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Generalized Monte Carlo loop algorithm for two-dimensional frustrated Ising models
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We introduce a generalized loop move (GLM) update for Monte Carlo simulations of frustrated Ising models on
two-dimensional lattices with bond-sharing plaquettes. The GLM updates are designed to enhance Monte Carlo
sampling efficiency when the system’s low-energy states consist of an extensive number of degenerate or near-
degenerate spin configurations, separated by large energy barriers to single spin flips. Through implementation
on several frustrated Ising models, we demonstrate the effectiveness of the GLM updates in cases where both
degenerate and near-degenerate sets of configurations are favored at low temperatures. The GLM update’s
potential to be straightforwardly extended to different lattices and spin interactions allows it to be readily adopted
on many other frustrated Ising models of physical relevance.
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I. INTRODUCTION

Monte Carlo (MC) simulations are among the most ubiq-
uitous computational tools used in statistical physics and
material science. Modern MC methods, evolved from the
original Metropolis algorithm of the 1950s [1], have become
increasingly sophisticated with the advent of cluster moves,
histogram reweighting methods, parallel tempering, and other
technical advances [2]. This sophistication, coupled with the
continuing increase in available computing power, allows
MC methods to simulate classical and quantum statistical
mechanical systems of a level of complexity unimaginable
even a decade ago. Indeed, the remarkable growth in the size
of systems accessible to MC simulations is owed as much to
the advancement of algorithm technology as it is to the increase
in available raw CPU power through Moore’s law [3].

Lattice magnetic systems offer some of the greatest chal-
lenges to MC practitioners. In fact, it was realized early on that
MC simulations of the ferromagnetic Ising model employing
simple local updates [single spin flip (SSF) algorithms]
suffer severe critical slowing down—a rapid increase in
autocorrelation times—near a second-order phase transition.
This stimulated work on nonlocal (cluster or collective-mode)
algorithms, such as the well-known Swendsen-Wang [4] and
Wolff [5] algorithms. A different situation that also requires
nonlocal updates is known to occur in broad classes of
frustrated magnetic Ising models. Such models, typically iden-
tified by predominantly antiferromagnetic (AFM) or random
interactions, can have disordered ground states, which consist
of an extensive number of equal-energy (degenerate) spin
configurations—such is famously the case for the triangular
lattice Ising model with AFM interactions [6,7]. In such
models, simple SSF updates have the tendency to bring the
configuration out of the degenerate manifold of ground states,
hence costing an energy proportional to the Ising interaction.
At sufficiently low temperatures, the Metropolis algorithm will
reject such moves, inhibiting ergodicity, which is the ability
of the MC simulation to explore the entire degenerate mani-
fold of states in reasonable (i.e., nonexponential) computing
time.

This issue was recently brought to the forefront in the broad
class of ice or vertex models [8–10]. Of largest interest are the
so-called spin ice models [11]—Ising models on a frustrated
pyrochlore lattice, which are realized experimentally in some
rare-earth titanate compounds. Ideal spin ice Ising models
promote a disordered degenerate ground state. However, it was
found that weak perturbations, such as occur from long-range
dipolar interactions, can energetically favor one or several
configurations [12]. Exploration of different configurations
contributing to the degenerate ground state is thus a crucial
task for MC simulations, and can be efficiently achieved
through loop updates [13]. The behavior of loops in spin
ice and related models is also intimately tied to important
physical phenomena such as the Kasteleyn transition [14]
and the concept of fluctuations between topologically ordered
ground-state sectors [15,16].

Since the identification of loop algorithms is topical not
only as a simulation technique but as a probe into the physics
of materials, it is remarkable that generalized loop algorithms
do not exist for broad classes of different frustrated models.
Rather, each system typically needs to have an algorithm
designed based on the particular constraints of its ground-state
manifold. Such is the case for vertex models [10], spin ice
[13,17] (and related corner-sharing triangle models such as the
Ising kagome AFM), the fully frustrated square lattice Ising
model [18], the fully frustrated honeycomb Ising model [19],
and others [20,21]. In the present work, we address this short-
coming by introducing a generalized loop algorithm for a large
class of frustrated Ising models with bond-sharing plaquettes.

The paper is organized as follows. In Sec. II, we outline
the generalized loop move (GLM) update in detail for a class
of two-dimensional frustrated Ising models, illustrating the
specific examples of the triangular lattice Ising AFM, and the
fully frustrated square and honeycomb lattice Ising models.
We prove rigorously that the algorithm obeys detailed balance
(Appendix), and demonstrate explicitly that it reproduces the
results expected in traditional MC simulations of these models
(Sec. III A). In Sec. III B, we simulate extensions of the models,
perturbed by weakening one bond per plaquette (an interaction
that can arise experimentally, e.g., in frustrated magnets when
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uniaxial pressure is applied [15]). In this case, the GLM
update vastly outperforms traditional single-spin flips in the
exploration of the low-temperature physics of the models,
in particular in finding a unique ordered ground state. As
discussed in Sec. IV, GLM updates will help open the way for
the efficient simulation of a wide range of frustrated magnetic
models in the future.

II. GENERALIZED LOOP ALGORITHM
FOR ISING MODELS

A. Ising models

We consider classical Ising models that have Hamiltonians
of the general form

H =
∑
〈i,j〉

Jij δij S
z
i S

z
j , (1)

where spin variables Sz
i can take the value of ±1/2. In this

paper, we refer to unperturbed models as those with Jij equal
to a constant J > 0, while perturbed models (discussed in
Sec. III B) have some of the Jij = J ′ �= J (but still positive).
The bond variables δij are defined to have a value of either +1
(“AFM”) or −1 (“FM”) for each bond on the lattice. In a given
spin configuration, a bond is referred to as satisfied if δij S

z
i S

z
j <

0 and unsatisfied otherwise. An Ising model is referred to as
frustrated if it is impossible for any spin configuration to satisfy
all of the bonds on the lattice. We consider both perturbed and
unperturbed versions of the following two-dimensional (2D)
periodic lattice models in this paper (Fig. 1):

(1) The triangular lattice AFM, where all δij = 1.
(2) The fully frustrated square lattice.
(3) The fully frustrated honeycomb lattice.
For the latter two lattices, uniform AFM interactions are

unfrustrated; full frustration can be induced by enforcing the
constraint that the product of the sign of the bond variables
around each closed plaquette (square or hexagon) satisfies

∏
ij∈plaq

δij = −1, (2)

e.g., δij = −1 for one bond, and δij = 1 for the rest. Since
each plaquette is frustrated such interactions are called fully
frustrated (FF). Thus defined, the three unperturbed frustrated
Ising models that we are considering are known to have
disordered ground states with an extensive number of equal-
energy configurations [6,7,22–24]. The geometry of the FM
and AFM bonds for each lattice is illustrated in Fig. 1.

B. Single-spin flips

It is common to study the finite temperature (T ) and
ground-state properties of such models using Markov chain
Metropolis Monte Carlo methods. Traditionally, single spin
flip (SSF) updates are employed in the Monte Carlo algorithm;
one simply attempts to flip a single spin (one at a time) by
computing the corresponding change in energy (�E) and
then accepting the update with a Metropolis condition using
probability:

Pflip = min(1, e−�E/T ). (3)

FIG. 1. (Color online) Frustrated Ising spin models: AFM triangle
(top left), FF square (top right), and FF honeycomb (bottom). The
single bonds represent AFM bonds, the double bonds represent FM
bonds, and the perturbed (weakened) bonds in the perturbed Ising
models are indicated by “P” (see Sec. III B).

In frustrated Ising models, many spin configurations are
local energy minima, and most SSF attempts cost a large
energy proportional to J . Based on Eq. (3), the probability
of accepting such a SSF update decreases exponentially as the
temperature decreases. Consequently, at T � J , once a SSF
simulation has reached one of the local energy minima it is
very unlikely for the simulation to accept any SSF updates. As
a result, SSF updates tend to become “frozen” into one of the
local energy minima at T � J (i.e., ergodicity is lost).

One can observe that in these local energy minima, there
are often groups of spins that could be flipped together without
changing the number of unsatisfied bonds (and hence without
significantly changing the energy of the system). Cluster
algorithms take advantage of this observation to find and flip
such groups of spins [10].

C. Generalized loop move

Motivated by the above, we introduce a generalized loop
move (GLM) algorithm. The GLM is designed to complement
single spin flips, in a way that improves the sampling of
equal (or nearly equal) energy configurations near the ground
states of 2D periodic frustrated Ising models with bond
sharing plaquettes. Like previous algorithms designed to work
on specific Ising models [10,12,19], the GLM algorithm is
designed to work by finding clusters of spins that could be
flipped together without changing the number of unsatisfied
bonds, and then attempting to flip them. If we take a cluster of
spins in the lattice, we can call the bonds that are adjacent to
one spin inside the cluster and one spin outside the cluster
“boundary bonds” (see Fig. 2 for illustration). It can be
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FIG. 2. (Color online) The figure on the left shows a nonspanning
cluster of spins and the figure on the right shows a spanning cluster
of spins. The spins inside the cluster are represented by the large dots
and the boundary bonds are circled. The thick dashed line shows the
simple cycles in the dual lattice that are dual to the boundary bonds.
We will call the simple cycle on the left figure a closed loop because it
encloses a cluster of spins. We will call the simple cycles on the right
figure cuts because each simple cycle individually does not enclose a
cluster of spin.

observed that when a cluster of spins are flipped, the previously
unsatisfied boundary bonds become satisfied (and vice versa),
while the other bonds are unaffected. Therefore to find a
cluster of spins that could be flipped without changing the
number of unsatisfied bonds, we can look for a cluster of spins
bounded by an equal number of satisfied and unsatisfied bonds.
Furthermore, if we consider the dual lattice to the spin lattice,
defined in the usual graph theory sense, the subset of dual edges
that are dual to the boundary bonds form one or a pair of simple
cycles in the dual lattice (taking into account the periodicity of
the lattices). The GLM algorithm takes advantage of these
observations to find a desired cluster of spins, by finding
simple cycles in the dual lattice that are dual to an equal
number of satisfied and unsatisfied bonds. To simplify this
process, the GLM algorithm is constrained to finding simple
cycles in the dual lattice that are alternatingly dual to satisfied
and unsatisfied bonds. Note the following intricacies in this
approach:

1. Perturbed lattice models, or models with bonds of
different strength: While the GLM does not change the number
of unsatisfied bonds, it can change the energy of the spin
system, depending on the strength of the bonds being made
satisfied and unsatisfied. At low temperatures, even small
increases in energy would be strongly inhibited. To overcome
this difficulty, a weighting scheme is introduced to favor dual
edges dual to strong unsatisfied bonds and weak satisfied bonds
for inclusion in the simple cycle. This increases the likelihood
of finding a random cluster of spins that is energetically
favored to be flipped. Empirical testing has shown that GLM
updates with the weighting scheme are much more efficient at
equilibriating perturbed Ising models at low temperature (and
finding the true ground state) than GLM algorithm without the
weighting scheme.

2. Periodic boundary conditions: Due to the periodic nature
of the lattice, some clusters of spins will wrap around the spin
lattice. The boundary bonds for such spin clusters are dual to
a pair of simple cycles in the dual lattice. For some perturbed
Ising models at low temperatures, it is observed that these
clusters are often the only ones that are energetically favored

to be flipped. To enable the GLM algorithm to find these
clusters, whenever the first simple cycle wraps around the spin
lattice and deleting the bonds dual to the simple cycle does
not partition the spin lattice into two, the GLM algorithm will
attempt to find a second simple cycle. If deleting the bonds
dual to the pair of simple cycles partitions the spin lattice, then
the GLM algorithm has successfully found the desired spin
cluster. Otherwise, the GLM attempt is aborted.

The GLM algorithm is described in detail in the following
section.

D. Algorithm description

The GLM algorithm is designed to supplement SSFs.
Therefore in each Monte Carlo iteration, SSF is first attempted
on each spin in the lattice followed by a fixed number of
attempts of GLM. In this paper, the authors chose to use
N/30 attempts (where N is the number of spins in the lattice).
In each GLM attempt, the algorithm performs the following
procedure:

1. Find a simple cycle in the dual lattice that is alternatingly dual
to satisfied and unsatisfied bonds in the spin lattice

Begin by randomly selecting a dual node in the dual lattice.
Call the subset of dual edges adjacent to the dual node E.
Randomly select one of the dual edges in E based on the
following weighting scheme:

W (Bij ) =
{
eαβ[|Jij |−MeanBkl∈E (|Jkl |)] if Bij is unsatisfied,

e−αβ[|Jij |−MeanBkl∈E (|Jkl |)] if Bij is satisfied.

(4)

Note: the α > 0 in Eq. (4) above determines the strength
with which the weighting scheme favors strong unsatisfied
bonds and weak satisfied bonds. Through empirical observa-
tion, α = 5 is found to work well and it is used in the numerical
results section of this paper.

Go to the other dual node adjacent to the selected dual edge.
Consider the dual edges adjacent to it that meet the following
conditions:

(i) If the last dual edge added to the chain is dual to a
satisfied bond, then only consider dual edges that are dual to
unsatisfied bonds, and vice versa.

(ii) Exclude dual edges that will complete a nonalternating
cycle if added to the chain.

If this subset is empty, then abort the algorithm. Otherwise,
randomly select a dual edge from this subset based on the
same weighting scheme described in Eq. (4). Go to the other
dual node adjacent to the selected dual edge and continue the
process described above until the algorithm encounters a dual
node already in the chain completing the simple cycle.

2. Partition the spin lattice into two sublattices

If deleting all the bonds dual to the simple cycle found
above partitions the spin lattice into two sublattices, then
the algorithm will use this partitioning of the spin lattice.
Otherwise, repeat the algorithm described in the previous
subsection to find a second simple cycle. If deleting all the
bonds dual to the pair of simple cycles partitions the spin
lattice into two sublattices, then the algorithm will use this
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partitioning of the spin lattice. Otherwise, the algorithm aborts
the GLM attempt.

3. Attempt to flip all the spins in the smaller sublattice

Once the spin lattice is partitioned into two sublattices, the
algorithm should flip all the spins in the smaller sublattice with
probability Paccept() defined below. For ease of exposition, the
following notation and definitions are established:

(i) Let f (C) be a function that takes a chain of dual edges
C that is alternatingly dual to satisfied and unsatisfied bonds
(“alternating chain”) and ends in a simple cycle and reverses
the order of dual edges that are part of the simple cycle. This
is illustrated in Fig. 3. Function f is used in the definition
of acceptance probability because if C is an alternating chain
under spin configuration S1, then f (C) is an alternating chain
under under the new spin configuration after flipping all the
spins inside the simple cycle.

(ii) Let Pselect(C) be the probability of the GLM algorithm
encountering a particular chain of dual edges C as it tries to find
a simple cycle. Note: To compute Pselect(C), one must simply
multiply together the probability of each of the stochastic
choices made during the chain-building steps that resulted in
the particular chain being constructed.

FIG. 3. (Color online) This figure shows how the function F

reverses the order of dual edges in the loop.

(iii) Let S1 denote the current spin configuration, and let
S2 denote the spin configuration if all the spins in the smaller
sublattice are flipped.

If the partition boundary is found with one chain C, then

Paccept(C, S1) = min

[
1, e−β[E(S2)−E(S1)] Pselect(f (C), S2)

Pselect(C, S1)

]
. (5)

If the partition boundary is found with two chains C1 and C2, then

Paccept((C1, C2), S1) = min

[
1, e−β[E(S2)−E(S1)] Pselect(f (C1), S2)Pselect(f (C2), S2)

Pselect(C1, S1)Pselect(C2, S1)

]
. (6)

Note when the lattice is unperturbed, E(S1) = E(S2). A
rigorous proof of detailed balance is included in the Appendix.

III. SIMULATION RESULTS

In this section we examine some typical data from Monte
Carlo simulations of three frustrated Ising models, using
simulations with SSF and GLM updates. In Sec. III A, ther-
modynamic data for unperturbed Ising models are compared
between simulations employing only SSF, and simulations
using both SSF and GLM updates. Some GLM loop properties
are characterized. In Sec. III B, we examine the performance of
the GLM updates on the three perturbed Ising models, which
are constructed to have a finite-T phase transition to a ground
state with a unique spin configuration. We demonstrate that
GLM updates help the simulation find the correct ground state
in cases where SSF updates alone fail.

A. Results on unperturbed models

Metropolis Monte Carlo simulations are performed on
the three aforementioned Ising models: AFM triangular, FF
square, and FF honeycomb (Fig. 1). A typical run employs an
annealing technique where the simulation is started at a high
temperature (T = 0.5), and T is gradually lowered through
small steps until the system settles in its disordered degenerate
ground state. At each temperature, equilibriation is performed,

then a fixed number of iterations of either SSF or a combination
of SSF and GLM is applied and measurement estimators such
as energy and magnetization are collected. Each annealing
simulation is performed twice for comparison: once with SSF
only, and once with a combination of SSF and GLM updates.

The first numerical result we consider is the internal
energy of the Ising models under an annealing simulation.
As illustrated in Fig. 4, the internal energy measured as
a function of temperature appears identical between SSF
and GLM simulations, to within statistical error. This lends
practical proof to the fact that the GLM updates are “well
behaved” (do not disrupt detailed balance in the Monte Carlo
procedure), and find the same degenerate manifold of states as
the SSF updates alone. In addition to annealing simulations,
we also tested the performance of SSF and GLM in quenched
simulations where the entire simulation (including the
equilibriation period) is run at a single temperature. We ran
these single simulations at T = 0.05, finding that for the case
of the AFM triangular and FF square lattice Ising models, both
SSF and GLM were able to find a ground-state configuration,
the efficiency gain through GLM not being significant in this
case. However, for the FF honeycomb lattice, SSF simulations
tend to be noticeably slow in finding the disordered ground
state, a situation remedied by employing GLM updates. This
difficulty for SSF alone to simulate the low-temperature
thermodynamic behavior of the FF honeycomb lattice was
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FIG. 4. (Color online) Energy per spin (E/N ) for the AFM
triangular lattice (top), FF square lattice (middle), and FF honeycomb
lattice (bottom). The theoretical true ground-state energy per spin for
each system is −0.25.

also noted in the work by Andrews et al. [19] where a
cluster update specific to the FF honeycomb was proposed. In
Andrews’ work, it was shown that in an annealing simulation,
SSF alone tends to become frozen in one of the ground states
at low temperatures, which is evident by the inability of the
average magnetization to converge to zero, seen in Fig. 3(c)
of Ref. [19]. On the other hand, both the algorithm proposed
in Ref. [19] and GLM updates can find the correct average
magnetization through annealing or quenched simulations.

A meaningful characterization of the low-temperature
dynamics of the GLM updates can be determined via the
study of the acceptance rate of the algorithm. We define
the acceptance rate as the percentage of GLM attempts that
result in successful group spin flips. For the AFM triangular
lattice (shown in Fig. 5), the acceptance rate increases as

FIG. 5. (Color online) The acceptance rate of GLM updates on the
AFM triangular lattice (top). At bottom, the integrated autocorrelation
time for the magnetization squared on the FF honeycomb lattice with
144 spins.

temperature decreases and appears independent of lattice size.
For the FF square lattice (not shown), the acceptance rate
is high across the whole temperature range and appears to
approach unity as lattice size increases. For the FF honeycomb
lattice, the acceptance rate is high across the temperature
range, increasing as the temperature decreases, and apparently
increasing with lattice size. Most importantly, the fact that the
acceptance rate is large (of order unity) in all cases, particularly
for T/J � 0.1, suggests that the GLM updates are successful
in exploring the manifold of degenerate configurations that
contribute to the disordered ground state. This is in direct
contrast to a simulation employing SSF updates only, which
has exponentially suppressed acceptance rates for T � J .

We also examine autocorrelation functions, defined for a
Monte Carlo time series of observables O(1), O(2),..., by the
normalized correlation function,

A[O](t) = 〈O(i + t)O(i)〉 − 〈O(i)〉2

〈O(i)2〉 − 〈O(i)〉2
, (7)

where the averages are over the Monte Carlo “time” steps
i (iterations in the Markov chain). Higher autocorrelations
imply that produced samples are less independent. We define
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FIG. 6. (Color online) Autocorrelation function [Eq. (7)] for
magnetization squared on the FF triangle lattice with 144 spins at
T = 0.1.

the integrated autocorrelation time as

τint[O] = 1

2
+

∞∑
t=1

A[O](t), (8)

using as the observableO. Figure 5 compares the integrated au-
tocorrelation times for the FF honeycomb lattice model. Here,
the SSF displays diverging integrated autocorrelations below
T ≈ 0.1, whereas in contrast GLM integrated autocorrelations
remain relatively low. For the FF square and AFM triangle
lattices, the integrated autocorrelation does not diverge at low
temperatures for both SSF and GLM. At higher temperatures,
autocorrelation functions for SSF and GLM updates can appear
almost identical (Fig. 6).

The average number of dual edges that the GLM algorithm
encounters in each successful attempt of the GLM (which we
will call chain size) and the average number of dual edges
that form the partition boundary (which we will call loop
size) provide a measure of the amount of work that the GLM
algorithm needs to perform in each iteration. How these two
values change with temperature and system size is of interest
in determining the efficiency of the algorithm. As illustrated
in Fig. 7, for the unperturbed FF square lattice model, the loop

FIG. 7. (Color online) Loop size for the FF square lattice.

FIG. 8. (Color online) Chain size for the FF square lattice.

size is independent of lattice size, and increases slightly as
temperature decreases. As illustrated in Fig. 8, the chain size
also appears to increase as temperature decreases. The chain
size tends to increase with lattice size, approaching a limit for
large lattices. The increase in chain size with lattice size for
smaller systems is likely due to a finite-size effect, meaning
that for large lattices both chain size and loop size will saturate.
Similar results are also observed for the loop size and chain
size on AFM triangle and FF honeycomb lattices. This suggests
that the work performed in each GLM attempt is proportional
to a fixed multiple of the work performed in each SSF update
on a single spin. This computational complexity of the GLM
attempt is the motivation behind each GLM iteration consisting
of one SSF sweep followed by N/30 GLM attempts1 in this
paper. In this way, the work performed in each GLM iteration
is expected to be comparable to a fixed multiple of the work
performed in a SSF sweep. More rigorous study would be
required to confirm this expected computational complexity
of the GLM algorithm.

B. Results on perturbed models

We now explore the effect of anisotropy in the Ising
interaction on the performance of the MC algorithm, with SSF
and GLM updates. In the following, we define perturbed Ising
models by weakening one bond per plaquette in Eq. (1), where
two different strengths of Jij are used: J and J ′. The location
of weakened bonds are defined via the geometry illustrated in
Fig. 1. The one weakened bond per plaquette has the strength
J ′/J = 0.9. In the AFM triangular case, δij = 1 for all bonds,
and weakened bonds are chosen arbitrarily to occur along all
rows of the lattice; in the two FF models, the weakened bond
is chosen to correspond to the FM bond with δij = −1 for
simplicity. In each case, the degenerate manifold of ground
states is lifted resulting in two unique ground states (related by
symmetry) where the unsatisfied bonds occur uniquely at the
perturbed bond locations. This perturbation presents a greater
difficulty for SSF MC algorithms to accurately compute

1This number was found to provide a good balance between SSF
and GLM updates on the models studied.

036704-6



GENERALIZED MONTE CARLO LOOP ALGORITHM FOR . . . PHYSICAL REVIEW E 85, 036704 (2012)

FIG. 9. (Color online) Energy per spin for the perturbed AFM
triangular lattice (top), perturbed FF square lattice (middle), and
perturbed FF honeycomb lattice (bottom).

low-temperature statistics, and find the true ground state. As
illustrated in Fig. 9, SSF updates are unable to find the true
ground-state energy in any of the three perturbed Ising models
through an annealing procedure. GLM updates, on the other
hand, are able to find the true ground state through annealing
(as well as in quenched simulations run at a single temperature
T � J ). It is interesting to note that at low temperatures, the
internal energy curve for GLM is noticeably smoother than the
internal energy curve for SSF alone. This suggests that GLM
is able to converge to equilibrium faster than SSF alone.

As can be seen in Fig. 10, for the perturbed FF honeycomb
lattice model, the acceptance rate of GLM updates increases
as the temperature decreases between T = 0.5 and 0.1, and
then sharply drops off to zero below T = 0.1. This abrupt
drop to zero corresponds to the finite-T phase transition that
occurs in these models at a temperature proportional to the
perturbed energy scale, which the GLM updates are able to

FIG. 10. (Color online) The acceptance rate of GLM updates
on the perturbed FF honeycomb lattice (top). At bottom, the
integrated autocorrelation time results of magnetization squared for
the perturbed FF honeycomb lattice with 144 spins.

find cleanly. Integrated autocorrelation times show a clear
difference between SSF and GLM updates (Fig. 10). An
example of the autocorrelation function for the energy is shown
in Fig. 11, which clearly indicates that GLM moves are better at
producing independent samples at that particular temperature.
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FIG. 11. (Color online) Autocorrelation function [Eq. (7)] for
energy on the perturbed FF honeycomb lattice with 144 spins at
T = 0.1.
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FIG. 12. (Color online) Loop size for the perturbed AFM trian-
gular lattice (top) and perturbed FF honeycomb lattice (bottom).

For the case of perturbed Ising models, temperature has a
significant effect on loop and chain size. For perturbed AFM
triangle (Fig. 12) and FF square lattices (not illustrated), at high
temperatures (T = 0.5–0.1) loop size appears independent of
lattice size but at low temperatures (below the phase transition)
loop size grows linearly with the shortest side of the lattice.
This is expected based on observing GLM updates in action.
For perturbed AFM triangle and FF square lattices at low
temperatures, the GLM algorithm tends to encounter spin
configurations where the only possible partition boundaries
are those that wrap around the lattice. For the perturbed FF
honeycomb lattice, loop size appears independent of lattice
size regardless of temperature. As illustrated in Fig. 13, chain
size behaves similar to loop size with respect to lattice size
and temperature, with the exception of finite-size effects at
small lattice sizes. These results on loop size and chain size
suggest that in the ground state of some perturbed Ising models
(such as AFM triangle and FF square) the amount of work
the GLM algorithm needs to perform in each GLM attempt
will grow linearly with size of the lattice at low temperatures.
This implies that the amount of work done in each GLM
iteration (one SSF iteration followed by x attempts of the
GLM where x = N/30) will grow quadratically with system
size at low temperatures. This expensive algorithm cost can
be avoided in practical situations by recognizing it as a sign

FIG. 13. (Color online) Chain size for the perturbed AFM
triangular lattice (top) and perturbed FF honeycomb lattice (bottom).

of the underlying long-range order of the system—extensive
sampling by the GLM update is not necessary in such a case.
Regardless, further simulation results would be required to
determine the computational complexity of the GLM update
in this interesting case.

IV. DISCUSSION

In this paper, we have presented a generalized loop move
(GLM) update for a class of frustrated Ising models on two-
dimensional lattices which are composed of bond-sharing pla-
quettes. The algorithm is designed to allow efficient Metropolis
Monte Carlo updates in a degenerate or quasidegenerate set of
spin configurations that contribute to an extensive manifold of
disordered low-energy states. We have thoroughly described
the algorithm with the goal of making it easy to implement in
a wide variety of models, and have provided a rigorous proof
of detailed balance in the general case.

We implemented and tested the algorithm on three proto-
typical lattice models, the antiferromagnetic triangular-lattice
Ising model, and the fully frustrated square- and honeycomb-
lattice Ising models. All three models admit a disordered,
extensively degenerate manifold of configurations in their
unperturbed ground state. The GLM update is demonstrated
to complement traditional single spin-flip updates in allowing
the simulation to find all configurations that contribute to the
degenerate manifold at low temperatures. In contrast to single
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spin flips, the GLM update is able to sample configurations
in the degenerate subspace with a very high acceptance
rate, which is independent of temperature for T � J . The
GLM achieves this while maintaining a very efficient O(N )
complexity for each N -site lattice.

Perturbing the models by weakening one bond per plaquette
(triangle, square, or hexagon) causes them to select a unique
spin configuration in their ground state. Although single
spin-flip updates typically cannot find this unique state due to
the large energy barriers associated with sampling the quasi-
degenerate manifold of states, we have shown that the GLM
updates are capable of computing the correct low-temperature
statistics, as well as finding the equilibrium ground state in a
highly efficient manner.

We expect that our current work in describing and
characterizing the GLM updates will lead to their use in
other frustrated Ising spin models of physical importance.
The GLM algorithm, as described in this paper, can be
straightforwardly generalized to work on other frustrated
Ising models on two-dimensional lattices of bond-sharing
plaquettes. It would be interesting to explore the effectiveness
of the GLM update on models where the exchange Jij is
randomly frustrated, such as Edwards-Anderson spin glass
models [25]. Finally, we expect that the GLM moves will be
particularly useful in simulations of more realistic models of
frustrated materials, where additional long-range interactions,
local perturbations, or pressure-induced interaction anisotropy
leads to the selection of a unique ground state.
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APPENDIX: PROOF OF DETAILED BALANCE

To prove detailed balance, we need to show that given any
two spin configurations S1 and S2, the following equation is
satisfied:

�(S1)T (S1 → S2) = �(S2)T (S2 → S1), (A1)

where �(S) denotes the Boltzmann probability of spin config-
uration S, and T (Si → Sj ) denote the transition probability in
the generalized loop move algorithm from spin configuration
Si to spin configuration Sj .

1. Preliminary notations and definitions

For ease of exposition, it is convenient to establish the
following notations and definitions:

(1) Let � be the set of all possible dual edge chains
that step 1 of the GLM algorithm can generate (i.e., �

is the set of dual edge chains that are alternatingly dual
to satisfied and unsatisfied bonds and end in a simple
cycle).

(2) Take any two spin configurations S1 and S2, and let
(a) �1 = {γ ∈ �| γ end in a closed loop (e.g., Fig. 2) and

flipping all the spins inside the closed loop takes the spin
system from S1 to S2},

(b) 
1 = {(γ1,γ2) ∈ (� × �)|γ1,γ2 end in cuts L1, L2 (e.g.,
Fig. 2); flipping all the spins inside L1 ∪ L2 takes the spin
system from S1 to S2},

(c) �1 = �1 ∪ 
1,
(d) �2 = {γ ∈ �| γ end in a closed loop and flipping all the

spins inside the closed loop takes the spin system from S2 to
S1},

(e) 
2 = {(γ1,γ2) ∈ (� × �)|γ1,γ2 end in cuts L1, L2 and
flipping all the spins inside L1 ∪ L2 takes the spin system from
S2 to S1},

(f) �2 = �2 ∪ 
2,
(g) �

′
1 = {ψ ∈ �1| Paccept(ψ, S1) > 0} where Paccept is

defined as in Eqs. (5) or (6),
(h) �

′
2 = {ψ ∈ �2| Paccept(ψ, S2) > 0} where Paccept is

defined as in Eqs. (5) or (6).
(�

′
1 and �

′
2 are defined as above to facilitate the proof of

detailed balance.)
(3) Define F : � ∪ (� × �) → � ∪ (� × �) such

that F (γ ) = f (γ ) ∀γ ∈ � and F ((γ1,γ2)) = (f (γ1),
f (γ2)) ∀(γ1,γ2) ∈ (� × �).

(4) Let F̃ be the restriction of F to �
′
1 For

convenience, we will also define Pselect((γ1,γ2), S) =
Pselect(γ1, S)Pselect(γ2, S) ∀(γ1,γ2) ∈ (� × �).

Note: T (Si → Sj ) = ∑
ψ∈�

′
i
Pselect(ψ, Si)Paccept(ψ, Si),

where (i, j ) = (1, 2) or (2, 1).

2. Proof of detailed balance

If we can prove the following three subclaims:
(1) F̃ (�

′
1) ⊆ �

′
2 (this is used to prove subclaim 2),

(2) F̃ is bijective between �
′
1 and �

′
2,

(3) ∀ψ ∈ �
′
1, �(S1)Pselect(ψ, S1)Paccept(ψ, S1) = �(S2)

Pselect(F̃ (ψ), S2)Paccept(F̃ (ψ), S2),
then, the proof for detailed balance follows naturally:

ψ∈�
′
1
�(S1)Pselect(ψ, S1)Paccept(ψ, S1) = ψ∈�

′
1
�(S2)Pselect(F̃ (ψ), S2)Paccept(F̃ (ψ), S2)

by subclaim 3

⇒ ψ∈�
′
1
�(S1)Pselect(ψ, S1)Paccept(ψ, S1) = δ∈�

′
2
�(S2)Pselect(δ, S2)Paccept(δ, S2)

because F̃ is bijective between �
′
1and �

′
2

⇒ �(S1)ψ∈�
′
1
Pselect(ψ, S1)Paccept(ψ, S1) = �(S2)δ∈�

′
2
Pselect(δ, S2)Paccept(δ, S2)

⇒ �(S1)T (S1 → S2) = �(S2)T (S2 → S1).
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3. Proof of subclaims

Subclaim 1: F̃(�
′
1) ⊆ �

′
2

Take any ψ ∈ �
′
1, show that F̃ (ψ) ∈ �

′
2.

(1) F̃ (ψ) ∈ �2 because
(a) ψ ∈ �1 implies that ψ ends in a closed loop or

union of complementary cuts that forms a partition boundary
around a group of spins that if flipped will take the spin
configuration from S1 to S2. Therefore F̃ (ψ) ends in a
closed loop or union of complementary cuts that forms a
partition boundary around the same group of spins, which
if flipped will take the spin configuration from S2 back to
S1;

(b) and Pselect(F̃ (ψ), S2) > 0 because

ψ ∈ �
′
1 ⇒ Paccept(ψ, S1) > 0

⇒ min

(
1, e−β[E(S2)−E(S1)] Pselect(F̃ (ψ), S2)

Pselect(ψ, S1)

)
> 0

⇒ Pselect(F̃ (ψ), S2) > 0,

(2) Paccept(F̃ (ψ), S2)

= min

(
1, e−β[E(S2)−E(S1)] Pselect(ψ, S1)

Pselect(F̃ (ψ), S2)

)
> 0

because ψ ∈ �
′
1 ⊆ �1 ⇒ Pselect(ψ, S1) > 0.

(3) 1 & 2 =⇒ F̃ (ψ) ∈ �
′
2. Therefore F̃ (�

′
1) ⊆ �

′
2.

Subclaim 2: F̃ is bijective between �
′
1 and �

′
2

(1) F̃ is injective because F̃ (�
′
1) ⊆ �

′
2 by subclaim 1

and take any ψ1, ψ2 ∈ �1, F̃ (ψ1) = F̃ (ψ2) ⇒ ψ1 = ψ2 by
definition of f ();

(2) F̃ is surjective because for any δ ∈ �
′
2, F (δ) ∈ �

′
1 by

subclaim 1, and F̃ (F (δ)) = δ.

Subclaim 3: For any ψ ∈ �
′
1, show that

�(S1)Pselect(ψ, S1)Paccept(ψ, S1) =
�(S2)Pselect( F̃(ψ), S2)Paccept( F̃(ψ), S2).

Let a = �(S1)Pselect(ψ, S1), and b = �(S2)Pselect

(F̃ (ψ), S2). Then,

�(S1)Pselect(ψ, S1)Paccept(ψ, S1) = �(S1)Pselect(ψ, S1) min

(
1,

�(S2)

�(S1)

Pselect(F̃ (ψ), S2)
Pselect(ψ, S1)

)

= a min

(
1,

b

a

)

= min(a, b),

�(S2)Pselect(F̃ (ψ), S2)Paccept(F̃ (ψ), S2) = �(S2)Pselect(F̃ (ψ), S2) min

(
1,

�(S1)

�(S2)

Pselect(ψ, S1)

Pselect(F̃ (ψ), S2)

)

= b min
(

1,
a

b

)
= min(a, b).

Therefore �(S1)Pselect(ψ, S1)Paccept(ψ, S1) = �(S2)Pselect(F̃ (ψ), S2)Paccept(F̃ (ψ), S2).
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