ = (γ, δ) has been assigned to each of theNn neighbours in the supporting reconstruction
stencil and the indexI = (i, j) denotes the cell having the solution reconstructed. The generic rowLJ of the matrix
A for a neighbouring cellJ is given by

LJ =

(
wJ

(
x̂0y1

)

IJ
wJ

(
x̂0y2

)

IJ
. . . wJ

(
x̂p1yp2

)
IJ

. . . wJ

(
x̂ky0

)

IJ

)
, (32)

in whichwJ is a geometric weight specific to each neighbourJ which serves the purpose of improving the locality of
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the reconstruction, becoming especially important for stretched meshes with boundary curvature [45]. (In essence,
equations corresponding to close-by neighbour cells in thereconstruction stencil get larger weights in the least-
squares solution than neighbour cells that are further away.) The matrix coefficients

(
x̂p1yp2

)
IJ

for the pair ofI and
J cells have the expression

(
x̂p1yp2

)
IJ
=


1

Aγ,δ

∫∫

Aγ,δ

(
x− xi, j

)p1
(
y− yi, j

)p2
dA

 −
(
xp1yp2

)
i, j

, (33)

where the quantities
(
x̂p1yp2

)
IJ

depend only on the geometry ofI and J cells, and involve a monomial integration

that can be computed by applying quadrature rules. An efficient way to calculate the geometric moments
(
x̂p1yp2

)
IJ

using only the
(
xp1yp2

)
moments is described in [2].

QR factorization or multiplication with the pseudo-inverse ofA can be used to determine the solution of Eq. 31,
as described in more detail in [1, 2, 4]. The complete solution of the constrained least-squares problems is then
obtained by calculatingD00 using Eq. 29. In each time step, the constrained least-squares reconstruction problem
is solved for each cell and for each primitive variable. Matrix A depends completely on the geometry and is the
same for all least-squares problems in a given cell (i, j) (i.e., for each solution variable) and for all time steps, so
it can be precomputed and stored for computational efficiency (see [1, 2, 4] for details). As explained in Sect. 3.5,
one-sided stencils and additional constraints on the least-squares solution are used to handle boundary conditions
with high-order accuracy at curved boundaries.

3.3. CENO Smoothness Indicator to Enforce Monotonicity

The CENO method controls monotonicity throughout the computational domain by selecting a limited linear
reconstruction in cells where the flow is deemed to be nonsmooth or under-resolved, and a high-orderk-exact re-
construction elsewhere. The limited linear reconstruction is based onk-exact reconstruction withk = 1 combined
with the standard Venkatakrishnan limiter, see [2, 46]. To estimate whether the flow in cell (i, j) is under-resolved or
non-smooth, a variableS, the smoothness indicator, is computed [1]:

S = α cs

max(1− α, ǫ) , (34)

whereα is given by

α = 1−

∑

γ

∑

δ

(
uk
γ,δ(~Xγ,δ) − uk

i, j (~Xγ,δ)
)2

∑

γ

∑

δ

(
uk
γ,δ(~Xγ,δ) − ui, j

)2
(35)

andcs = (NS OS−ND)/(ND−1) is a positive constant. Here,NS OSstands for ‘size of stencil’ used for reconstruction,
ND stands for ‘degrees of freedom’ and denotes the number of unknown polynomial coefficients, andǫ is introduced
to avoid division by zero (we useǫ = 10−8). Further,γ andδ denote the indices of the neighbouring cells to the
cell (i, j) that are part of its reconstruction stencil, and~Xγ,δ is the centroid of cell (γ, δ). (Note that the stencil used
for computing the smoothness indicator can also be chosen smaller than the reconstruction stencil. In our numerical
results, we compute the smoothness indicator associated with each primitive solution variable in cell (i, j) using a
stencil with nine cells, i.e., the cell (i, j) and its eight first-degree neighbours.) The parameterα basically measures
how accurately centroidal solution values of neighbouringcells can be reproduced using the reconstruction for cell
(i, j). The range ofα is −∞ < α ≤ 1: for smooth variation, the second term of the right-hand side of Eq. 35 tends
to be close to zero andα is very close to one; for cells close to a discontinuity or with an under-resolved feature, the
magnitude ofα tends away from one and it can also become negative. The rangeof the smoothness indicatorS is
−cs < S < cs/ǫ: for smooth variation (α very close to one),S is large; for nonsmooth or under-resolved features (α

away from one),S is small. The smoothness indicatorS is then compared with a cutoff valueSC: whenS > SC the
solution is deemed locally smooth and the high-order reconstruction is used, and forS ≤ SC the solution is locally
nonsmooth or under-resolved, and the limited low-order reconstruction is used. We also useS in our adaptive
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procedure to refine regions where the solution is nonsmooth or under-resolved. A potential disadvantage of this
approach is that it is not fully parameter-free. However, wehave found it easy to pick suitable values ofSC based on
the range recommended in [2] for the numerical tests shown inSect. 4. Additionally, it is worth emphasizing that a
single valueSC is selected and applied to all solution variables and all mesh resolutions used for solving a particular
problem. The form of the smoothness indicator is inspired bythe definition of multiple-correlation coefficients and
least-squares goodness-of-fit testing; see [2] for a more detailed discussion with further motivation for the approach.
As is shown by extensive testing for the Euler and Navier-Stokes equations in [1, 2, 3, 4] and is further confirmed
by the numerical MHD tests presented below, the CENO approach with smoothness indicatorS is robust in terms
of providing high-order accurate numerical approximations while avoiding spurious oscillations.

One more element has to be added to the approach in order to getgood results for problems with uniform
regions. In uniform regions, the formula forα in Eq. 35 may lead to 0/0 in the second term of the right-hand
side, rendering the smoothness indicator unpredictable. It has been observed before [47] in a related context that
it is desirable to eliminate the effect of switching mechanisms altogether in nearly uniform regions, and just use
high-order reconstruction. To do so, we define the newly proposed parameter

ξi, j =

√√√√√√√ k∑

p1=0

k∑

p2=0
(0<p1+p2≤k)

(Dk
p1p2

)2(Ai, j)p1+p2, (36)

which measures the variability of solution variableu in cell (i, j). (It takes into account all the derivatives at the
centroid of cell (i, j).) Whenξi, j is smaller than a threshold value (low variability), high-order reconstruction is
always used, and only whenξi, j is greater than the threshold the smoothness indicator is computed and the CENO
switching mechanism is activated. In particular, the smoothness indicator for the solution variableu is evaluated in
cell (i, j) when

ξi, j > ǫA + ǫRui, j , (37)

whereǫA and ǫR represent absolute and relative variability thresholds, chosen to be 10−5 for the simulations per-
formed in this paper.

3.4. Numerical Flux Function and High-Order Accurate Source Term Integration

In this subsection we discuss numerical flux computation andhigh-order accurate treatment of the GLM source
term (in Eq. 20) for the high-order MHD CENO scheme. We use theLax-Friedrichs numerical flux function for
the implementation of the proposed high-order MHD CENO scheme. Following Dedner et al. [6], the equations for
Bx andψ are decoupled from the rest of the system, so the Lax-Friedrichs numerical fluxes are applied only to the
other seven variables. The fluxes at the interfaces forBx andψ are calculated by having these variables assume the
following values at the cell interfaces [6]:

Bx,m =
1
2

(Bx,r + Bx,l) −
1

2ch
(ψr − ψl), (38)

ψm =
1
2

(ψr + ψl) −
ch

2
(Bx,r − Bx,l), (39)

where the subscriptsl and r denote the left and right reconstructed states at cell interfaces andch is the global
maximum of|vx| + cfx at cell interfaces. These values are substituted directly into the exact flux formulas for theBx

andψ equations. In a multi-dimensional setting,Bx is effectivelyBn, which is the magnetic field component normal
to the interface. Theseψm andBn,m values are also used for flux calculation purposes of the other seven variables,
which uses the Lax-Friedrichs numerical flux with local values of|vx|+ cfx as the largest wave speed that determines
the size of the numerical dissipation.

As an alternative, one can also apply the standard Lax-Friedrichs flux directly to the full system with nine
variables, without decoupling the 2×2 system. One can expect this to be more diffusive since in this casech (the
global maximum of|vx| + cfx) determines the numerical diffusion, but we have not found much difference with the
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decoupled approach when trying this for our numerical tests. Nevertheless, in the numerical results presented below
we use the decoupled approach. Other flux functions such as Roe and HLLE can also be considered. Wheatley et
al. [48] compared flux functions for high-order DG methods, and found that using more accurate Riemann solvers
improves results in some cases (e.g., at shocks), but does often not make much difference in smooth regions of the
flow. This is also expected for CENO since the intercellular solution jumps diminish in size as the reconstruction
order increases, but a detailed investigation of this for the CENO MHD scheme is beyond the scope of this paper.

The ideal (non-modified) MHD system (Eq. 2 - Eq. 5) is a hyperbolic system of equations, so it easily fits within
the CENO framework. However, the GLM-MHD formulation adds asource term to theψ-update equation (Eq. 20),
and it is important to ensure that this source term is integrated with high-order accuracy. Dedner et al. [6] suggest that
source terms be incorporated separately using an operator splitting approach. By solving the resulting ODE exactly,
the source term integration step can be made unconditionally stable (thus, adding no extra time step restriction to
the hyperbolic system). In Sect. 17.5 of [49], LeVeque explains that such source term treatment leads to an order
of accuracy that is at most second-order accurate in time. This makes the operator-splitting technique for handling
the source term not desirable for high-order purposes. Another mechanism to treat the source term is by integrating
it directly. Though some types of source terms might pose a challenge, the source term of the hyperbolic-parabolic
GLM-MHD equation system involves only the variableψ, so integrating it with high-order accuracy turns out to be
straightforward. Indeed, integrating Eq. 20 over cell (i, j) gives

d
dt


∫∫

Ai, j

ψ dA

 = −c2
h


∫∫

Ai, j

∇ · ~B dA

 −
c2

h

c2
p


∫∫

Ai, j

ψ dA

 , (40)

which directly leads to the discrete equation

dψi, j

dt
= − 1

Ai, j

4∑

l=1

Ng∑

m=1

(ω~fnum · ~n∆l)i, j,l,m −
c2

h

c2
p
ψi, j , (41)

with~fnum the numerical flux function for Eq. 20. This is a high-order discretization of Eq. 20 as long as the fluxes are
computed with high-order accuracy. In summary, discretizing the source term of Eq. 20 with high-order accuracy is
easy because integratingψ in the source term of Eq. 20 directly leads to the average value ψi, j in cell (i, j), which
is one of the primary variables in the code stored in cell (i, j). The source term in discrete Eq. 41 can in principle
influence the stability bound and allowable time-step for the ODE system, but a straightforward analysis shows that
it does not limit the allowable time-step beyond the usual hyperbolic CFL condition for the values ofch andcp and
the grid resolutions we use in our test problems. This was confirmed in all our numerical experiments.

3.5. High-Order Accuracy at Curved Boundaries

In our CENO MHD implementation, two general mechanisms are available to prescribe boundary conditions.
The first mechanism uses ghost cells. Every grid block in our hierarchical block-adaptive body-fitted quadrilateral
grid framework is equipped with three or four layers of ghostcells. In the numerical results to be presented in
Sect. 4, we compare second-order results with fourth-orderresults. The second-order simulations employ three
layers of ghost cells for each block, and the fourth-order results employ four layers of ghost cells for each block.
All blocks have the same size, and the parallelization strategy distributes blocks over parallel MPI processes as
uniformly as possible (with typically multiple blocks per MPI process and one MPI process per CPU core), resulting
in adequate load balancing. The ghost cells enable the message passing that parallelizes the code. They are also
used in the adaptivity mechanism to transfer information between coarse and fine blocks, as is explained in Sect. 4.3.
Note that the number of ghost cell layers is one greater than the number required to enable reconstruction in the first
ghost cell layer; this additional ghost cell layer is necessary for computing the smoothness indicator in the first layer
of ghost cells (which determines whether the high-order or low-order reconstruction is used there) [2]. The ghost
cells can also be used to impose boundary conditions at the domain boundaries in standard ways. All second-order
simulations use ghost cells to impose boundary conditions.Ghost cells are also used to impose boundary conditions
for our fourth-order tests in certain cases, for example in the case of periodic boundary conditions. However, for
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high-order accuracy near curved boundaries, a more accurate second mechanism for boundary conditions is needed.
The second boundary condition mechanism relies on accuraterepresentation of the curved boundaries with high-

order piecewise polynomial splines, on the use near boundaries of one-sided stencils that only contain cells within
the computational domain, and on additional constraints imposed on the least-squares reconstruction problem at the
Gauss points [50]. It is also important to compute the geometric data such as cell areas, centroid locations, etc. to
the same order of accuracy as that of the interior scheme [2, 4]. We represent curved boundaries with piecewise
polynomial splines of an order consistent with that of the FVnumerical scheme, which allows us to locate Gauss
quadrature points and compute flux integrals with high accuracy. One-sided reconstruction stencils are used for the
first and second layer of cells in the computational domain atthe boundaries, and constraints are added to the least-
squares reconstruction of the cells in the first layer to accurately impose certain types of boundary conditions on
the curved boundaries at the Gauss points. When ghost cells are not used, the one-sided reconstructed values at the
Gauss points are directly plugged into the exact MHD flux functions to obtain the numerical flux. For variables to
be left free at the boundaries (extrapolation from the computational domain), no additional constraints are necessary.
For variables to be imposed at the boundaries, the appropriate constraints are added at the Gauss points used in the
flux integration.

More generally, our framework accepts Robin boundary conditions (linear combination of Dirichlet and Neu-
mann), and also linear relations among variables which forma coupling constraint for a set of reconstructed variables
[2]. These coupling constraints can be used to impose wall conditions at curved boundaries with high accuracy. This
has been explained for Euler flows in [1, 2], and we extend it here to perfectly conducting walls in MHD problems.
For perfectly conducting walls, we impose that~B · ~n = 0 and~v · ~n = 0 in each Gauss quadrature point. Let (ng

x, n
g
y)

be the normal vector in Gauss quadrature pointg of cell (i, j), and let (xg, yg) be its coordinates. Then, using the
polynomial expansion of Eq. 25, the conditions~B · ~n = 0 and~v · ~n = 0 at the Gauss point can be expressed as

k∑

p1=0

k∑

p2=0
(p1+p2≤k)

(
xg − xi, j

)p1
(
yg − yi, j

)p2ng
x (Dk

p1p2
)Bx +

k∑

p1=0

k∑

p2=0
(p1+p2≤k)

(
xg − xi, j

)p1
(
yg − yi, j

)p2ng
y (Dk

p1p2
)By = 0, (42)

and
k∑

p1=0

k∑

p2=0
(p1+p2≤k)

(
xg − xi, j

)p1
(
yg − yi, j

)p2ng
x (Dk

p1p2
)u +

k∑

p1=0

k∑

p2=0
(p1+p2≤k)

(
xg − xi, j

)p1
(
yg − yi, j

)p2ng
y (Dk

p1p2
)v = 0 (43)

with (Dk
p1p2

)Bx the polynomial coefficients for theBx magnetic field component, and similar for theBy, u and v

vector components. To impose~B · ~n = 0 in the reconstruction, we solve the least-squares reconstruction problems
for the Bx andBy polynomials together, with the additional constraints of Eq. 42 for each Gauss point. Similarly,
the least-squares reconstruction problems foru andv are solved together to impose~v · ~n = 0, with the additional
constraints of Eq. 43. For full implementation details, see[2].

4. Numerical Results

In this section we present numerical results that demonstrate high-order convergence for smooth flows and ro-
bustness against oscillations for flows with shocks. We present four continuous test problems followed by two prob-
lems with discontinuities, including a new MHD extension ofthe well-known Shu-Osher test problem [38]. Finally,
we demonstrate the dynamic AMR capabilities of our implementation using adaptive time-dependent simulations of
the Orszag-Tang vortex problem [39] with high-order accuracy and unprecedented effective resolution.

4.1. Continuous Problems

We first present two smooth test problems on Cartesian grids,which are the rotated Alfvén problem from [10],
and the magnetostatic problem from [25]. We then present twocontinuous test problems on body-fitted multi-
block structured grids with non-rectangular cells and curved boundaries: the rotating radial outflow problem and the
expanding tube problem from [43].
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To quantify the accuracy of the numerical solution, the errors are measured in theL1, L2, andL∞ norms:

L1 = |E|1 =
1

AT

∑

i, j

∫∫

Ai, j

∣∣∣∣uk
i, j(x, y) − uexact(x, y)

∣∣∣∣ dA, (44)

L2 = |E|2 =
√

1
AT

∑

i, j

∫∫

Ai, j

[
uk

i, j(x, y) − uexact(x, y)
]2

dA, (45)

L∞ = |E|∞ = max
i, j


1

Ai, j

∫∫

Ai, j

∣∣∣∣uk
i, j(x, y) − uexact(x, y)

∣∣∣∣ dA

 , (46)

whereAT is the total area of the computational domain. The integralsare evaluated with high-order accurate Gaus-
sian quadrature, see [2] for details. In most of our numerical tests, we compare convergence for four numerical
methods: fourth-order CENO, fourth-order unlimitedk-exact reconstruction, second-order CENO, and second-order
unlimited k-exact reconstruction. The CENO methods switch between thek-exact reconstruction and the limited
piecewise linear reconstruction based on the smoothness indicator. We use a smoothness indicator cut-off value
SC = 800 except where noted.

4.1.1. Rotated Alfvén Travelling Wave Propagation
The circularized Alfvén wave problem from [10] representsanalytical solutions of the MHD equations for ar-

bitrary amplitudes. The wave propagates with an angle ofα = 30◦ with respect to a Cartesian grid, and assumes
the initial conditions (as in [10]):ρ = 1, v‖ = 0, p = 0.1, B‖ = 1, v⊥ = B⊥ = 0.1 sin(2π(xcos(α) + ysin(α)),
andvz = Bz = 0.1 cos(2π(xcos(α) + ysin(α)]. The parallel velocity,v‖, is set to zero, which corresponds to the
travelling wave test case. The perpendicular and parallel directions are defined with respect to the direction of wave
propagation. These initial conditions give an Alfvén speed of 1, which corresponds to a transit period of 1. The com-
putational domain is set to be periodic (using ghost cells),with ranges [0,1/cos(α)] for x, and [0,1/sin(α)] for y. As
in [10], the number of cells in thex-direction is equal to the number of cells in they-direction, which corresponds to
a ratio of 1/

√
3 between∆x and∆y. The simulations are run for 5 transit periods (or up tot = 5). Density and other

scalar variables are expected to be constant throughout thesimulation since they are not perturbed by the Alfvén
wave, and the errors for these variables are much smaller than for ~v and ~B, which is consistent with the finding of
Toth [10]. Thus, only the accuracy of the~v and~B fields were assessed for convergence studies.

As can be seen from Fig. 1, the expected order of convergence is achieved for thex-direction magnetic field, at
least in the asymptotic limit. For the sake of brevity, only the results of thex-direction magnetic field are shown,
but the other variables behave in a similar manner. The effect of the CENO monotonicity-preserving reconstruction
switching procedure (SC = 800) can be seen: a “transition” regime occurs where the meshis not fine enough and the
smooth flow features are not sufficiently resolved. This transition regime does not occur forthe fourth-order method
because it sufficiently resolves the flow already with low resolution, see also [2, 4]. The high-order scheme represents
significant savings in the number of computational cells required for some specific level of accuracy: a 64-by-64 grid
resolution was sufficient for the fourth-order scheme to obtain a smaller error than the limited second-order scheme
on a 384-by-384 grid.

4.1.2. Two-Dimensional Magnetostatic Problem
We next consider the magnetostatic problem from [25]. The exact solution of this stationary problem is known:

ρ = 1, vx = 0, vy = 0, vz = 0, Bx = − cos (πx)e−πy, By = sin (πx)e−πy, Bz = 0, p = 19.84 (γ − 1), ψ = 0. Following
Warburton et al. [25], this exact solution is used as the initial condition for the simulation, and the error at steady-
state is a measure of the deviation of the numerical solutionfrom the exact solution. The second-order methods use
ghost cells to impose boundary conditions:~v and ~B are imposed in the ghost cells (accurate average values of the
exact solution, obtained by numerical quadrature), andρ, p andψ are extrapolated to the ghost cells (the average
values are linearly extrapolated). The fourth-order methods use one-sided reconstruction, with the exact values of~v
and~B imposed at the Gauss points using constraints, andρ, p andψ are left free at the Gauss points. Figure 2 shows
how the error norm ofBx converges to zero as a function of grid size with the expectedorder. The fourth-order
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Figure 1: TheL1-, L2-, andL∞-norm errors for the magnetic field in thex-direction for the rotated Alfvén wave problem, calculated at t = 5
(five transit periods).N is the total number of grid cells. The solution is compared with the initial conditions to compute the error. The error
converges to zero with the expected order of accuracy in the asymptotic limit. A transition region is observed for the second-order CENO
scheme, consistent with the findings of Ivan and Groth [2, 4].
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Figure 2: TheL1-, L2-, andL∞-norm errors for the magnetic field in thex-direction for the magnetostatic problem. The steady-state solution
is compared with the initial conditions to compute the error. The error converges to zero with the expected order of accuracy in the asymptotic
limit.

scheme requires much fewer computational cells to achieve aspecified level of error (in this case, the error can differ
by as much as 4 orders of magnitude for the same number of cells).

4.1.3. Superfast Rotating Outflow From a Cylinder
We next consider the rotated outflow problem from [43] on a body-fitted structured grid with non-rectangular

cells and curved boundaries. While the exact analytical solution is not available, several theoretical flow invariants
are available [43], with which the corresponding computed quantities can be compared. We measure error in the
entropy,s, and the radial magnetic field,Br .

The problem is defined on a domain between two concentric circles, and superfast inflow conditions (normal
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velocity faster than the fast magnetosonic wave speed as given in Eq. 14) are imposed at the inner circle. The
domain goes fromr = 1 to r = 6, and the inflow conditions imposed at ther = 1 boundary areρ = 1, p = 1,
vr = 3, vθ = 1, andBr = 1. The second-order methods use ghost cells to impose boundary conditions. At the inner
boundary (inflow),ρ, p, ~v and ~B are imposed in the ghost cells using linear interpolation (to impose the desired
values exactly at the domain boundary), andψ is extrapolated linearly from the interior of the domain. Atthe outer
boundary (outflow),ρ, p, ~v and~B are extrapolated linearly, andψ is set to zero using linear interpolation (to impose
the desired value exactly at the domain boundary). The fourth-order methods use high-order piecewise polynomial
spline representation of the curved boundaries, combined with one-sided reconstruction and constraints. At the
inner boundary (inflow),ρ, p, ~v and~B are imposed by constraints at the Gauss points, andψ is left free. At the outer
boundary (outflow),ψ is set to zero by constraints at the Gauss points, andρ, p, ~v and~B are left free.

The steady-state solution of the rotated outflow problem obtained with the fourth-order CENO scheme on a
mesh with 80-by-80 cells can be seen in Fig. 3. The magnetic field lines are not aligned with the streamlines. The
solutions obtained with second- and fourth-order CENO schemes are compared in Fig. 4. It can be seen that the errors
converge to zero with the expected order of accuracy. For this problem, the second-order scheme has not reached the
asymptotic regime beyond the transition region yet for the resolutions we tested, and the second-order CENO error
remains above the unlimited second-order error due to ongoing switching from unlimitedk-exact reconstruction to
limited second-order reconstruction, especially for the error in the radial magnetic field as seen in Fig. 4(b). This
is possibly due to the inability of the piecewise linear function to capture the curvature of the boundaries properly,
so the switching procedure continues to see some cells closeto the boundaries as under-resolved, thus limiting
the reconstruction functions at these places and affecting the magnitude of the error. In contrast, for fourth-order
CENO and the unlimitedk-exact schemes produce the same error for resolutions above80-by-80. It is clear that our
approach can handle curved boundaries with high-order accuracy, and the fourth-order method requires significantly
fewer cells than the second-order method to obtain a given error level.
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Figure 3: Density contour lines, magnetic field lines, and streamlines for the rotated outflow problem, obtained on a meshwith 80-by-80 cells.
The magnetic field lines and the streamlines are not aligned.The flow is smooth throughout the entire domain, which enables high-order
convergence rates. The density contour lines are equally spaced in the range (0.17,0.97).
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(a) TheL1-, L2-, andL∞-norm errors for entropy, which is con-
stant in the domain.
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(b) TheL1-, L2-, andL∞-norm errors for the radial magnetic flux.
While there is no analytical solution for the full magnetic field, the
radial component of the magnetic field can be determined, dueto
the conservation of the radial magnetic flux.

Figure 4: Convergence study for the rotated outflow problem using both unlimitedk-exact reconstruction (black lines) and CENO with
SC = 800 (red lines).

4.1.4. Expanding Tube Problem
The expanding tube problem from [43] is another continuous problem that uses a body-fitted structured grid with

curved boundaries. It models plasma flow in an expanding tube, which gives rise to an MHD solution that contains a
rarefaction wave with a weak discontinuity at the edge of therarefaction (see Fig. 5). Across the weak discontinuity,
the first spatial derivative of the flow variables is discontinuous. Therefore, even if fourth-order reconstruction
accuracy is targeted (by employing degree-3 polynomial functions to reconstruct the solution), the solution accuracy
is still limited to second-order near the weak discontinuity.

The flow is simulated on a domain withx ∈ [0, 1], andy ∈ [y0(x), 1], wherey0(x) = cos (π4(x− 0.3)) − 1 for
x ∈ [0.3, 1], and zero elsewhere in the domain. The lower wall starts tocurve atx = 0.3, giving rise to a rarefaction
wave downstream of the weak discontinuity. The boundary curve follows a cosine function rather than a straight line
to avoid a geometrical singularity in the boundary, which results in the rarefaction wave not converging to a single
point, as can be seen from Fig. 5(a) [43]. At thex = 0 boundary, a uniform inflow with the following conditions
is imposed:ρ = 1, p = 1, vx = 8, andBx = 4. These initial conditions correspond to superfast horizontal inflow
conditions, with an acoustic Mach numbervx/c = 8

√
3/5, and Alfvénic Mach numbervx/cAx = 2. The second-order

methods use ghost cells to impose boundary conditions. The superfast inflow and outflow boundary conditions at
the left and right boundaries, respectively, are implemented as for the rotating outflow test problem of Sect. 4.1.3.
For the top and bottom boundaries, standard wall boundary conditions are implemented that symmetrically copyρ,
p andψ to the ghost cells, and mirror~v and ~B with respect to the wall. The fourth-order methods use high-order
piecewise polynomial spline representation of the wall boundaries, combined with one-sided reconstruction and
constraints. For the top and bottom wall boundaries,ρ, p, ψ and the tangential components of~v and~B are left free,
while the normal components of~v and~B are set to zero at the Gauss points using constraints. The high-order outflow
boundary condition is handled as in the rotating outflow testproblem of Sect. 4.1.3. We simply use ghost cells for
the high-order inflow boundary condition, since the flow remains uniform close to the inflow boundary andρ, p, ~v
and~B can just be imposed in all ghost cell layers, whileψ can be extrapolated linearly.

To assess the accuracy of the solution, entropy, which is oneof the invariants for this flow, is measured. Figure
5(b) shows convergence analysis of the entropy error. As canbe seen in this figure, second-order accuracy is achieved
for theL1-norm error of the entropy for both the second-order and the fourth-order accurate methods. While Fig. 5(b)
illustrates how the weak discontinuity in the solution limits the order of accuracy, reduction in the total error is still
observed when higher-order polynomial functions (the fourth-order method) are used to represent the solution. It is
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by-160 grid with the fourth-order CENO scheme.
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(b) Convergence study for the expanding tube problem. The entropy
is compared with the entropy at the inflow to compute the error, and
nearly second-order accuracy for theL1-norm error is observed for
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Figure 5: Expanding tube flow: density contour lines and entropy convergence study. The error converges with at most second-order accuracy,
due to the non-existence of higher-order derivatives across the weak discontinuity. Convergence study is performed for entropy using both
unlimitedk-exact reconstruction (black lines) and CENO withSC = 800 (red lines).

interesting to note that the log error of the CENO solution decreases linearly, whereas some zigzagging is present
in the unlimitedk-exact error plot. This can be explained by the fact that the flow is not fully smooth, and the
weak discontinuity that exists can potentially generate spurious oscillations when monotonicity is not enforced,
though the level at which these oscillations occur is apparently much smaller than the solution variation. Note
also that, even at the highest attempted resolution, the convergence plots of the CENO error do not converge to
those of unlimitedk-exact reconstruction (as was the case for the other test cases), implying that, due to the weak
discontinuity, reconstruction switching is always performed for at least a few cells.

4.2. Problems with Discontinuities

4.2.1. Rotated Brio-Wu Shock Tube Problem
The Brio-Wu shock tube problem [51] is a standard test case todemonstrate the capability of a numerical MHD

scheme to handle discontinuities. The initial conditions are given by

(ρ, v⊥, v‖, vz, B⊥, B‖, Bz, p, ψ) =


(1, 0, 0, 0, 0.75, 1, 0, 1, 0) for x1 < 0,

(0.125, 0, 0, 0, 0.75,−1, 0, 0.1, 0) for x1 > 0,
(47)

with γ = 2. Here,x1 is the coordinate variable perpendicular to the shock, given by x1 = xcosα + ysinα with α the
angle at which the shock frame of reference is rotated with respect to thex-axis (we chooseα =45◦). This setup is
illustrated in Fig. 6.

Ghost cells are used and constant extrapolation boundary conditions are applied to all boundaries, though the top
and the bottom boundaries require that the cells not only be copied to the ghost cells, but also shifted to the left or
the right by one cell (similar to Fig. 10 from [10]). It is important to note that, for this boundary condition to work,
the ratio between the spacing in thex-direction and the spacing in they-direction needs to be 1, because otherwise
the 45◦ symmetry would not translate to a (1,1) translational symmetry, see also [10, 34, 52].

The Brio-Wu problem gives rise to several types of waves and shocks: fast rarefaction waves, a contact discon-
tinuity, a slow compound wave, and a slow shock [51]. Simulations were performed for the rotated cases using 600
cells in thex-direction, and 4 cells in they-direction. The density plot is shown in Fig. 7, and illustrates that our
method is robust with respect to spurious oscillations. Thefourth-order solution has slightly sharper features than
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Figure 6: Setup for the rotated one-dimensional problems with discontinuities. The discontinuity is rotated 45◦ counterclockwise with respect
to thex-axis. The solution thus exhibits a translational symmetryin they1-direction.

the second-order solution. All of the important wave features are captured well without spurious oscillations, except
for a slight undershoot between the fast rarefaction (FR) and the slow compound wave (SM) (which is also observed
in other work on high-order MHD schemes [28, 34]).
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Figure 7: Comparison of the density solution of the Brio-Wu Shock Tube Problem att = 0.1414, rotated at 45◦. Here, FR denotes fast
rarefaction, SM slow compound wave, C contact discontinuity, and SS slow shock. A cutoff value ofSC = 8,000, is chosen for these
simulations.

4.2.2. MHD Extension to Shu-Osher Shock Tube Problem
The shock tube problem proposed by Shu and Osher [38] is commonly used to test the ability of high-order

numerical schemes to resolve small-scale flow features in the presence of shocks. A sinusoidal density perturbation
is added downstream of a purely advecting supersonic shock wave. The interaction of the shock wave with the
sinusoidal part of the density field gives rise to fast oscillations and complex flow features downstream to the shock.
The Shu-Osher shock tube problem provides an excellent testbed to highlight the benefits of the improved accuracy
of high-order numerical schemes, while at the same time the presence of the shock puts the robustness and stability
of the schemes to test. In what follows, we develop a new MHD version of the Shu-Osher shock tube problem.
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First consider a fast travelling shock wave without the sinusoidal density perturbation. The fast shock wave
advects with shock speeds, satisfying the Rankine-Hugoniot condition:

s(Ur − Ul) = F(Ur) − F(Ul) (48)

whereUr andUl denote the state vectors of the right and left state, respectively, andF(Ui) denotes the flux evaluated
at statei. The stable purely advecting fast shock that is desired for the MHD equivalent of the Shu-Osher shock tube
problem needs to satisfy the following conditions in addition to the Rankine-Hugoniot condition:

1. In the shock frame, the flow should move in the direction from low pressure to high pressure to ensure that
entropy increases across the shock;

2. In the shock frame, velocities normal to the shock need to be faster than the fast magnetosonic wave speed
(Eq. 14) upstream, and faster than the Alfvén wave speed (Eq. 15) but slower than the fast magnetosonic wave
speed downstream;

3. In the simulation frame of reference, the normal velocitydownstream of the shock should be zero so the
density perturbation stays intact until the shock goes through it;

4. The magnetic field normal to the shock should be continuousto ensure zero magnetic field divergence.

In the shock frame, the shock is stationary (s= 0), so the Rankine-Hugoniot condition (Eq. 48) simplifies to

F(Ul) = F(Ur). (49)

We choose the following initial conditions that satisfy conditions 1-4 and the Rankine-Hugoniot condition:

(ρ, u⊥, u‖, uz, B⊥, B‖, Bz, p, ψ) =


(1, 0, 0, 0, 1, 1, 0, 1, 0) for x < 4,

(3.5, 5.8846, 1.1198, 0, 1, 3.6359, 0, 42.0267, 0) for x > 4.
(50)

The numbers in Eq. 50 were obtained by numerically solving the MHD Rankine-Hugoniot condition, and were
rounded to four decimal digits (which is sufficiently accurate for the numerical tests). These initial conditions lead
to a shock that travels unperturbed to the left with a speed of8.2385 (rounded).

Equation 50 represents the unperturbed portion of our newlyproposed MHD version of the Shu-Osher shock
tube problem. Similar to the Shu-Osher problem, sinusoidalperturbation is added to the downstream part of the
density field (because the shock and the flow travel to the left, the sinusoidal perturbation is added toρl). The initial
density function is then chosen as

ρl = 1+ 0.2 sin(5x), ρr = 3.5 (51)

and all the other variables are kept as given in Eq. 50.
As in the case of the rotated Brio-Wu problem, the initial condition given by Eq. 50 and 51 has been applied in

the rotated frame of referencex1−y1 (see Fig. 6). The boundary conditions for our simulation of this problem are as
explained in Sect. 4.2.1. The left and right boundaries are taken sufficiently far from the initial discontinuity, such
that they do not influence the solution. The comparison of thedensity profiles between the different methods is shown
in Fig. 8. The benefit of the high-order method is clear: usingthe same number of cells, the fourth-order method
captures the small-scale flow features much better than the second-order method. For all simulations performed
for this section, no stability or overshoot problem were observed, which indicates that the monotonicity-preserving
mechanism is doing its job properly to ensure that the methodis stable in the presence of discontinuities.

4.3. Application of CENO with Dynamic Adaptive Mesh Refinement: Orszag-Tang Vortex Problem

In this section we demonstrate the dynamic AMR capabilitiesof our implementation using adaptive time-
dependent simulations of the Orszag-Tang vortex problem [28, 31, 39] with high-order accuracy and unprecedented
effective resolution. The problem is challenging because it istime-dependent and contains multiple complex and in-
teracting discontinuities. The Orszag-Tang vortex problem is a good test for our dynamic adaptive mesh refinement
and coarsening procedure.
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Figure 8: Comparison of the density solution of the MHD Shu-Osher problem att = 0.6906, rotated at 45◦. As can be observed from the
figure, the fourth-order method produces results that are much closer to the non-rotated reference result in the highly oscillatory region,
illustrating the benefits of high-order accuracy. A cutoff value ofSC = 80 is used for these simulations.

We have implemented our new high-order MHD scheme that combines CENO and GLM into a hierarchical
quadtree block-based AMR procedure for multi-block body-fitted quadrilateral mesh that is based on the previous
work of Groth and co-workers [18, 19, 20, 22] and is extended to high-order accuracy as in [1, 4]. We give a brief
summary of the approach, and details are described in [1, 2, 19]. In our hierarchical quadtree block-based AMR
algorithm, mesh adaptation is accomplished by dividing andcoarsening appropriate solution blocks. In regions
requiring increased cell resolution, a ‘parent’ block is refined by dividing it into four ‘children’. Each of the four
quadrants or sectors of a parent block becomes a new block having the same number of cells as the parent, thereby
doubling the cell resolution in the region of interest. Thisprocess can be reversed in regions that are deemed over-
resolved and four children can be coarsened into a single parent block. The mesh refinement is constrained such
that the grid resolution changes by at most a factor of two between adjacent blocks, and the minimum resolution is
not less than that of the initial mesh. A hierarchical quadtree data structure and additional interconnects between
the ‘leaves’ of the trees are used to keep track of mesh refinement and the connectivity between solution blocks.
The hybrid CENO solution reconstruction procedure is used in conjunction with standard multigrid-type restriction
and interpolation operators to evaluate the solution on allblocks created by the coarsening and division processes.
Interpolation is performed with high-order accuracy by computing reconstructed polynomials for solution variables
in each coarse-grid cell and integrating them over the fine-grid children cells to determine the fine-grid cell aver-
ages with high-order accuracy (see [2] for details). Restriction and interpolation are performed in such a way that
conservation is maintained, but in our CENO-GLM MHD approach no special treatment is required for restricting
or interpolating the cell-centred magnetic fields: restriction or interpolation may introduce errors of the order of the
discretization error, and they are handled properly by the GLM mechanism for controlling∇ · ~B.

Grid refinement and coarsening are based on the maximum valueof the CENO smoothness indicator over each
block for the density variable. For each cell, the variable

Rc = e−
max(0,S)
Sc (52)

is calculated, whereS is the value of the smoothness indicator andSc is the cutoff value for the smoothness indicator.
The range ofRc is (0,1]. The maximumRB

c of all Rc values within a block is computed. In blocks withRB
c close to
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(a) Density solution att = 0.5. The contour lines are equally spaced
in the range (2.11,5.82) (15 contours).

(b) Density solution att = 1.0. The contour lines are equally spaced
in the range (1.25,6.9) (15 contours).

(c) Density solution att = 2.0. The contour lines are equally spaced
in the range (0.62,6.41) (15 contours).

(d) Density solution att = 3.0. The contour lines are equally spaced
in the range (1.16,6.42) (15 contours).

Figure 9: The evolution of density for the Orszag-Tang vortex problem at different times:t = 0.5,t = 1.0, t = 2.0, andt = 3.0. The ranges for
the contour lines shown here are as in [28]. These fourth-order accurate results were obtained using dynamic grid adaption with the meshes
shown in Fig. 10.

0, all cells are smooth and resolved, and blocks withRB
c close to 1 have cells that are nonsmooth or under-resolved.

The block-basedRB
c values are compared with refinement and coarsening thresholds to determine if a block should

undergo refinement, or if a group of blocks should be combinedfor coarsening. Full details on the algorithm followed
for coarsening and refinement are given in [19] and [2]. The refinement/coarsening algorithm is invoked at regular
intervals during the simulation to obtain dynamic AMR.

For the Orszag-Tang vortex problem, the same initial conditions and domain as in [28] are used, withρ = γ2,
vx = − sin(y), vy = sin(x), Bx = − sin(y), By = sin(2x), and p = γ. The remaining variables (vz, Bz, andψ)
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(a) AMR as applied to the Orszag-Tang vortex problem att = 0.5.
At this point, the mesh consists of 118 8-by-8 blocks, or 7,552 cells
in total.

(b) AMR as applied to the Orszag-Tang vortex problem att = 1.0.
At this point, the mesh consists of 1,474 8-by-8 blocks, or 95,810
cells in total.

(c) AMR as applied to the Orszag-Tang vortex problem att = 2.0.
At this point, the mesh consists of 8,428 8-by-8 blocks, or 539,136
cells in total.

(d) AMR as applied to the Orszag-Tang vortex problem att = 3.0.
At this point, the mesh consists of 13,522 8-by-8 blocks, or 865,408
cells in total.

Figure 10: The evolution of the mesh for the simulation of Fig. 9 with adaptive refinement. Up tot = 1.0, the mesh is refined every 0.025
seconds, after which it is refined every 50 time steps. The lines in the figure represent the boundaries of the 8-by-8 Cartesian blocks.

are initialized to zero. The computational domain is a square with x andy values between 0 and 2π, and periodic
boundary conditions (ghost cells are used). The simulationis performed with CENO cutoff toleranceSC = 500. The
mesh is refined every 0.025 seconds up tot = 1. For later times, AMR is performed every 50 time steps because∆t
decreases rapidly. The contour lines of the density for the Orszag-Tang vortex problem are shown att = 0.5,t = 1.0,
t = 2.0, andt = 3.0 in Fig. 9. The results show agreement with results shown in other papers [10, 28, 31, 53]. Figure
10 shows the sequence of adaptive meshes. Comparing the density contour lines shown in Fig. 9 with the way the
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Figure 11: Pressure cuts aty = 1.9635 at two different times (t = 2.0 [left], andt = 3.0 [right]). High-order results obtained in combination
with adaptive mesh refinement are compared with uniform high-order high-resolution results, and found to be similar. Our results agree with
the results from [28] and [31].

grid is refined as shown in Fig. 10, it can be seen that the refinement closely follows the parts of the solution where
interesting flow features and discontinuities occur, illustrating the effectiveness of the smoothness indicator-based
refinement criterion.

Following [28] and [31], pressure distribution cuts att = 2.0 andt = 3.0 along the liney = 1.9635 are shown
in Fig. 11. The AMR results are compared to results on a uniform 1,024-by-1,024 mesh. The uniform mesh
corresponds to the smallest cell resolution at 7 levels of refinement, while 8 levels of refinement are used in the
AMR results, so that the smallest cell in the adaptive mesh (Fig. 10) corresponds to a resolution of 2,048-by-2,048 if
done uniformly. From Fig. 11, it can be seen that the AMR results in general agree well with the uniform reference
results. The AMR solution (as shown in Fig. 9) agrees well with the uniform reference solution (which is not shown)
and with solutions shown in the literature, but our results have a much higher effective resolution than previously
shown results (and they are fourth-order accurate). It is also interesting to note that, while the uniform mesh has
1,048,576 computational cells, the AMR mesh has 865,408 cells att = 3.0, which is smaller than the uniform mesh,
despite having twice the effective resolution at the highest level of refinement. Note also that, beforet = 3.0, much
fewer cells are used by the adaptive simulation (see Fig. 10). This illustrates the effectiveness of the CENO scheme
in combination with the block-based AMR algorithm to reducethe number of required computational cells.

5. Concluding Remarks

We have proposed a high-order CENO FV scheme for ideal MHD. The scheme is based on the CENO approach
that was proposed by Ivan and Groth for compressible Euler flows in [1] and uses the GLM divergence cleaning
method for MHD of Dedner et al. [6]. The resulting FV MHD scheme is high-order accurate in smooth flow regions
and robust against spurious oscillations at discontinuities. The proposed high-order accurate MHD scheme can be
used on general polygonal grids and can deal naturally with resolution changes on hierarchical quadtree block-
adaptive body-fitted grids. The proposed scheme was implemented in a highly sophisticated fourth-order accurate
parallel MHD code on 2D dynamically-adaptive multi-block body-fitted structured grids, and curved boundaries are
handled with high-order accuracy using high-order spline representations and constraints at the Gauss points.

Detailed numerical results were given that demonstrate high-order convergence for smooth flows, and robustness
against oscillations for Riemann problems and other flows with shocks. A new MHD extension of the well-known
Shu-Osher test problem [38] was proposed to test the abilityof the high-order MHD scheme to resolve small-scale
flow features in the presence of shocks. The dynamic AMR capabilities of our approach were demonstrated using
adaptive time-dependent simulations of the Orszag-Tang vortex problem with high-order accuracy and unprece-
dented effective resolution.
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The scheme we described can in principle be implemented witharbitrary order. It can also be extended naturally
to three spatial dimensions and to unstructured grids, which are topics of future work.
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