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Abstract

A high-order accurate finite-volume scheme for the comjibes&leal magnetohydrodynamics (MHD) equations is
proposed. The high-order MHD scheme is based on a centeitesdly non-oscillatory (CENO) method combined
with the generalized Lagrange multiplier divergence diegmmethod for MHD. The CENO method usksxact
multidimensional reconstruction together with a monatiyi procedure that switches from a high-order recon-
struction to a limited low-order reconstruction in regiarfsliscontinuous or under-resolved solution content. Both
reconstructions are performed on central stencils, angwliiehing procedure is based on a smoothness indicator.
The proposed high-order accurate MHD scheme can be usednenadi@olygonal grids. A highly sophisticated
parallel implementation of the scheme is described thatustli-order accurate on two-dimensional dynamically-
adaptive body-fitted structured grids. The hierarchicaltirfilock body-fitted grid permits grid lines to conform
to curved boundaries. High-order accuracy is maintainetliated domain boundaries by employing high-order
spline representations and constraints at the Gauss dquisdpeints for flux integration. Detailed numerical result
demonstrate high-order convergence for smooth flows angstobss against oscillations for problems with shocks.
A new MHD extension of the well-known Shu-Osher test problemroposed to test the ability of the high-order
MHD scheme to resolve small-scale flow features in the psefhshocks. The dynamic mesh adaptation capabili-
ties of the approach are demonstrated using adaptive t@perdient simulations of the Orszag-Tang vortex problem
with high-order accuracy and unprecedentéiddaive resolution.
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1. Introduction

This paper proposes a high-order accurate finite-volume @e¥ieme for the compressible ideal magnetohy-
drodynamics (MHD) equations. The high-order MHD schemeaiseld on the central essentially non-oscillatory
(CENO) method that was introduced for the compressiblertagaations by lvan and Groth [1], and has since been
extended to the Navier-Stokes equatidﬂs[[ﬂ 3, 4]. The CENMod uses Barth’k-exact reconstruction mecha-
nism B] to obtain high-order solution accuracy in comhimtvith a monotonicity procedure that switches between
a high-order reconstruction and a limited low-order retmasion. Both reconstructions are performed on central
stencils, and the switching is based on a smoothness indiﬂit The hybrid CENO approach is combined in this
paper with the generalized Lagrange multiplier (GLM) dgemnce cleaning method for MHD that was proposed by
Dedner et aI.|]6] to obtain a FV MHD scheme that is high-ordmuaate in smooth flow regions and robust against
spurious oscillations at discontinuities. The proposeghtdrder accurate MHD scheme has several desirable prop-
erties. First, it is suitable for general polygonal gridsdigse Barth’s k-exact polynomial reconstruction procedur
is inherently multi-dimensional and can be used on geneealcds that do not need to be grid-aligned. Second,
the scheme can in principle be implemented with arbitradeor Third, it can be used directly on block-adaptive
grids, which can pose significant challenges to MHD schemestal theV - B constraint. And fourth, high-order
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accuracy is maintained at curved domain boundaries of thg-fitted mesh by employing accurate spline repre-
sentations for the boundaries that enable high-order atsurface flux computations. These features constitute
significant new developments in high-order finite-volumkesnes for MHD. The particular implementation of the
proposed scheme that we present in this paper is a highlystigalted fourth-order accurate parallel MHD method
on two-dimensional (2D) dynamically-adaptive multi-tkdeody-fitted quadrilateral grids. Our adaptive 2D body-
fitted structured grids are composed of blocks with quatriéd cells that are organized in a rectangular structure as
on a Cartesian grid and, thus, the grid blocks are sometitsesetferred to as logically Cartesian. The body-fitted
meshes in our work can have grid lines conforming to curvashary surfaces and stretching of the grid lines is
permitted to allow for anisotropic mesh spacing.

Development of high-order numerical methods for MHD is ativacarea of research. Just like for other nonlin-
ear hyperbolic systems, spurious oscillations at shoaksanajor challenge in MHD, but an additional significant
challenge in MHD is that the high-order numerical methoddse® handle th& - B constraint in a proper way.
Indeed, it is well-known that simply extending conservatiaw methods for the Euler equations to the MHD hy-
perbolic system does not work, singe B may grow in an uncontrolled fashion (beyond truncation relegels),
which may result in unphysical forces and numerical in:ﬁtyljﬂ E] A variety of approaches have been proposed
to remedy this issue. One option is to employ an elliptic @ction scheme, called the “Hodge Projection”, which
essentially projects a vector field onto its solenoidal ﬂrﬂ]. While the elliptic correction scheme maintains
solenoidality up to machine accuracy (in the chosen diget&n), it requires a Poisson equation to be solved at
each hyperbolic step. This is not natural in a ‘hyperbolichdation code and can be inconvenient in terms of
implementation, especially in parallel since the discfetésson potential variables are tightly coupled across the
whole computational domain. As an alternative, Poviéll I®jpwsed a divergence control method that only attempts
to approximately satisfy the divergence constraint. In &ltsvapproach, the ideal MHD system is rewritten into its
symmetrizable and Galilean-invariant form through theodtiction of source terms proportional to the divergence
of the magnetic field. This modification maintains the hypéidocharacter of the MHD equations, but comes at the
cost of conservation, and may lead to incorrect jumps fobleras with strong discontinuitieﬂlO]. For this reason,
this approach has lost some of its initial popularity. Adhinethod to controV - B is the class of schemes that fall
under the category of ‘constrained transport’ methodsckvpreserve the solenoidality of the magnetic field through
staggered spatial discretizatioEl[ll]. The normal coraptmof the magnetic field are stored on cell faces, and in
every time-step the field is updated in such a way thaB remains zero up to machine accuracy (in the chosen
discretization). This approach, however, requires thematig field variables to be treatedidirently from the fluid
variables, which may be inconvenient for implementatiohe &pproach is attractive from a physics point of view
and is straightforward to derive and implement for secortitoaccurate codes on regular Cartesian grids. It can be
extended with second-order accuracy to logically Cantegiéds and to triangular or tetrahedral unstructured grids
[E,ﬂ], but extensions beyond second order [14] and torgépelygonal grids are far from trivial. In particular,
interpolation and restriction of the magnetic field at reioh changes on block-adaptive grids need to be treated
very carefully and sophisticated approaches have beerogeekefor this E_IﬁlEHjG].

More recently, Dedner et all [6] proposed the GLM-basedrdmece cleaning technique. Through the introduc-
tion of a new transport variable, the divergence error izeoted out of the domain, while keeping the hyperbolicity
of the system intact. Unlike the Powell source term methoadservation in all physical variables is maintained.
And unlike approaches following the constrained transpwthodology, there is no need to stagger the grid, or to
place the magnetic fields at locationstdient from those where the fluid variables are located. Thl@pproach
can easily and naturally be applied on general polygondkgend there is no need to integrate complicated source
terms involving flow variable derivatives as in Powell’'s aggch. A particular version of GLM-MHD (the so-called
‘purely hyperbolic’ correction) results in numerical stiduns that satisfy th& - B constraint up to machine accuracy
(in the chosen discretization) for stationary problems] #ms property can also be obtained for time-dependent
solutions |[_—J_|7]. The GLM-MHD approach thus provides an ative alternative to the more commonly established
ways of divergence control, because it fieetive in controlling divergence error, is simple to impksmt, preserves
conservation, and can easily be applied on general gridchafese GLM for our MHD scheme because, combined
with the CENO method, it leads to a high-order MHD scheme thaatbe applied on general grids (including our
adaptive multi-block body-fitted structured grid) and mally handles resolution changes on block-adaptive grids.



Adaptive mesh refinement has proven to be vdtgative for treating problems with disparate length scales,
providing the required spatial resolution while minimigimemory and storage requirements. Recently, Groth
and co—researcherE[ @ ﬁl E 22] have developed hlédsliock-based adaptive mesh refinement (AMR)
scheme allowing automatic solution-directed mesh adaptain multi-block body-fitted meshes consisting of two-
dimensional quadrilateral and three-dimensional hexathedmputational cells. We have implemented our new
high-order MHD scheme that combines CENO and GLM into a hidiaal quadtree block-based AMR procedure
for multi-block body-fitted quadrilateral mesh that is bds@ this previous worlmﬂEIZEZZ]. This block-based
approach has been shown to enalflicient and scalable parallel implementations for a variéfjoav problems, as
well as to allow for local refinement of body-fitted mesh wittismtropic stretching. The latter aids in the treatment
of complex flow geometry and flows with thin boundary, shead mixing layers antr discontinuities and shocks.
Extensions of the block-based body-fitted AMR approach febedded boundaries not aligned with the mésh [23]
and with an anisotropic refinement strate@ [24] are alssiptssand have been developed.

In recent years, various high-order schemes have beengwdor the MHD system. Many recent developments
employ discontinuous Galerkin (DG) finite element meth ,|Z|7|38], and others are based on essentially
non-oscillatory (ENO) FV schemes and on weighted ENO (WEN@)schemedﬂﬂEhEHﬂﬁ El, 34]. Most
of these high-order approaches were only described ancmasited for regular Cartesian grids. Our high-order
MHD scheme uses aftierent approach. As already mentioned, it is based on Bdetbsact reconstruction pro-
cedure EIS], which uses a least-squares approach on ovenileéel stencils to compute polynomial reconstruction
codficients, in a multi-dimensional way that can handle genesblgonal grids. In order to control spurious oscil-
lations at shocks, we use the CENO monotonicity procedwiewhs introduced by lvan and Groth [1] for the Euler
equations, and has since been extended to the Navier-Siqkaﬁonsmzl:H:M]. Our implementation of this CENO
monotonicity procedure switches between an unlimitedguiége cubic reconstruction (fourth-order accurate) and
a limited piecewise-linear reconstruction (second-omurate), with the switching based on the smoothness in-
dicator introduced irﬂl]. Note that the scheme we descriein principle be implemented with arbitrary order,
but fourth-order accuracy is a suitable practical choiceltie numerical results to be presented in this paper. The
smoothness indicator is computed in each cell to determimethver the flow is locally smooth and well-resolved.
For cells containing non-smooth or under-resolved satutisntent, the unlimited-exact reconstruction is switched
to limited piecewise linear reconstruction. The smootkriedicator can also be used directly to formulate a crite-
rion for AMR. The CENO scheme is called central because li@lnigh-order and the low-order stencils are central
with respect to the cell. The method is called an ENO methaeduree it satisfies the ENO propetﬁl[BS]:

TVU™) = TV(U") + O(AXHY), 1)

whereu" denotes a solution variableat time leveln, Axis the grid spacingk is the order of polynomial reconstruc-
tion, andT V stands for total variation. The ENO property allows the gneg of small spurious oscillations that have
a magnitude on the order of the truncation error, but it dastow O(1) Gibbs-like oscillations at discontinuities
[@]. It is important to note that the CENO method proposediviay and Groth[[]l] does not choose between asym-
metric stencils as most other methods do that try to enfdredeNO property, but instead uses a hybrid approach
that chooses between high-order and low-order centrahsteations. Note that Harten and Chakravarﬂf [36] also
proposed a technique on Cartesian grids to obtain an ENGsacation using central stencils by hybridizing a
high-order reconstruction with a first-order formulati@md this served as an inspiration for the CENO approach
of [E| E]. The fixed stencil used during the CENO reconstarcfprocedure avoids the complexity of considering
multiple non-central stencil configurations that chanarés traditional ENO schemes. Note also that the CENO
method of Ivan and Groth is not a central ENO method in theesedNessyahu and Tadmor’s staggered mesh
philosophy |E|7], but it uses non-staggered central sterdfildifferent order. We note that our limited low-order
least-squares scheme for MHD with GLM divergence clearsrgjmilar to the discretization proposed by Yalim et
al. in |17] (implemented on unstructured grids), and ouhkagder method is a high-order extension of this approach
that combines least-squares reconstruction with GLM. GeKNO-GLM high-order MHD scheme thus provides an
alternative to high-order DG and ENMWENO methods for MHD, and is attractive because it can nbyube ap-
plied on general grids. Also, while some high-order MHD suke based on DG and WENO have been proposed
for unstructured mesheE[EEl 32], and several others camipaty be (non-trivially) extended to general geometry
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[@,E{], none has yet presented a way to deal with curveddarigs. Our CENO implementation for MHD has
full capabilities to treat curved domain boundaries witghhorder accuracy. Also, few existing high-order MHD
codes are parallel or adaptive, and most of them are lima@edatrtesian grids. Our new high-order MHD scheme
significantly advances the state-of-the-art of high-offitéte-volume MHD schemes because it is suitable for gen-
eral and adaptive grids. This is demonstrated by our paBileamically block-adaptive implementation of the new
high-order scheme with high-order accurate curved bolgslavhich constitutes a significant advance over existing
high-order MHD codes.

This paper is organized as follows. The ideal MHD equatiansthe GLM formulation are described in Sddt. 2.
In Sect.[B we give a detailed description of our high-order Mbtheme, which is obtained by combining the
CENO method with GLM divergence cleaning. Sectidn 4 dessrietailed numerical results that demonstrate
high-order convergence for smooth flows, and robustnesasigsscillations for Riemann problems and other flows
with shocks. In particular, we also present a new MHD extansif the well-known Shu-Osher test probldﬂ [38] to
test the ability of our high-order MHD scheme to resolve draedle flow features in the presence of shocks. Finally,
we demonstrate the dynamic mesh refinement capabilitiesrafrgpplementation using adaptive time-dependent sim-
ulations of the Orszag-Tang vortex probleﬁl [39] with highler accuracy and unprecedentdtietive resolution.
Concluding remarks are presented in Sédct. 5.

2. ldeal MHD

2.1. Ideal MHD Equations
The ideal MHD system is described by the following equationsonservation form:

dp

SV =0, @)
‘”g;tvhv.(pww(m%g)_gg]:o, )

‘;—?w-(vé—év):o, (4)
g_f+v.[<e+p+%§w-<v-é>§]:o. ©

EquationgP t@l5 are supplemented with a solenoidality dmmdior the magnetic field,
vV-B=0. (6)

The conserved quantities of the ideal MHD equation systerihar densityp, the momentumpv (with vV being the
velocity), the magnetic fieldB, and the energye. The plasma pressure, is given by the equation of state for a
perfect gas

p =y - 1)~ 3o - 5187] @

wherey is the adiabatic index. We use= 5/3 in our numerical tests except where noted.
The ideal MHD equations can also be written in quasi-lineamf which, in one dimension, is given as

ou ou
S AU)- =0, ®)

whereU = (p, pV, B, e)T. The matrixA can then be used to determine the eigenvalues of the systeioh are given
as follows:
A12 = Vy £ Cs,, 9

/13,4 = Vx £ Ca,, (10)
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/17 = Vx, (12)
Ag =0, (13)

where the three lierent wave speeds are: the fast magnetosonic wave speettie Alfvén wave speed,,, and
the slow magnetosonic wave speeg, defined as

2 242 2
& = %{”’*B ¥ \/(”’*B ) —47'0?], (14)
p P P
BZ
Ch = (15)
2 2\2 2
ch:%{ﬂ“B - \/(VF”B) _4”’?]. (16)
p P p

2.2. GLM Control of thev - B Constraint

The GLM-MHD formulation can be described as follows. Follogra similar approach as for the Maxwell
equations@O], the divergence constraint (Hq. 6) can bpleduwvith the induction equation through the introduction
of a new potential variabley [E]. The equations describing the evolution of the magrfetid, Eq.[3 and EJ16, are
then replaced with the following equations

aa—'?+v-(v§—§\7)+w=o, (17)

D) +V-B=0. (18)

Different choices of the operatbi(y) determine whether the corrections are of so-called @lliparabolic or
hyperbolic type. Dedner et all [6] found that the hybrid hygaéic and parabolic correction scheme provides the best
balance of accuracy and stability, while at the same timgikgethe system conservative in the physical variables.
The hybrid hyperbolic-parabolic correction scheme defib@g as

_1w 1

With D(y) as given by EJ 19, the induction equation and the divergeonastraint equation can be rewritten as

dy G

As can be seen from these equations, the system is still c@tise except for the evolution equationygfwhich
is not a physical variable. This preservation of conseovafior physical variables is the main advantage of the GLM
method over the Powell method that was proposed earliergmanately satisfy the divergence constralnt [41].
Replacing the zero eigenvalue (EQ] 13), two new eigenvaues in the GLM-MHD formulation, which arec,.
The codficientsc, andc, control the amount of diusion iny and the advection speed, respectively. The ‘purely
hyperbolic’ correction can be obtained by takiggto infinity (no diffusion). Following lﬂS], we choose these two
codficients to be related in our numerical simulations throughftfiowing expression

P
C = 21
r — h, ( )



with ¢; chosen to be 0.18. The d&ieient ¢y, then, determines how fast the divergence of the magnetdt ife
advected out of the domain, wheregscontrols its dissipation. Therefore, to ensure that theresradvected as fast
as possible, it is desirable to sgtas high as possible. However, because the two new eigesviaive magnitude
Ch, it is also important to set, small enough so that it will notfBect the time-step criterion of the simulation. Thus,
Ch is often chosen to be the largest of all MHD eigenvalues inthele domain over all cell interfaces (), which
can be written as

Ch = rr;?X(lvnl +c,) (22)

wherev, andcs, are the plasma velocity and the fast magnetosonic wave ggeed4) in the direction normal to
the interfacesi(j).

2.3. Boundary Condition Treatmentwfat Inflow and Outflow Boundaries

The choice oty as given by EQA2 ensures that no eigenvalue will exceedthedt physical eigenvalue in the
domain, while at the same time, it guarantees that the divergerror will be advected out of the simulation domain
with the fastest physical wave speed in the flow solutioncé&the two additional eigenvalues are, regardless of
the actual plasma velocities and wave speeds, eigenvalledhosigns will always exist at all cell interfaces. This
means that treatment similar to subsonic inlet and outlehtlary conditions (se& [42]) is always required for inflow
and outflow boundary conditions. Since the waves with eiglel®s+c, only carry changes in the normal magnetic
field andy [E], only these two variables need to be taken into accoum@ahdaries to accommodate these waves. For
example, consider superfast inflow boundary conditionsaesdme without loss of generality thgt> 0. Since the
inflow velocity is faster than the fast magnetosonic wavethal MHD eigenvalues are positive (information travels
into the computational domain). However, for GLM-MHD onennat just prescribe all variables, because one of
the eigenvalues:c, is necessarily negative, even when the flow is superfasieantlow boundary. One of either
¥ or the normal magnetic field has to be extrapolated from thexior solution, and because the inflow magnetic
field is prescribed at the boundary, itysthat has to be extrapolated from the interior. The same lagjpdies to
superfast outflow. Assume again thgt> 0. Without GLM, all of the variables would just be extrapel@tfrom
the inside of the domain, since all eigenvalues are positieace no information is propagating into the domain.
However, due to the negative eigenvalug,, ¢ needs to be prescribed at the outflow boundary. A suitableeho
for y is to set it to zero at superfast outflow boundaries. (Thiissistent with Yalim et aI]ﬂ?], who set to a
constant at the superfast outlet boundaries.) In our extppegi the specification of boundary conditions has proven
to be important in properly applying the GLM method. We engita the proper treatment of inflow and outflow
boundary conditions here because this was not fully exgthin B]. Several MHD test cases with superfast inflow
and outflow boundary conditionEI43] will be investigatedihat follows to assess the accuracy and stability of the
scheme we propose in the next section.

3. High-Order CENO Schemefor Ideal MHD with GLM Divergence Cleaning

In this section we give a detailed description of the proddsigh-order CENO scheme for MHD, which is
obtained by combining Ivan and Groth’'s CENO approach witiM=divergence cleaning. We first describe the
high-order FV framework, followed by discussions on Bagtiexact reconstruction and the CENO reconstruction
selection process using the CENO smoothness indicator. eNoah flux calculation and source term integration
for our high-order MHD CENO method are described next, fefld by a discussion on how our MHD CENO
implementation obtains high-order accuracy at curved bdaries.

3.1. High-Order Finite-Volume Formulation
Consider hyperbolic conservation law

E+V-ﬁ=8, (23)

whereU is the vector of conserved variablé consists of the flux terms of the system, @ik a source term
vector. As mentioned before, our MHD CENO scheme can beegpin general grids with polygonal cells, but for



simplicity we give the formulas for the case of quadrilateells in a body-fitted structured grid. For a quadrilateral
cell (i, j), the semi-discrete FV form of EQ.23 is given as

dU;, 4 N

1 _
dt A (w IE)num‘ AAD;jm + Sij, (24)

Nk

I=1 m=1
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whereUi,j is the numerical approximation of the average valud af cell (i, j), Fnumis the numerical flux function,
A j is the area of the computational call j), Ng is the number of Gauss quadrature points on each cell face and
w is the associated Gauss quadrature weight to each of thes@airgs. The actual number of flux quadrature
points,Ng, depends on the order of solution reconstruction, with tvaoi€3 quadrature points per face for third- and
fourth-order accurate schemes, but only one Gauss quaslgaint per face for second-order or lowler [1]. The high-
order accurate calculation of the average source térjnrequires the accurate integration®#énd is discussed in
Sect[3H. The form given by EQ.]24 separates the spatialeampdral discretizations, which essentially reduces the
system of partial dierential equations (PDES) to a system of ordinaffedéntial equations (ODES) in time for each
cell. The order of the polynomial reconstruction then deiaes the spatial accuracy of the solution by providing
more accurate approximations of the solution values at tnes&quadrature points for flux calculation. In general,
an orderk polynomial reconstruction provides an ordkr+ 1) accurate spatial discretization for smooth problems.
We use standard explicit second-order and fourth-ordeigBgutta methodslﬂlZ] to integrate the ODE system in
time for the second-order and fourth-order accurate dpdisaretizations to be compared in our time-dependent
numerical test problems. For steady-state simulationsseea five-stage optimally smoothing method regardless
of the solution accuracﬁlM].

3.2. k-Exact Piecewise Polynomial Reconstruction

The spatial order of accuracy of the CENO FV scheme is deteunby the order of the polynomial function
used to reconstruct the solution. Following Bafth [5], tlaeiation of a solution variabley, at any location within
the quadrilateral computational cell |), assumes the form

k k
00 = 30 3 X=Xy = 9. Dl (25)
p1=0 p2=0
(p1+p2<K)

wherek is the order of the polynomial functiorf = (x,y) are the coordinates at which the solution is sought,
(%.j,¥i,j) are the coordinates of the centroid of celljf, and D'glpz are high-order polynomial céiicients that will
need to be determined for each of the primitive variablest@ry cell, based on a set of cell averaggs, in the
neighbourhood of celij). For the test cases presented in this paper, linearl) and cubic K = 3) reconstructions
are chosen to obtain second- and fourth-order accuratensshelhe monotonicity-preserving procedure, which is
discussed in Sedi_3.3, redud¢e® 1 and applies limiters in regions of the flow that are deeomatkr-resolved or to
contain discontinuities.

The coéﬁcientsD‘g1p2 are determined by solving an overdetermined system offliegaations in a least-squares
sense, fitting the reconstruction polynomial to the sotutigerages for celiyj) and for its neighbouring cells in the
stencil of cell {, j). For aki"-order polynomial, the number of cﬂﬁ«tientsD'[‘)1p2 is given byNp = &2(“2) [EHﬂD]
Thus, there are 3 ciicients to be determined fér= 1 or linear reconstruction, 6 cficients fork = 2 or quadratic
reconstruction, and 10 cficients fork = 3 or cubic reconstruction. Following the requirements isgubby Barth

[E], it is important that these céiicients are determined in such a way that the following comubtare satisfied:

e Conservation of the mean. The average of the reconstructed polynomial function oedr (¢, j) should
recover exactly the cell-averaged valijg:

- b k
Ui = A f L ] U (X) dA (26)



e k-exactness. The reconstructed polynomial function should be able tomstruct polynomials of degrdeor
less exactly|]5] or
U (X) = Uexac(X) = O(AXEY). (27)

e Compact support. The reconstructed polynomial function should depend omiyaeerage values within
a relatively small nelghbourhooﬁl [5]. Only the cell-avezdglata within the supporting stencil is used for
reconstruction purposes.

In theory, Np determines the minimum size of the supporting stencil, tyractice more neighbours are included
to make the reconstruction more robust for complicated arelcted mesheﬂ[ﬂ EI, 4]. On our 2D body-fitted
structured grid blocks, first-degree neighbours are iredufbr k = 0 andk = 1 reconstruction stencils (a total of
8 neighbours), and first- and second-degree neighboursi@teled fork = 2 andk = 3 reconstruction stencils (a
total of 24 neighbours).

Consider reconstruction for cell (). In the reconstruction step an overdetermined sygt&@m- B = 0 is solved
in the least-squares sense, together with the constrateg.@Z6, which is imposed exactly. Hei®,is the array of
polynomial codficients,D¥ . . and the equation&D — B = 0 are given by

(AD-B),; = (i f fﬂ ) uf;(X) dA) ~T,;=0. (28)

There is one equation for each cell §) in the stencil of cell i, j). Each equation matches the actual cell average
U, s in cell (y, ¢) with the average over cely(¢) of the reconstructed polynomiaf (X) for cell (i, j). EquatioriZb

is enforced analytically by replacmgf with Eq.[2Z% and expressing the first heent, Doo- as a function of the
otherM = Np — 1 polynomial unknowns as

Do = Ui - ZZD (xiy®2), (29)

p1=0 p2=0
(p1+p2#0)

P1p2’

where the geometric mome()(lolyloz)i ; of powers (1. po) is given by

pl — \P2
(mwafA.f&JX”’ (y-9%,)" dA. (30)

Substltutlnguk from Eq.2Z% in Eq[ZZB and using Hq.]29 fB(;O the following overdetermined linear system for
the M unknowns i |s obtained

(L] Dby wi(Uy - T) 0
Lo Do, wao(Uz — Ty) 0
. . _ B . B _ . 31
Ly Dpip, w;(Uy —Ty) 0 (31)
: 3 o :

| L, IMxN, Dio Nipx1 W, (U, — Tr) Mx1 0 Mx1

where a unique inde¥d = (y, ) has been assigned to each of teneighbours in the supporting reconstruction
stencil and the indek = (i, j) denotes the cell having the solution reconstructed. TherierowlL ; of the matrix
A for a neighbouring celll is given by

Ly = (WJ (X/O-;L) W (X/O-;z) e Wy (m) e W ()F()\/O) ) " (32)
N 13 1 1
in whichwj is a geometric weight specific to each neighbdwhich serves the purpose of improving the locality of
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the reconstruction, becoming especially important fagtstred meshes with boundary curvatlre [45]. (In essence,
equations corresponding to close-by neighbour cells inrdlgenstruction stencil get larger weights in the least-
squares solution than neighbour cells that are further AwWidye matrix coﬁicients(xﬁ\ym)“I for the pair ofl and

J cells have the expression

— 1 - \P — \P2 —5—5
(xPryP2) | :(m ffﬂw (X—xi,,-)p (y—yi,j)p dA]—(xplyPZ)i’j , (33)

where the quantitieéxﬁ\ym)u depend only on the geometry bfand J cells, and involve a monomial integration
that can be computed by applying quadrature rules. ficient way to calculate the geometric mome(n@ﬁ)IJ

using only the(xplyPZ) moments is described ih [2].

QR factorization or multiplication with the pseudo-inversf A can be used to determine the solution of [Eq. 31,
as described in more detail ib [E| ﬁ 4]. The complete satubbthe constrained least-squares problems is then
obtained by calculatindpgo using EqZD. In each time step, the constrained least-sguaconstruction problem
is solved for each cell and for each primitive variable. Matk depends completely on the geometry and is the
same for all least-squares problems in a given égJ) (i.e., for each solution variable) and for all time steps, s
it can be precomputed and stored for computatioffizdiency (seeﬂ]ﬂﬂ 4] for details). As explained in SEcCil 3.5,
one-sided stencils and additional constraints on the-Egpsires solution are used to handle boundary conditions
with high-order accuracy at curved boundaries.

3.3. CENO Smoothness Indicator to Enforce Monotonicity

The CENO method controls monotonicity throughout the catiepenal domain by selecting a limited linear
reconstruction in cells where the flow is deemed to be nonfimamounder-resolved, and a high-ordeexact re-
construction elsewhere. The limited linear reconstructiobased ork-exact reconstruction witk = 1 combined
with the standard Venkatakrishnan limiter, sﬂéﬂ 46]. Stneate whether the flow in cell,(j) is under-resolved or
non-smooth, a variabl8, the smoothness indicator, is computEd [1]:

@Cs

S= max(1- a,€)’

(34)

whereq is given by

Z Z (U«I;,a()zyﬁ) - U!f j ()Zy,(s))z
a=1-- (35)

2 (o) - Ty)’
Yy 0

andcs = (Nsos—Np)/(Np—1) is a positive constant. Hers osstands for ‘size of stencil’ used for reconstruction,
Np stands for ‘degrees of freedom’ and denotes the number ofawk polynomial cofficients, and is introduced

to avoid division by zero (we use = 1078). Further,y andé denote the indices of the neighbouring cells to the
cell (i, j) that are part of its reconstruction stencil, a?ﬁpl; is the centroid of celly, 6). (Note that the stencil used
for computing the smoothness indicator can also be chosahesrthan the reconstruction stencil. In our numerical
results, we compute the smoothness indicator associatedeach primitive solution variable in cell, () using a
stencil with nine cells, i.e., the cell,() and its eight first-degree neighbours.) The parametassically measures
how accurately centroidal solution values of neighboudetis can be reproduced using the reconstruction for cell
@i, })- The range ofr is — < @ < 1: for smooth variation, the second term of the right-hani# sif Eq3b tends
to be close to zero andis very close to one; for cells close to a discontinuity othwéih under-resolved feature, the
magnitude ofr tends away from one and it can also become negative. The ddrige smoothness indicatd¥ is
—Cs < S < cg/e: for smooth variationd very close to one)S is large; for nonsmooth or under-resolved features (
away from one)S is small. The smoothness indicatSis then compared with a cutfovalueS¢: whenS > S¢ the
solution is deemed locally smooth and the high-order recocison is used, and faf < S¢ the solution is locally
nonsmooth or under-resolved, and the limited low-ordepmstruction is used. We also usein our adaptive




procedure to refine regions where the solution is nonsmootmder-resolved. A potential disadvantage of this
approach is that it is not fully parameter-free. Howeverhaee found it easy to pick suitable valuesSyf based on
the range recommended i [2] for the numerical tests shov@eet[#. Additionally, it is worth emphasizing that a
single valueS; is selected and applied to all solution variables and allmmesolutions used for solving a particular
problem. The form of the smoothness indicator is inspirethieydefinition of multiple-correlation céigcients and
least-squares goodness-of-fit testing; Ebe [2] for a mdedlee discussion with further motivation for the approach
As is shown by extensive testing for the Euler and Naviek&icequations |rﬂﬂ ﬂ El 4] and is further confirmed
by the numerical MHD tests presented below, the CENO approedit smoothness indicatd is robust in terms
of providing high-order accurate numerical approximatiorhile avoiding spurious oscillations.

One more element has to be added to the approach in order gogdtresults for problems with uniform
regions. In uniform regions, the formula ferin Eq.[3% may lead to @ in the second term of the right-hand
side, rendering the smoothness indicator unpredictalblbad been observed befo@[47] in a related context that
it is desirable to eliminate theffect of switching mechanisms altogether in nearly uniforgiaes, and just use
high-order reconstruction. To do so, we define the newly @sed parameter

k k
Gi= | Y . (DK p) A P, (36)
p1=0 p=0
(0<p1+p2<k)

which measures the variability of solution variakién cell (i, j). (It takes into account all the derivatives at the
centroid of cell {, j).) When¢; j is smaller than a threshold value (low variability), higiter reconstruction is
always used, and only whefh; is greater than the threshold the smoothness indicatompuated and the CENO
switching mechanism is activated. In particular, the sioess indicator for the solution variahles evaluated in
cell (i, j) when

&i.j > ea + erli j, (37)

whereea and g represent absolute and relative variability thresholéi@sen to be 1€ for the simulations per-
formed in this paper.

3.4. Numerical Flux Function and High-Order Accurate Saul@rm Integration

In this subsection we discuss numerical flux computationragld-order accurate treatment of the GLM source
term (in Eq.[2D) for the high-order MHD CENO scheme. We useliveFriedrichs numerical flux function for
the implementation of the proposed high-order MHD CENO saheFollowing Dedner et al|:|[6], the equations for
By andy are decoupled from the rest of the system, so the Lax-Fclesimumerical fluxes are applied only to the
other seven variables. The fluxes at the interface8fandy are calculated by having these variables assume the
following values at the cell interfaces [6]:

1 1
Bxm = E(Bx,r + Bxl) — Z—Ch(lﬁr - ), (38)
1 C
Ym = E(l//r +y) - Eh(Bx,r - Bx,l), (39)

where the subscriptsandr denote the left and right reconstructed states at cellfattes andcy, is the global
maximum of|vy| + ¢, at cell interfaces. These values are substituted direattythe exact flux formulas for thigy
andy equations. In a multi-dimensional settiri§) is effectively B,, which is the magnetic field component normal
to the interface. Thesg, andB,,, values are also used for flux calculation purposes of ther séaneen variables,
which uses the Lax-Friedrichs numerical flux with local \edwf|vy| + ct, as the largest wave speed that determines
the size of the numerical dissipation.

As an alternative, one can also apply the standard Lax4fichesi flux directly to the full system with nine
variables, without decoupling thex2 system. One can expect this to be moréudive since in this casg, (the
global maximum ofvy| + ct,) determines the numericalftlision, but we have not found muchfigirence with the
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decoupled approach when trying this for our numerical t@¢évertheless, in the numerical results presented below
we use the decoupled approach. Other flux functions such aaRbHLLE can also be considered. Wheatley et
al. @] compared flux functions for high-order DG methodsd &ound that using more accurate Riemann solvers
improves results in some cases (e.g., at shocks), but dmsmft make much flierence in smooth regions of the
flow. This is also expected for CENO since the intercellutzlugon jumps diminish in size as the reconstruction
order increases, but a detailed investigation of this fer@ENO MHD scheme is beyond the scope of this paper.

The ideal (non-modified) MHD system (HQ. 2 - [E}). 5) is a hypbchsystem of equations, so it easily fits within
the CENO framework. However, the GLM-MHD formulation addscairce term to the-update equation (EGR0),
and it is important to ensure that this source term is intedrevith high-order accuracy. Dedner et &l. [6] suggest that
source terms be incorporated separately using an opeitting approach. By solving the resulting ODE exactly,
the source term integration step can be made uncondityoatble (thus, adding no extra time step restriction to
the hyperbolic system). In Sect. 17.5 E|[49], LeVeque exgldhat such source term treatment leads to an order
of accuracy that is at most second-order accurate in time rfbkes the operator-splitting technique for handling
the source term not desirable for high-order purposes. anohechanism to treat the source term is by integrating
it directly. Though some types of source terms might poseallarige, the source term of the hyperbolic-parabolic
GLM-MHD equation system involves only the varialffeso integrating it with high-order accuracy turns out to be
straightforward. Indeed, integrating Egl 20 over celj) gives

dgt(ffﬂuwdA):—cﬁ(ffﬂuv-I§dA)—§Z(ffﬂuwdA), (40)

which directly leads to the discrete equation

dy; 1 &G, . Ch—
T = _Al_j ; r%;L(U)fnum' ﬁAI)I,j,l,m - gpl//i,j, (41)

with fhumthe numerical flux function for E@Q20. This is a high-ordesaletization of EQ.Z0 as long as the fluxes are

computed with high-order accuracy. In summary, discregizhe source term of EGQ. 120 with high-order accuracy is

easy because integratigigin the source term of E._PO directly leads to the averageevﬂ[y in cell (i, j), which

is one of the primary variables in the code stored in dell)( The source term in discrete Hql41 can in principle

influence the stability bound and allowable time-step fer@DE system, but a straightforward analysis shows that
it does not limit the allowable time-step beyond the usugldniolic CFL condition for the values of andcy, and

the grid resolutions we use in our test problems. This wafircoed in all our numerical experiments.

3.5. High-Order Accuracy at Curved Boundaries

In our CENO MHD implementation, two general mechanisms aedlable to prescribe boundary conditions.
The first mechanism uses ghost cells. Every grid block in eenalchical block-adaptive body-fitted quadrilateral
grid framework is equipped with three or four layers of ghoslis. In the numerical results to be presented in
Sect.[#, we compare second-order results with fourth-oresults. The second-order simulations employ three
layers of ghost cells for each block, and the fourth-ordsults employ four layers of ghost cells for each block.
All blocks have the same size, and the parallelization efsadistributes blocks over parallel MPI processes as
uniformly as possible (with typically multiple blocks perprocess and one MPI process per CPU core), resulting
in adequate load balancing. The ghost cells enable the gegsessing that parallelizes the code. They are also
used in the adaptivity mechanism to transfer informatiamvben coarse and fine blocks, as is explained in §egt. 4.3.
Note that the number of ghost cell layers is one greater th@anamber required to enable reconstruction in the first
ghost cell layer; this additional ghost cell layer is neeeg$or computing the smoothness indicator in the first layer
of ghost cells (which determines whether the high-ordemowarbrder reconstruction is used therE) [2]. The ghost
cells can also be used to impose boundary conditions at timaiddooundaries in standard ways. All second-order
simulations use ghost cells to impose boundary conditiGimst cells are also used to impose boundary conditions
for our fourth-order tests in certain cases, for exampléendase of periodic boundary conditions. However, for
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high-order accuracy near curved boundaries, a more aecseabnd mechanism for boundary conditions is needed.

The second boundary condition mechanism relies on acapttesentation of the curved boundaries with high-
order piecewise polynomial splines, on the use near boigslaf one-sided stencils that only contain cells within
the computational domain, and on additional constrainsosed on the least-squares reconstruction problem at the
Gauss pointleO]. It is also important to compute the geamdata such as cell areas, centroid locations, etc. to
the same order of accuracy as that of the interior sch .[2Vé represent curved boundaries with piecewise
polynomial splines of an order consistent with that of the fwnerical scheme, which allows us to locate Gauss
guadrature points and compute flux integrals with high amurOne-sided reconstruction stencils are used for the
first and second layer of cells in the computational domath@boundaries, and constraints are added to the least-
squares reconstruction of the cells in the first layer to mtely impose certain types of boundary conditions on
the curved boundaries at the Gauss points. When ghost celisaused, the one-sided reconstructed values at the
Gauss points are directly plugged into the exact MHD flux fioms to obtain the numerical flux. For variables to
be left free at the boundaries (extrapolation from the cdatjmnal domain), no additional constraints are necessary
For variables to be imposed at the boundaries, the appteiastraints are added at the Gauss points used in the
flux integration.

More generally, our framework accepts Robin boundary d¢ond (linear combination of Dirichlet and Neu-
mann), and also linear relations among variables which fBoaoupling constraint for a set of reconstructed variables
[E]. These coupling constraints can be used to impose waditions at curved boundaries with high accuracy. This
has been explained for Euler flows i ﬂ 2], and we extendrit e perfectly conducting walls in MHD problems.
For perfectly conducting walls, we impose tti = 0 andv- i = 0 in each Gauss quadrature point. Lré,hg)
be the normal vector in Gauss quadrature pgiof cell (i, j), and let &g, yg) be its coordinates. Then, using the

polynomial expansion of EQ_P5, the conditioBs i = 0 andv - i = 0 at the Gauss point can be expressed as

k k k k
D =KD Y~ TP (D p)e, + > > (% =Ky~ i )Y (D, p)s, =0, (42)
p1=0 p2=0 p1=0 p2=0
(P1+p2<Kk) (P1+p2<Kk)

and
K

k k k
D0 =X ) Mg = B )P Ok pu+ D > (%~ %)™ (g - % )™y Ok =0 (43)
p1=0 p2=0 p1=0 p2=0
(P1+p2<Kk) (P1+p2<Kk)

with (D‘,glpz).;;X the polynomial cofiicients for theBy magnetic field component, and similar for tBg, u andv

vector components. To impo&k- i = 0 in the reconstruction, we solve the least-squares rewmtisin problems
for the By and By polynomials together, with the additional constraints qf[E2 for each Gauss point. Similarly,
the least-squares reconstruction problemsufandv are solved together to impose fi = 0, with the additional
constraints of Eq.43. For full implementation details, @e

4, Numerical Results

In this section we present numerical results that demaeshigh-order convergence for smooth flows and ro-
bustness against oscillations for flows with shocks. Wegme®ur continuous test problems followed by two prob-
lems with discontinuities, including a new MHD extensiortloé well-known Shu-Osher test probIeE|[38]. Finally,
we demonstrate the dynamic AMR capabilities of our impletaton using adaptive time-dependent simulations of
the Orszag-Tang vortex probIeE[BQ] with high-order accyrand unprecedentedfective resolution.

4.1. Continuous Problems

We first present two smooth test problems on Cartesian gkiigh are the rotated Alfvén problem froE[lO],
and the magnetostatic problem fromi[25]. We then presentdwdinuous test problems on body-fitted multi-
block structured grids with non-rectangular cells and edrigoundaries: the rotating radial outflow problem and the
expanding tube problem froﬂ43].

12



To quantify the accuracy of the numerical solution, thesreoe measured in the, L, andL., norms:

EL - L k
L1 =IE1 = Ay lzjl ff?{i,j |Ui,j(X, Y) — Uexac{X, y)| dA (44)
1
Lo =IEl2 = \/A_T Z fj;z( [uhj(xa Y) — Uexac(%, y)]Z dA (45)
0 i
Lo = |Ele = max(# ff |u=(’j(xa Y) — Uexac(%, y)| dA), (46)
1) A|,J ﬂi,j

whereAs is the total area of the computational domain. The integredsevaluated with high-order accurate Gaus-
sian quadrature, sed [2] for details. In most of our numetests, we compare convergence for four numerical
methods: fourth-order CENO, fourth-order unlimite@xact reconstruction, second-order CENO, and secorst-ord
unlimited k-exact reconstruction. The CENO methods switch betweerk-#?eact reconstruction and the limited
piecewise linear reconstruction based on the smoothndgsator. We use a smoothness indicator diitvalue

Sc = 800 except where noted.

4.1.1. Rotated Alfvén Travelling Wave Propagation

The circularized Alfvén wave problem froan__I10] represeatalytical solutions of the MHD equations for ar-
bitrary amplitudes. The wave propagates with an angle ef 30° with respect to a Cartesian grid, and assumes
the initial conditions (as irmO])p =1,vy=0,p=010B;=1v, =B, =01 sin(Zr(xcosg) + ysin()),
andv, = B; = 0.1 cos(Z(xcosg) + ysin(@)]. The parallel velocityy, is set to zero, which corresponds to the
travelling wave test case. The perpendicular and paradhettibns are defined with respect to the direction of wave
propagation. These initial conditions give an Alfvén gpeél, which corresponds to a transit period of 1. The com-
putational domain is set to be periodic (using ghost celi) ranges [0,1cos)] for x, and [0,¥sin(@)] for y. As
in [@], the number of cells in the-direction is equal to the number of cells in trelirection, which corresponds to
a ratio of /3 betweemx andAy. The simulations are run for 5 transit periods (or up £05). Density and other
scalar variables are expected to be constant throughowirthdation since they are not perturbed by the Alfvén
wave, and the errors for these variables are much smallerftin& and §, which is consistent with the finding of
Toth M]. Thus, only the accuracy of thleand B fields were assessed for convergence studies.

As can be seen from Fifil 1, the expected order of convergsraehieved for the-direction magnetic field, at
least in the asymptotic limit. For the sake of brevity, oriig tresults of thex-direction magnetic field are shown,
but the other variables behave in a similar manner. Trezeof the CENO monotonicity-preserving reconstruction
switching proceduref: = 800) can be seen: a “transition” regime occurs where the iisewit fine enough and the
smooth flow features are notfégiently resolved. This transition regime does not occutlierfourth-order method
because it dticiently resolves the flow already with low resolution, smﬂﬂl]. The high-order scheme represents
significant savings in the number of computational cellsimagl for some specific level of accuracy: a 64-by-64 grid
resolution was dfticient for the fourth-order scheme to obtain a smaller elvantthe limited second-order scheme
on a 384-by-384 grid.

4.1.2. Two-Dimensional Magnetostatic Problem

We next consider the magnetostatic problem frbrh [25]. Treeesgolution of this stationary problem is known:
p=21v=0Vv =0V,=0Bx=-cos@xe™,By = sin(@@x)e”™,B, = 0,p = 1984 (y — 1),y = 0. Following
Warburton et aI.|E5], this exact solution is used as théaih@ondition for the simulation, and the error at steady-
state is a measure of the deviation of the numerical soldt@mn the exact solution. The second-order methods use
ghost cells to impose boundary conditiorsand B are imposed in the ghost cells (accurate average value® of th
exact solution, obtained by numerical quadrature), @nd andy are extrapolated to the ghost cells (the average
values are linearly extrapolated). The fourth-order méshase one-sided reconstruction, with the exact valugs of
andB imposed at the Gauss points using constraints papcandy are left free at the Gauss points. Figlre 2 shows
how the error norm oBy converges to zero as a function of grid size with the expeotddr. The fourth-order
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Figure 1: Thel;-, L,-, andL.-norm errors for the magnetic field in thedirection for the rotated Alfvén wave problem, calcuthtdt = 5
(five transit periods)N is the total number of grid cells. The solution is comparethilie initial conditions to compute the error. The error
converges to zero with the expected order of accuracy ingimptotic limit. A transition region is observed for the sed-order CENO
scheme, consistent with the findings of lvan and Grﬂtﬁl[z, 4].
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Figure 2: ThelL;-, L,-, andL..-norm errors for the magnetic field in thedirection for the magnetostatic problem. The steadyestatution
is compared with the initial conditions to compute the erfidre error converges to zero with the expected order of acgun the asymptotic
limit.

scheme requires much fewer computational cells to achispeecified level of error (in this case, the error cdftiedi
by as much as 4 orders of magnitude for the same number of.cells

4.1.3. Superfast Rotating Outflow From a Cylinder

We next consider the rotated outflow problem from [43] on aybfitted structured grid with non-rectangular
cells and curved boundaries. While the exact analyticalt®wl is not available, several theoretical flow invariants
are available|E3], with which the corresponding computeadrtgities can be compared. We measure error in the
entropy,s, and the radial magnetic fiel&, .

The problem is defined on a domain between two concentritesirand superfast inflow conditions (normal
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velocity faster than the fast magnetosonic wave speed & giv Eq.[T¥#) are imposed at the inner circle. The
domain goes from = 1tor = 6, and the inflow conditions imposed at the= 1 boundary are = 1, p = 1,

Vv; = 3,Vvy = 1, andB; = 1. The second-order methods use ghost cells to impose bgucaladitions. At the inner
boundary (inflow),o, p, V and B are imposed in the ghost cells using linear interpolatianirttpose the desired
values exactly at the domain boundary), ani$ extrapolated linearly from the interior of the domain.th¢ outer
boundary (outflow)p, p, ¥V andB are extrapolated linearly, andis set to zero using linear interpolation (to impose
the desired value exactly at the domain boundary). Thetieander methods use high-order piecewise polynomial
spline representation of the curved boundaries, combingd ame-sided reconstruction and constraints. At the
inner boundary (inflow)p, p, V andB are imposed by constraints at the Gauss pointsyasdeft free. At the outer
boundary (outflow)y is set to zero by constraints at the Gauss points papdv andB are left free.

The steady-state solution of the rotated outflow problenmainobt with the fourth-order CENO scheme on a
mesh with 80-by-80 cells can be seen in [Elg. 3. The magnetitlifes are not aligned with the streamlines. The
solutions obtained with second- and fourth-order CENOmetseare compared in F[d. 4. It can be seen that the errors
converge to zero with the expected order of accuracy. Feipiitblem, the second-order scheme has not reached the
asymptotic regime beyond the transition region yet for geolutions we tested, and the second-order CENO error
remains above the unlimited second-order error due to aggawitching from unlimiteck-exact reconstruction to
limited second-order reconstruction, especially for therein the radial magnetic field as seen in Hig. #(b). This
is possibly due to the inability of the piecewise linear fime to capture the curvature of the boundaries properly,
so the switching procedure continues to see some cells tbodee boundaries as under-resolved, thus limiting
the reconstruction functions at these places dieting the magnitude of the error. In contrast, for founttien
CENO and the unlimite#-exact schemes produce the same error for resolutions &felrg-80. It is clear that our
approach can handle curved boundaries with high-orderacguand the fourth-order method requires significantly
fewer cells than the second-order method to obtain a given Evel.

Magnetic Field Lines

Figure 3: Density contour lines, magnetic field lines, amdasnlines for the rotated outflow problem, obtained on a mésgh80-by-80 cells.
The magnetic field lines and the streamlines are not aligiide flow is smooth throughout the entire domain, which ersahigh-order
convergence rates. The density contour lines are equallyeshin the range (0.17,0.97).
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(a) Thel;-, L,-, andL.-norm errors for entropy, which is con-  (b) Thel,-, L,-, andL.-norm errors for the radial magnetic flux.

stant in the domain. While there is no analytical solution for the full magnetieldi, the
radial component of the magnetic field can be determinedtalue
the conservation of the radial magnetic flux.

Figure 4: Convergence study for the rotated outflow probleingiboth unlimitedk-exact reconstruction (black lines) and CENO with
Sc =800 (red lines).

4.1.4. Expanding Tube Problem

The expanding tube problem fro|ﬂ43] is another continuooblpm that uses a body-fitted structured grid with
curved boundaries. It models plasma flow in an expanding tubih gives rise to an MHD solution that contains a
rarefaction wave with a weak discontinuity at the edge ofénefaction (see Fi@l 5). Across the weak discontinuity,
the first spatial derivative of the flow variables is discontius. Therefore, even if fourth-order reconstruction
accuracy is targeted (by employing degree-3 polynomiattions to reconstruct the solution), the solution accuracy
is still limited to second-order near the weak discontiynuit

The flow is simulated on a domain withe [0, 1], andy € [yo(X), 1], whereyp(x) = cos G(x - 0.3)) - 1 for
x € [0.3,1], and zero elsewhere in the domain. The lower wall startsitge atx = 0.3, giving rise to a rarefaction
wave downstream of the weak discontinuity. The boundaryectallows a cosine function rather than a straight line
to avoid a geometrical singularity in the boundary, whicsutts in the rarefaction wave not converging to a single
point, as can be seen from F@(El [43]. At the- O boundary, a uniform inflow with the following conditions
is imposed:p = 1, p = 1, v = 8, andBx = 4. These initial conditions correspond to superfast haitaoinflow
conditions, with an acoustic Mach numhgyc = 8+/3/5, and Alfvénic Mach number,/ca, = 2. The second-order
methods use ghost cells to impose boundary conditions. dperfast inflow and outflow boundary conditions at
the left and right boundaries, respectively, are implemeérts for the rotating outflow test problem of SEct.4.1.3.
For the top and bottom boundaries, standard wall boundarglitons are implemented that symmetrically capy
p andy to the ghost cells, and mirratand B with respect to the wall. The fourth-order methods use igler
piecewise polynomial spline representation of the wallrmtaries, combined with one-sided reconstruction and
constraints. For the top and bottom wall boundaries, ¢ and the tangential componentswénd B are left free,
while the normal components ofandB are set to zero at the Gauss points using constraints. Theonitgr outflow
boundary condition is handled as in the rotating outflow pesblem of Sec{”4.113. We simply use ghost cells for
the high-order inflow boundary condition, since the flow reamainiform close to the inflow boundary apdp, V
andB can just be imposed in all ghost cell layers, whilean be extrapolated linearly.

To assess the accuracy of the solution, entropy, which isobttee invariants for this flow, is measured. Figure
[6(B] shows convergence analysis of the entropy error. Abeaeen in this figure, second-order accuracy is achieved
for theL1-norm error of the entropy for both the second-order anddheti-order accurate methods. While [ig. b(b)
illustrates how the weak discontinuity in the solution lisnihe order of accuracy, reduction in the total error i$ stil
observed when higher-order polynomial functions (thetftoarder method) are used to represent the solution. Itis
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Figure 5: Expanding tube flow: density contour lines andagticonvergence study. The error converges with at moshsesaler accuracy,
due to the non-existence of higher-order derivatives actios weak discontinuity. Convergence study is performeeioropy using both
unlimitedk-exact reconstruction (black lines) and CENO w#th = 800 (red lines).

interesting to note that the log error of the CENO solutionrdases linearly, whereas some zigzagging is present
in the unlimitedk-exact error plot. This can be explained by the fact that tbw fs not fully smooth, and the
weak discontinuity that exists can potentially generatarisps oscillations when monotonicity is not enforced,
though the level at which these oscillations occur is apgranuch smaller than the solution variation. Note
also that, even at the highest attempted resolution, theecgence plots of the CENO error do not converge to
those of unlimitedk-exact reconstruction (as was the case for the other tess);asplying that, due to the weak
discontinuity, reconstruction switching is always penfied for at least a few cells.

4.2. Problems with Discontinuities
4.2.1. Rotated Brio-Wu Shock Tube Problem

The Brio-Wu shock tube problerﬂSl] is a standard test cagertmonstrate the capability of a numerical MHD
scheme to handle discontinuities. The initial conditioresgiven by

(1,0,0,0,0.75,1,0, 1,0) for x; < O,

47
(0.1250,0,0,0.75,-1,0,0.1,0) for x; > O, 47

(pa VJ_aVH5VZ5 BJ_’ B”’ BZ’ p’ l//) = {

with y = 2. Here,x; is the coordinate variable perpendicular to the shock,gibyex; = xcosa + ysina with « the
angle at which the shock frame of reference is rotated wipeet to thex-axis (we choose =45°). This setup is
illustrated in Fig[h.

Ghost cells are used and constant extrapolation boundaditmns are applied to all boundaries, though the top
and the bottom boundaries require that the cells not onlyopéd to the ghost cells, but also shifted to the left or
the right by one cell (similar to Fig. 10 froﬂlO]). It is impant to note that, for this boundary condition to work,
the ratio between the spacing in tkelirection and the spacing in thedirection needs to be 1, because otherwise
the 45 symmetry would not translate to a (1,1) translational sytnyneee alsomd::kBZ].

The Brio-Wu problem gives rise to several types of waves dodlss: fast rarefaction waves, a contact discon-
tinuity, a slow compound wave, and a slow sh [51]. Simaitet were performed for the rotated cases using 600
cells in thex-direction, and 4 cells in thg-direction. The density plot is shown in Fig. 7, and illustsathat our
method is robust with respect to spurious oscillations. fbleth-order solution has slightly sharper features than

17



hn

Ty

Figure 6: Setup for the rotated one-dimensional problentts discontinuities. The discontinuity is rotated 4ounterclockwise with respect
to thex-axis. The solution thus exhibits a translational symmegttyey;-direction.

the second-order solution. All of the important wave feasuaire captured well without spurious oscillations, except
for a slight undershoot between the fast rarefaction (FR)tha slow compound wave (SM) (which is also observed
in other work on high-order MHD schem&[@ 34)).

1
08 FR
0.6
0.4
0.2
Reference Solution (2 "_order 6,000 Cells, not rotated) S S F R
45 Degree-Rotated 2 "™-order 600 Cells
45 Degree-Rotated 4 "-order 600 Cells
-0.4 -0.2 0 0.2 0.4

Figure 7: Comparison of the density solution of the Brio-Who& Tube Problem at= 0.1414, rotated at 45 Here, FR denotes fast
rarefaction, SM slow compound wave, C contact discontin@nd SS slow shock. A cufiovalue of S = 8,000, is chosen for these
simulations.

4.2.2. MHD Extension to Shu-Osher Shock Tube Problem

The shock tube problem proposed by Shu and Oshér [38] is cotynoised to test the ability of high-order
numerical schemes to resolve small-scale flow featuresiptésence of shocks. A sinusoidal density perturbation
is added downstream of a purely advecting supersonic shaske.wThe interaction of the shock wave with the
sinusoidal part of the density field gives rise to fast oatitihs and complex flow features downstream to the shock.
The Shu-Osher shock tube problem provides an excelleteigsd highlight the benefits of the improved accuracy
of high-order numerical schemes, while at the same time ibgepce of the shock puts the robustness and stability
of the schemes to test. In what follows, we develop a new MHiBiga of the Shu-Osher shock tube problem.
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First consider a fast travelling shock wave without the soidal density perturbation. The fast shock wave
advects with shock speegisatisfying the Rankine-Hugoniot condition:

s(Ur - Uy) = F(Ur) - F(U) (48)

whereU; andU, denote the state vectors of the right and left state, reispctandF(U;) denotes the flux evaluated
at statd. The stable purely advecting fast shock that is desirechfoMHD equivalent of the Shu-Osher shock tube
problem needs to satisfy the following conditions in aduitto the Rankine-Hugoniot condition:

1. In the shock frame, the flow should move in the directiomflow pressure to high pressure to ensure that
entropy increases across the shock;

2. In the shock frame, velocities normal to the shock neecetéabter than the fast magnetosonic wave speed
(Eq.[13) upstream, and faster than the Alfvén wave speedI@dut slower than the fast magnetosonic wave
speed downstream;

3. In the simulation frame of reference, the normal velocityvnstream of the shock should be zero so the
density perturbation stays intact until the shock goesutinat;

4. The magnetic field normal to the shock should be contintmessure zero magnetic field divergence.

In the shock frame, the shock is stationasy=(0), so the Rankine-Hugoniot condition (EEg] 48) simplifies to
F(U) = F(U). (49)
We choose the following initial conditions that satisfy dafons 1-4 and the Rankine-Hugoniot condition:

(1,0,0,0,1,1,0,1,0) for x < 4,

50
(3.5,5.88461.1198 0, 1,3.63590,420267,0) for x > 4. 0)

(pa ug, U||, Uz, BJ_a B||5 BZ’ p’ l//) = {

The numbers in EQ_H0 were obtained by numerically solvirggMHD Rankine-Hugoniot condition, and were
rounded to four decimal digits (which isfigiently accurate for the numerical tests). These initiaditons lead
to a shock that travels unperturbed to the left with a spe&2885 (rounded).

Equation[BD represents the unperturbed portion of our nendposed MHD version of the Shu-Osher shock
tube problem. Similar to the Shu-Osher problem, sinusgiéalurbation is added to the downstream part of the
density field (because the shock and the flow travel to thethedtsinusoidal perturbation is addeth The initial
density function is then chosen as

o =1+0.2sin(5), pr =35 (52)

and all the other variables are kept as given in[Ef). 50.

As in the case of the rotated Brio-Wu problem, the initial dition given by Eq[BD and®1 has been applied in
the rotated frame of refereneg-y; (see Figlb). The boundary conditions for our simulatiorhaf problem are as
explained in Seci—Z42.1. The left and right boundaries @kert stficiently far from the initial discontinuity, such
that they do not influence the solution. The comparison ofléresity profiles between theftirent methods is shown
in Fig.[@. The benefit of the high-order method is clear: ushmysame number of cells, the fourth-order method
captures the small-scale flow features much better thanet@end-order method. For all simulations performed
for this section, no stability or overshoot problem wereeaslsed, which indicates that the monotonicity-preserving
mechanism is doing its job properly to ensure that the meithethble in the presence of discontinuities.

4.3. Application of CENO with Dynamic Adaptive Mesh Refimgm@rszag-Tang Vortex Problem

In this section we demonstrate the dynamic AMR capabilibéour implementation using adaptive time-
dependent simulations of the Orszag-Tang vortex pro ,Eb] with high-order accuracy and unprecedented
effective resolution. The problem is challenging becausetitns-dependent and contains multiple complex and in-
teracting discontinuities. The Orszag-Tang vortex pnobie a good test for our dynamic adaptive mesh refinement
and coarsening procedure.
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Figure 8: Comparison of the density solution of the MHD Shah&r problem at = 0.6906, rotated at 45 As can be observed from the
figure, the fourth-order method produces results that arehneloser to the non-rotated reference result in the higkbillatory region,
illustrating the benefits of high-order accuracy. A diit@lue ofS; = 80 is used for these simulations.

We have implemented our new high-order MHD scheme that coesbCENO and GLM into a hierarchical
guadtree block-based AMR procedure for multi-block bodtedi quadrilateral mesh that is based on the previous
work of Groth and co-workerﬂhﬂlmﬂ 22] and is extenaeldigh-order accuracy as i [E| 4]. We give a brief
summary of the approach, and details are described i [E]Z,Iﬂl our hierarchical quadtree block-based AMR
algorithm, mesh adaptation is accomplished by dividing enarsening appropriate solution blocks. In regions
requiring increased cell resolution, a ‘parent’ block iBrmed by dividing it into four ‘children’. Each of the four
guadrants or sectors of a parent block becomes a new bloakghdne same number of cells as the parent, thereby
doubling the cell resolution in the region of interest. Tpisecess can be reversed in regions that are deemed over-
resolved and four children can be coarsened into a singknpaitock. The mesh refinement is constrained such
that the grid resolution changes by at most a factor of twaeeh adjacent blocks, and the minimum resolution is
not less than that of the initial mesh. A hierarchical queeltdata structure and additional interconnects between
the ‘leaves’ of the trees are used to keep track of mesh reéneand the connectivity between solution blocks.
The hybrid CENO solution reconstruction procedure is usezbnjunction with standard multigrid-type restriction
and interpolation operators to evaluate the solution oblaliks created by the coarsening and division processes.
Interpolation is performed with high-order accuracy by poitmg reconstructed polynomials for solution variables
in each coarse-grid cell and integrating them over the fiied-children cells to determine the fine-grid cell aver-
ages with high-order accuracy (sek [2] for details). Re®bn and interpolation are performed in such a way that
conservation is maintained, but in our CENO-GLM MHD appltoao special treatment is required for restricting
or interpolating the cell-centred magnetic fields: restit or interpolation may introduce errors of the order & th
discretization error, and they are handled properly by th®@echanism for controlling - B.

Grid refinement and coarsening are based on the maximum ehthe CENO smoothness indicator over each
block for the density variable. For each cell, the variable

_ max(as)

R, = &2 (52)

is calculated, wheré is the value of the smoothness indicator &hds the cutdt value for the smoothness indicator.
The range ofR. is (0,1]. The maximun®RE of all R; values within a block is computed. In blocks wiif close to
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(a) Density solution at= 0.5. The contour lines are equally spacedb) Density solution at = 1.0. The contour lines are equally spaced
in the range (2.11,5.82) (15 contours). in the range (1.25,6.9) (15 contours).
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(c) Density solution at = 2.0. The contour lines are equally spacedd) Density solution at = 3.0. The contour lines are equally spaced
in the range (0.62,6.41) (15 contours). in the range (1.16,6.42) (15 contours).

Figure 9: The evolution of density for the Orszag-Tang vopmblem at diferent timest = 0.5,t = 1.0,t = 2.0, andt = 3.0. The ranges for
the contour lines shown here are aslid [28]. These fourtkraadcurate results were obtained using dynamic grid anfaptith the meshes
shown in FigID.

0, all cells are smooth and resolved, and blocks \‘m?rclose to 1 have cells that are nonsmooth or under-resolved.
The block-basedE values are compared with refinement and coarsening thasstmbetermine if a block should
undergo refinement, or if a group of blocks should be combioedoarsening. Full details on the algorithm followed
for coarsening and refinement are givenIE [19] and [2]. THieeenentcoarsening algorithm is invoked at regular
intervals during the simulation to obtain dynamic AMR.

For the Orszag-Tang vortex problem, the same initial caon§tand domain as i|ﬁ|28] are used, with= y?,
vy = =sinfy), v = sin(x), By = —sinfy), By = sin(2), andp = y. The remaining variables/, B,, andy)
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(@) AMR as applied to the Orszag-Tang vortex problerh=ai0.5. (b) AMR as applied to the Orszag-Tang vortex problenh-atl.0.
At this point, the mesh consists of 118 8-by-8 blocks, or Z,6&lls At this point, the mesh consists of 1,474 8-by-8 blocks, qB26
in total. cells in total.
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(c) AMR as applied to the Orszag-Tang vortex problenat2.0. (d) AMR as applied to the Orszag-Tang vortex problenh at3.0.
At this point, the mesh consists of 8,428 8-by-8 blocks, &,536 At this point, the mesh consists of 13,522 8-by-8 blocks,&%,808
cells in total. cells in total.
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Figure 10: The evolution of the mesh for the simulation of. Bgvith adaptive refinement. Up to= 1.0, the mesh is refined every 0.025
seconds, after which it is refined every 50 time steps. Theslin the figure represent the boundaries of the 8-by-8 Gantbfocks.

are initialized to zero. The computational domain is a sgweith x andy values between 0 andr2and periodic
boundary conditions (ghost cells are used). The simulégiperformed with CENO cutbtoleranceS.: = 500. The
mesh is refined every 0.025 seconds up#ol. For later times, AMR is performed every 50 time steps bgeat
decreases rapidly. The contour lines of the density for trez&)-Tang vortex problem are showrt at0.5,t = 1.0,
t=2.0, and = 3.0 in Fig[®. The results show agreement with results shavather papers}ﬂﬂﬂdﬂSS]. Figure
I3 shows the sequence of adaptive meshes. Comparing thgydsmmgour lines shown in Fidl 9 with the way the

22



Uniform (1,024-by-1,024) Uniform (1,024-by-1,024)
o) AMR 4 o AMR

Figure 11: Pressure cutsyat 1.9635 at two diferent timest(= 2.0 [left], andt = 3.0 [right]). High-order results obtained in combination
with adaptive mesh refinement are compared with uniform-oigler high-resolution results, and found to be similarr @sults agree with

the results fron‘IES] anﬂkl].

grid is refined as shown in Fig1L0, it can be seen that the reéné closely follows the parts of the solution where
interesting flow features and discontinuities occur, thatng the &ectiveness of the smoothness indicator-based
refinement criterion.

Following @] and I[Ell], pressure distribution cutstat 2.0 andt = 3.0 along the lingy = 1.9635 are shown
in Fig.[Md. The AMR results are compared to results on a umifd;024-by-1,024 mesh. The uniform mesh
corresponds to the smallest cell resolution at 7 levels fiement, while 8 levels of refinement are used in the
AMR results, so that the smallest cell in the adaptive meg&h [[l) corresponds to a resolution of 2,048-by-2,048 if
done uniformly. From Fid11, it can be seen that the AMR tssinlgeneral agree well with the uniform reference
results. The AMR solution (as shown in Hig. 9) agrees welhitie uniform reference solution (which is not shown)
and with solutions shown in the literature, but our resuéiseha much higherfiective resolution than previously
shown results (and they are fourth-order accurate). Itds a@iteresting to note that, while the uniform mesh has
1,048,576 computational cells, the AMR mesh has 865,408 atl= 3.0, which is smaller than the uniform mesh,
despite having twice theffective resolution at the highest level of refinement. Nase #éhat, beforé = 3.0, much
fewer cells are used by the adaptive simulation (see[Elg. Tt} illustrates the féectiveness of the CENO scheme
in combination with the block-based AMR algorithm to redtize number of required computational cells.

5. Concluding Remarks

We have proposed a high-order CENO FV scheme for ideal MH[2.stheme is based on the CENO approach
that was proposed by Ivan and Groth for compressible Eulersfio ﬂ] and uses the GLM divergence cleaning
method for MHD of Dedner et al|:|[6]. The resulting FV MHD schems high-order accurate in smooth flow regions
and robust against spurious oscillations at discontieslitiThe proposed high-order accurate MHD scheme can be
used on general polygonal grids and can deal naturally veisolution changes on hierarchical quadtree block-
adaptive body-fitted grids. The proposed scheme was impigden a highly sophisticated fourth-order accurate
parallel MHD code on 2D dynamically-adaptive multi-bloatdy-fitted structured grids, and curved boundaries are
handled with high-order accuracy using high-order splemesentations and constraints at the Gauss points.

Detailed numerical results were given that demonstratie-brger convergence for smooth flows, and robustness
against oscillations for Riemann problems and other flowh shocks. A new MHD extension of the well-known
Shu-Osher test problerln__l38] was proposed to test the abilitiie high-order MHD scheme to resolve small-scale
flow features in the presence of shocks. The dynamic AMR dhfied of our approach were demonstrated using
adaptive time-dependent simulations of the Orszag-Tamgexgroblem with high-order accuracy and unprece-
dented &ective resolution.
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The scheme we described can in principle be implementedasliitrary order. It can also be extended naturally
to three spatial dimensions and to unstructured grids, wduie topics of future work.
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