
Comput Visual Sci (2011) 14:51–65
DOI 10.1007/s00791-011-0163-7

Iterant recombination with one-norm minimization for multilevel
Markov chain algorithms via the ellipsoid method

Hans De Sterck · Killian Miller · Geoffrey Sanders

Received: 9 January 2011 / Published online: 20 November 2011
© Springer-Verlag 2011

Abstract Recently, it was shown how the convergence of a
class of multigrid methods for computing the stationary dis-
tribution of sparse, irreducible Markov chains can be accel-
erated by the addition of an outer iteration based on iterant
recombination. The acceleration was performed by selecting
a linear combination of previous fine-level iterates with prob-
ability constraints to minimize the two-norm of the residual
using a quadratic programming method. In this paper we
investigate the alternative of minimizing the one-norm of the
residual. This gives rise to a nonlinear convex program which
must be solved at each acceleration step. To solve this min-
imization problem we propose to use a deep-cuts ellipsoid
method for nonlinear convex programs. The main purpose
of this paper is to investigate whether an iterant recombina-
tion approach can be obtained in this way that is compet-
itive in terms of execution time and robustness. We derive
formulas for subgradients of the one-norm objective func-
tion and the constraint functions, and show how an initial
ellipsoid can be constructed that is guaranteed to contain
the exact solution and give conditions for its existence. We
also investigate using the ellipsoid method to minimize the
two-norm. Numerical tests show that the one-norm and two-
norm acceleration procedures yield a similar reduction in the

Communicated by C. W. Oosterlee and A. Borzi Pl.

H. De Sterck · K. Miller (B)
Department of Applied Mathematics, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
e-mail: k7miller@uwaterloo.ca

H. De Sterck
e-mail: hdesterck@uwaterloo.ca

G. Sanders
Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94551, USA
e-mail: sanders29@llnl.gov

number of multigrid cycles. The tests also indicate that one-
norm ellipsoid acceleration is competitive with two-norm
quadratic programming acceleration in terms of running time
with improved robustness.

Keywords Markov chain · Iterant recombination ·
Ellipsoid algorithm ·Multigrid · Convex programming

1 Introduction

This paper deals with the numerical computation of the
stationary distribution of large, sparse and irreducible Mar-
kov chains. In previous work [14], we showed how algebraic
multigrid (AMG) methods for Markov chains can be acceler-
ated by constrained minimization of the two-norm of linear
combinations of iterants on the top level, using a quadratic
programming solver. In this paper we explore the alterna-
tive of minimizing the one-norm with positivity constraints
for iterant recombination acceleration. Our main motivation
is to investigate whether a one-norm minimization method
can be obtained that is competitive with the constrained two-
norm minimization method of [14] in terms of compute time
and robustness with regard to sign constraints. To do so, we
develop a constrained one-norm iterant recombination mini-
mization approach for Markov chains based on the ellipsoid
method. We also show how the ellipsoid method can be used
to solve the two-norm minimization problem. We consider
the ellipsoid algorithm because it is easy to understand and
implement efficiently, it is a robust solver for nonlinear pro-
gramming problems [18], and at some levels of solution error
it is competitive with other general-purpose solvers [18].
There are two additional but smaller motivations for consid-
ering one-norm minimization via the ellipsoid method in this
paper. First, in probability theory, the one-norm is normally

123

52 H. De Sterck et al.

used to measure distances between probability vectors (for
example, in the context of the theory of convergence speeds
of Markov chains), which is natural since probability vec-
tors are unit vectors in the one-norm. It is then only natural
to also consider minimization in the one-norm in our algo-
rithm. And second, one-norm minimization methods have
recently raised significant interest in emerging fields such as
compressive sensing, sparse representation, and sparse fac-
torization. Consequently the question of whether one-norm
minimization can be done efficiently as compared to two-
norm minimization is receiving greater attention, and the
current paper shows how this can be done for the Markov
chain multigrid application at hand.

For a Markov chain with a finite state space, the problem
of finding the stationary distribution may be stated as follows.
We seek the vector x ∈ R

n that satisfies

B x = x, 1T x = 1, xi ≥ 0 ∀i, (1)

where B ∈ R
n×n is column-stochastic (i.e., each column

is a probability distribution) and 1 is the vector of all ones.
The matrix B corresponds to the transition probability matrix
of the Markov chain, and the constraints ensure that x is a
probability distribution. If the Markov chain is irreducible,
then there exists a unique solution to (1), which has strictly
positive components. This is a result of the Perron-Frobenius
theorem for irreducible nonnegative matrices [3,22]. Recall
that a square matrix A is irreducible if for any two distinct
nodes i and j in the directed graph of A, there exists a directed
path from i to j [22]. In our work we find it beneficial to work
in terms of the equivalent formulation of (1)

A x = 0, 1T x = 1, xi ≥ 0 ∀i, (2)

where A = I− B is an irreducible singular M-matrix.
Horton and Leutenegger were among the first to con-

sider numerical methods for Markov chains with more than
two levels [23,29], see also [27]. Their multilevel aggrega-
tion method, which we call AGG in this paper, is a direct
extension of the two-level iterative aggregation/disaggre-
gation (IAD) method for Markov chains due to Takahashi
[40], which makes use of the aggregated equations pro-
posed by Simon and Ando [38]. Since the pioneering
work of Takahashi, two-level methods for Markov chains
have been considered widely in the Markov chain litera-
ture [9,10,21,26,28,31–33]. Two-level IAD methods have
been shown to be particularly effective at solving nearly
completely decomposable (NCD) Markov chains, where the
known structure of the problem can be exploited by the aggre-
gation process, which typically results in fast convergence.
Historically, multilevel methods were largely disregarded for
Markov chain problems; however, recent work has resulted
in new multilevel methods with significantly improved con-
vergence behavior that is often nearly linear in the number of
unknowns, even for difficult, slowly mixing Markov chains

[8,11–15,41,42]. The methods in [11,12,14,15,41,42] are
basically extensions of Horton and Leutenegger’s AGG
method from [23,29], with convergence properties that are
often significantly improved, especially for the case of so-
called slowly mixing Markov chains, in which the subdomi-
nant eigenvalues approach one as the size of the Markov chain
increases. This improvement can be obtained by techniques
from algebraic multigrid or smoothed aggregation, see, for
example, [11,12] for detailed explanations and numerical
illustrations. While theoretical convergence results are very
difficult to obtain for any of these methods, especially for
general nonsymmetric problems, in many cases empirical
evidence has demonstrated good convergence properties and
robustness.

The rest of this paper is organized as follows. In Sect. 2
we briefly discuss the multilevel algorithms we will con-
sider in this paper, and outline the constrained iterant recom-
bination acceleration algorithm from [14]. In Sect. 3 we
give a brief description of the ellipsoid method for nonlin-
ear convex programs. In Sect. 4 we develop a constrained
one-norm iterant recombination minimization approach for
Markov chains using the ellipsoid method. In particular,
we derive formulas for subgradients of the objective func-
tion and the constraint functions, and as our main technical
contribution we show how an initial ellipsoid can be con-
structed that is guaranteed to contain the exact solution, and
give conditions for its existence. In Sect. 5 numerical tests
are used to investigate whether the resulting one-norm min-
imization method is competitive with the two-norm mini-
mization method from [14]. Section 6 contains concluding
remarks.

2 Background

2.1 Standalone multigrid solver

Iterative solvers tend to perform poorly for slowly mix-
ing Markov chains, which are characterized by their sub-
dominant eigenvalue approaching unity in modulus as the
size of their state space increases. A subdominant eigen-
value of a stochastic matrix B is any eigenvalue μ of B for
which

|μ| = max{|λ| : λ ∈ Λ(B), |λ| �= 1},
where Λ(B) is the spectrum of B. Traditional iterative meth-
ods for computing the stationary probability vector such
as the power method, may be unacceptably slow to con-
verge for slowly mixing problems due to poor damping
of the error component associated with the subdominant
eigenvalue [35,39]. Multilevel methods aim to accelerate
convergence for this type of problem by reducing error com-
ponents with different scales on progressively coarser levels.

123

Iterant recombination for Markov chains via the ellipsoid method 53

However, Horton and Leutenegger’s original AGG method
from [23,29] may still perform poorly for these types of
Markov chains (see [11,12]), and large gains can often be
made by the improvements considered in [11,12,14,15,41,
42].

While iterant recombination acceleration can be applied
to various classes of multilevel Markov chain algorithms
[14], we limit the scope of this paper to two specific mul-
tigrid methods. First, we apply iterant recombination to the
original multilevel aggregation algorithm (AGG) of [23], in
which aggregates do not overlap. We use the neighborhood-
based aggregation from [14] in this algorithm. We primar-
ily consider the AGG algorithm since we want to illustrate
that its performance can be significantly improved by iter-
ant recombination, as an alternative to the more sophisti-
cated improvements of [11,12,14,15,41,42]. For a few of
our test problems, we also apply iterant recombination to
one of those more sophisticated algorithms, namely, the
MCAMG algorithm developed in [12]. MCAMG tends to
perform in a scalable way for many test problems, but
for those problems where it does not, we will show that
iterant recombination can be useful. The framework of
the MCAMG algorithm is similar to that of the multi-
level method proposed by Horton and Leutenegger [23];
however, MCAMG uses an algebraic multigrid approach
[7,43] to compute the interpolation and restriction opera-
tors and to define the coarse-level problem, see [12] for
details.

2.2 Constrained iterant recombination acceleration

This paper considers acceleration of the convergence of
multigrid methods for Markov chains by iterant recom-
bination [6,43,44]. This process constructs an improved
approximation as a linear combination of successive approx-
imations from previous multigrid cycles, where the linear
combination is chosen in such a way that the residual is
minimized with respect to some norm. In this respect multi-
grid acceleration by iterant recombination is closely related
to multigrid-preconditioned Krylov subspace iterations. For
example, restarted GMRES with multigrid preconditioning
is theoretically equivalent to multigrid acceleration by iter-
ant recombination with a fixed number of previous iterates
and two-norm residual minimization [43]. As such, the dis-
tinction between multigrid as a preconditioner and multi-
grid accelerated by iterant recombination depends largely
on one’s perspective. In this paper we find it natural to
adopt the viewpoint of multigrid accelerated by iterant
recombination.

Suppose we have a sequence of successive fine-level
approximations {xi }i ≥1 from previous multigrid cycles. In
order to find an improved approximation x�, we consider

Fig. 1 Accelerated multigrid V-cycles. The black dots (•) represent
relaxation operations on their respective levels and the open dots (◦)
represent coarse-level solves. An acceleration step, represented by a
grey box, occurs after each V-cycle

a linear combination of the m most recent approximations
xk, xk−1, . . . , xk−m+1, where m is the window size. Let X be
the n × m matrix

X = [xk−m+1, . . . , xk−1, xk],

where xk is the most recent approximation, and assume that
each column of X is a probability distribution with strictly
positive entries (this is a property of the standalone multi-
grid solvers considered here). Then the improved approxi-
mation is given by x� = Xz� for some z� ∈ R

m . This is
repeated after each multilevel cycle where x� serves as the
initial guess for the next cycle. This process is illustrated in
Fig. 1 for multigrid V-cycles. Now we need some criteria on
which to base our choice of z�, and hence x�. In [14] we com-
puted z� by solving the following constrained minimization
problem

minimize F(Xz)

subject to Xz ≥ 0

1T z = 1

(3)

with F(x)=‖A x‖2. We note that the constraints in (3) ens-
ure that x� = Xz� is a probability vector. The constraint
Xz ≥ 0 is necessary to maintain nonnegative signs through-
out the computations, not only because this is desired for
probability vectors, but also because our multilevel cycles
may become ill-posed if iterates with negative signs occur
(see [11,12]). This two-norm minimization leads to a qua-
dratic programming problem that can be solved with stan-
dard techniques [14]. In this paper we explore solving (3)
with F(x) = ‖A x‖1. We minimize the one-norm using the
ellipsoid method, and investigate whether the resulting one-
norm minimization scheme is competitive with the two-norm
minimization approach from [14]. The iterant recombination
procedure is given by Algorithm 1 below. We note that in line
7 of Algorithm 1 the improved approximation is rejected if
it does not yield a smaller residual then the current approxi-
mation.

123

54 H. De Sterck et al.

Algorithm 1: Iterant recombination (window size m)

1. Set k ← 1 and choose an initial guess x�
0

2. Set τ ← τrel ‖A x�
0‖1

3. Obtain the next multigrid iterate xk , with x�
k−1 as the

initial guess
4. Set j ← min{k, m}
5. Set X← [xk− j+1, . . . , xk−1, xk]
6. Solve (3) for z�, and set x�

k ← Xz�

7. if ‖A x�
k‖1 > ‖A xk‖1 then

x�
k ← xk

end
8. Check convergence, ‖A x�

k‖1 < τ , otherwise set
k ← k + 1 and go to 3

3 The ellipsoid method

In this section we give a brief description of the ellipsoid
method for nonlinear convex programs. For an excellent
overview of the development of the ellipsoid method we rec-
ommend the survey paper [5]. The book on linear optimiza-
tion by Bertsimas and Tsitsiklis [4], and the papers [16–18]
contain further useful information. The ellipsoid method was
first described by Iudin and Nemirovskii in 1976 [24], and
was later explicitly stated as we know it today by Shor in 1977
[37]. It gained notoriety in the early 1980s when Khachi-
yan showed that an ellipsoid method for linear optimization
could be implemented with polynomial time complexity [25].
Although the ellipsoid method was not competitive in prac-
tice for linear optimization, it has shown itself to be a robust
solver for nonlinear convex programs, which at some levels
of solution error is competitive with other more mainstream
solvers [18].

The ellipsoid method was originally intended as a solver
for nonlinear convex optimization problems of the form

minimize f0(x)

subject to x ∈ S = {y ∈ R
m : fi (y) ≤ 0, i = 1, . . . , n},(4)

where each fi : Rm → R, i = 0, . . . , n is a finite convex
function on R

m . Here, the function f0 is referred to as the
objective function and the functions f1, . . . , fn are referred
to as constraint functions. The set S of all points that satisfy
the n inequality constraints is called the feasible set. Hence,
any point belonging to S is called feasible, and any point not
belonging to S is called infeasible. We assume that the feasi-
ble set is nonempty and that there exists an optimal solution
x� to (4).

An m-dimensional ellipsoid is a subset of R
m defined as

follows.

Fig. 2 Construction of the minimum volume ellipsoid Ek+1 (in grey)
from the ellipsoid Ek and hyperplane Hk . Here gk is the normal vector
to Hk

Definition 1 (Ellipsoid) Let D be an m×m symmetric posi-
tive definite (SPD) matrix and let z be any point in R

m . Then
the set

E(z, D) = {x ∈ R
n : (x − z)T D−1(x − z) ≤ 1}

is an ellipsoid with center z.

Suppose that we have an initial ellipsoid E0 that contains
x�. The ellipsoid method iteratively constructs a sequence of
successively “smaller” ellipsoids each of which contains x�.
By smaller, we mean that the volume of the next ellipsoid
is strictly smaller than the volume of the previous ellipsoid.
Suppose now that Ek = E(xk, Dk) is the kth ellipsoid in
this sequence. Then we can build Ek+1 as follows. Construct
a hyperplane Hk that passes through xk . Then x� is con-
tained in one of the halfspaces generated by Hk , call it Hk .
Now define Ek+1= E(xk+1, Dk+1) as the minimum volume
ellipsoid that contains the intersection of Ek with Hk . Since
x� ∈ (Ek∩Hk), it follows that x� ∈ Ek+1. Furthermore, if the
center point xk+1 is feasible, then it is the (k+ 1)th approxi-
mation of x�. This procedure is illustrated in Fig. 2. By choos-
ing Hk to pass through xk and then building Ek+1, we have
constructed a center-cut ellipsoid. If instead the hyperplane
Hk passes between xk and x�, then Ek+1 is a deep-cut ellip-
soid [17]. Intuitively, it is clear that Ek+1 constructed by deep
cuts contains x�, but less than half of Ek . For the remainder
of this section our focus is on the center-cut algorithm; we
give only a few details regarding the deep-cuts variant.

We next describe how to construct the hyperplane Hk =
{y ∈ R

m : gT
k (y − xk)= 0}, i.e., how to choose a normal

vector gk . The normal vector is chosen in such a way that
it is easy to decide on which side of the hyperplane x� is
located. First, we require the definition of a subgradient and
subdifferential.

Definition 2 (Subgradient, Subdifferential) Let f : C → R

be a convex function whose domain is a convex set C ⊂ R
m ,

and let z ∈ C . Then the vector g is a subgradient of f at z if

f (z)+ gT (x − z) ≤ f (x), ∀x ∈ C.

123

Iterant recombination for Markov chains via the ellipsoid method 55

The set of all subgradients of f at z is denoted by ∂ f (z)
and is called the subdifferential of f at z. If f convex and
differentiable at z then ∂ f (z) = {∇ f (z)}.

There are two possibilities to consider for the center-cut
algorithm. If the current approximation xk is infeasible, i.e.,
there exists an index j > 0 such that f j (xk) > 0, then we
choose gk ∈ ∂ f j (xk). Otherwise, if xk is feasible, then we
choose gk ∈ ∂ f0(xk). In either case it is easy to verify that
x� ∈ Hk = {y ∈ R

m : gT
k (y − xk) ≤ 0}. In order to define

a hyperplane it is necessary to find a nonzero subgradient
vector. To show that the subgradient exists and is nonzero,
we start with the fact that since each fi is convex on R

m , it
has a nonempty subdifferential at any point in R

m [2]. Now
it is still possible that the subdifferential of fi at some point
in R

m contains only the zero vector. By the definition of the
subgradient, for any iterate xk we have that

gT
k (x − xk) ≤ fi (x)− fi (xk) ∀x ∈ R

m, gk ∈ ∂ fi (xk). (5)

In the infeasible case, fi (xk) > 0 for some i ∈ {1, . . . , n},
and it follows from (5) that a nonzero subgradient exists. In
the feasible case, if ∂ f0(xk) = {0}, then it follows from (5)
that xk is optimal. Therefore, if xk is feasible but not optimal
a nonzero subgradient must exist.

It remains to describe the update equations for Ek+1.
Given Ek = E(xk, Dk) ∈ R

m(m > 1) and the subgradient
vector gk defining the halfspace Hk , the center-cut minimum
volume ellipsoid Ek+1 = E(xk+1, Dk+1) that contains the
region Ek ∩Hk is constructed according to

xk+1 = xk − 1

m + 1

Dkgk√
gT

k Dkgk

,

Dk+1 = m2

m2 − 1

(
Dk − 2

m + 1

Dkgk gT
k Dk

gT
k Dkgk

)
. (6)

Indeed, it can be verified that Dk+1 is SPD and the volume
of Ek+1 is strictly less than the volume of Ek . For a deri-
vation of these results we refer to [4] (see also [5]). In the
one-dimensional case (m = 1) the update formulas are given
by

xk+1 = xk − 1

2
sgn(gk)

√
Dk, Dk+1 = Dk

4
, (7)

where sgn(·) is the signum function and all quantities are
scalar. In this case one can show that the ellipsoid method
reduces to the bisection method.

The update formulas for an ellipsoid method constructed
using deep cuts are very similar to those given in (6). Since
we make use of deep cuts in our numerical tests, we briefly
describe them below. Let E(x, D) be an ellipsoid in R

m . It
was shown in [18] that any hyperplane H = {y ∈ R

m :
gT y = β} with β = gT x − α

√
gT Dg and −1 ≤ α ≤ 1

has a nonempty intersection with E(x, D). Furthermore, for

−1/m ≤ α ≤ 1 it is possible to construct a minimum volume
ellipsoid that contains E(x, D)∩H, where H is the halfspace
H = {

y ∈ R
m : gT (y−x) ≤ −α

√
gT Dg

}
. For m > 1 define

the parameters:

τ := 1+ αm

m + 1
, σ := 2(1+ αm)

(m + 1)(1+ α)
,

δ := m2(1− α2)

m2 − 1
. (8)

Then according to [5] the deep-cut ellipsoid Ek+1 = E(xk+1,

Dk+1) with volume strictly less than Ek = E(xk, Dk) is given
by the formulas:

xk+1 = xk − τ
Dkgk√
gT

k Dkgk

,

Dk+1 = δ

(
Dk − σ

Dkgk gT
k Dk

gT
k Dk gk

)
. (9)

In the one-dimensional case these formulas simplify to

xk+1 = xk − (1+ α)

2
sgn(gk)

√
Dk,

Dk+1 = (1− α)2

4
Dk . (10)

The parameter α in the equations above determines the depth
of the cut. For −1/m ≤ α < 0 we refer to Ek+1 as a shal-
low-cut ellipsoid [5], and for α = 0 we recover the formulas
for the center-cut ellipsoid in (6) and (7). If 0 < α ≤ 1,
then Ek+1 is a deep-cut ellipsoid. In our implementation we
compute αk (the depth of cut on the kth iteration) as follows.
If xk is feasible, then

αk = (f0(xk)− uk)
/√

gT
k Dkgk,

uk = min{ f0(xi) : i ≤ k, xi ∈ S}. (11)

Otherwise, if f j (xk) > 0 for some index j > 0, then

αk = f j (xk)
/√

gT
k Dkgk . (12)

It was shown in [18] that computing αk according to for-
mulas (11) and (12) always yields a valid cut. For further
details regarding deep cuts as well as examples of their use
in deep-cut ellipsoid methods we refer to [16,18].

A high-level description of the center-cut ellipsoid method
is given below in Algorithm 2. For further details regarding
the numerical stability and the computer implementation of
the ellipsoid method we refer to [5,19] and references therein.

123

56 H. De Sterck et al.

Algorithm 2: Center-cut ellipsoid method
1. Let E0 = E(x0, D0) be an initial ellipsoid such that

x� ∈ E0

2. Set k ← 0
while k < K do

3. Depending on the feasibility of xk , find a
subgradient vector gk such that

x� ∈ Hk = {y ∈ R
m : gT

k (y− xk) ≤ 0}
4. If xk is feasible, check the stopping criterion with

tolerance ε > 0
5. Construct a new ellipsoid Ek+1 = E(xk+1, Dk+1)

according to (6)–(7).
6. Set k ← k + 1

end

In this paper we make use of the following stopping cri-
terion. We keep track of the current best upper and lower
bounds for the optimal objective value, lk ≤ f0(x�) ≤ uk ,
and iterate until uk − lk < ε for some tolerance ε > 0. The
bounds uk and lk are defined as

uk := min{ f0(xi) : i ≤ k, xi ∈ S},
lk := max

{
f0(xi)−

√
gT

i Di gi : i ≤ k, xi ∈ S
}
.

The lower bound lk can be derived as follows. For any feasi-
ble iterate xk , it follows by the subgradient inequality that

f0(x�) ≥ f0(xk)+ gT
k (x� − xk)

≥ f0(xk)+ inf
z∈Ek

gT
k (z− xk). (13)

Since Ek is a compact subset of R
m , the continuity of gT

k
(z−xk) implies that the infimum is attained on the boundary
of Ek . The minimizer can then be obtained through a straight-
forward application of Lagrange multipliers. At convergence
we have that 0 ≤ uk − f0(x�) ≤ uk − lk < ε, and we return
the feasible iterate xbest that satisfies f0(xbest) = uk . We
note that since the ellipsoid method is not a descent method
it is necessary to keep track of the best feasible iterate found
so far.

We conclude this section with a brief discussion regard-
ing convergence of the ellipsoid algorithm. Convergence of
Algorithm 2 for convex programming problems of the form
in (4) was proved in [30] using an approach based on vari-
ational inequalities. It was shown in Theorem 2.3.2 of [18]
that a center-cut and deep-cut version of the ellipsoid method
are guaranteed to converge when applied to the convex pro-
gram (4). Here, convergence is understood in the following
sense,

lim
k→∞ uk = f0(x�).

Furthermore, convergence was shown to be geometric with
a rate that asymptotically approaches 1 as m →∞ [18]. In
the next section we provide detailed per iteration complexity
estimates for our implementation and outline the overhead
costs of using iterant recombination in conjunction with the
ellipsoid method.

4 Ellipsoid method for Markov acceleration

In this section we discuss how the ellipsoid algorithm can
be applied as a solver for the iterant recombination prob-
lem. Specifically, we give the formulas for the subgradients
of the objective function and the constraint functions, we
present an equivalent formulation of (3) with the equality
constraint removed, and we show how an initial ellipsoid E0

can be constructed that is guaranteed to contain the exact
solution.

We are interested in solving the following convex optimi-
zation problem:

minimize ‖AXz‖1
subject to Xz ≥ 0

1T z = 1,

(14)

where X ∈ R
n×m is the matrix of previous fine-level iterates

and m is the window size. Due to the single equality con-
straint, there are only m − 1 degrees of freedom. Thus, we
can obtain an equivalent inequality-form problem with m−1
unknowns by removing one of the variables. Eliminating the
variable z1 and letting ẑ = (z2, . . . , zm)T , the equality con-
straint implies that z = (1−1T ẑ, ẑ)T . Using Matlab notation
we define X̂ = −X(: , 2 :m) + x11T and Â = −AX̂, where
x1 is the first column of X and a1 = A x1. The equivalent
problem can now be stated as:

minimize ‖Â ẑ+ a1‖1
subject to X̂ẑ− x1 ≤ 0.

(15)

This formulation is obtained by substituting z = (1 −
1T ẑ, ẑ)T into (14) and then simplifying. Note that once the
solution to (15) has been computed (call it ẑ�), the solu-
tion to the original problem (14) is given by z� = (1 −
1T ẑ�, ẑ�)T .

It is obvious from (15) that the objective function is

f0(ẑ) = ‖Â ẑ+ a1‖1
and the constraint functions are

fi (ẑ) = x̂T
i ẑ− (x1)i , i = 1, . . . , n

where x̂i is the i th row of X̂ in column format. Since the con-
straint functions are convex and differentiable with respect
to z, the subdifferential ∂ fi (ẑ) = {∇ fi (ẑ)} = {x̂i } for all ẑ ∈
R

m−1. The objective function is not differentiable, however

123

Iterant recombination for Markov chains via the ellipsoid method 57

it can be written as a composition of functions, f0(ẑ) =
h(Â ẑ + a1), where h(·) = ‖ · ‖1. Application of the chain

rule [36] gives ∂ f0(ẑ) = Â
T
∂h(Â ẑ + a1). Since the vector

function q ∈ R
n defined by

qi (x) =
{

1 if xi ≥ 0
−1 if xi < 0

(16)

is a subgradient for h(x), it follows that Â
T

q(Â ẑ + a1) is a
subgradient for f0(ẑ).

The main computational costs of Algorithm 2 are the
subgradient vector construction (line 3), and the ellipsoid
update (line 5). Construction of the subgradient vector con-
sists of four steps: (1) Perform a feasibility check, (2) com-

pute Â ẑ+ a1, (3) build q, (4) compute Â
T

q. The feasibility
check consists of evaluating X̂ẑ− x1 and then searching for
a positive entry, which requires O(mn) flops. The order in
which the feasibility constraints are examined is discussed
in [16], where the authors advocate a cyclical order since
it yields slightly better efficiency. In this paper, however, we
use a straightforward top-down sequential search f1, . . . , fn ,
which for the test problems considered yields an efficient and
robust method. Steps (2) and (4) each require O(mn) flops,
and step (3) requires onlyO(n)flops. A slightly more detailed
analysis reveals that construction of the subgradient vector
requires 2mn flops when the current iterate is infeasible, and
(6m + 2)n flops when it is feasible. Here we have assumed
that a sequential search of a length n array requires n flops.
Referring to the equations in (6) the ellipsoid update requires
approximately 5m2 flops. Given that m � n this is negligible
compared to the subgradient vector construction. Therefore,
we can conclude that each iteration requires O(n) flops. We
note that these estimates apply to both the center-cut and
deep-cut algorithms.

We now proceed with our main technical contribution,
namely, the construction of an initial ellipsoid E0 =
E(ẑ0, D0) that is guaranteed to contain the exact solu-
tion. Additionally, we state necessary and sufficient con-
ditions for its existence. We begin by deriving a formula
for an initial ellipsoid E0 = E(ẑ0, D0) that is guaran-
teed to contain the exact solution z�. Intuitively, we expect
that most of the weight in the optimal linear combination
x� = Xz� will be associated with the most recent fine-
level approximation xk , which is the rightmost column
of X. This assumption was confirmed by numerical tests.
Therefore, we use ẑ0 = (0, . . . , 0, 1)T as the center
point for the initial ellipsoid. We now derive the matrix
D0.

For any feasible point z of (14), the corresponding point
ẑ is feasible for (15) and AXz = Â ẑ+ a1. Therefore, given
some feasible point z it follows that

ẑ� ∈ {y ∈ R
m−1 : ‖Â y+ a1‖1 ≤ α},

α = ‖AXz‖1 = ‖Â ẑ+ a1‖1.

For example, z = ei , the i th canonical basis vector in R
m is

a feasible point for (15). In practice we choose α according
to

α = min
i=1,...,m

‖AXei‖1,

which is equal to the minimum absolute column sum of AX.
Since Â y+a1 = Â(y− ẑ0)+ (Â ẑ0+a1) for any y ∈ R

m−1,
it is clear that

ẑ� ∈ {y ∈ R
m−1 : ‖Â(y− ẑ0)+ (Â ẑ0 + a1)‖1 ≤ α}.

Applying the reverse triangle inequality, |‖u‖1 − ‖v‖1| ≤
‖u± v‖1, we obtain

ẑ� ∈ {y ∈ R
m−1 : ‖Â(y− ẑ0)‖1 ≤ r},

r = α + ‖Â ẑ0 + a1‖1.
Using the vector norm inequality ‖ · ‖2 ≤ ‖ · ‖1, we arrive at
the desired result that

‖Â(ẑ� − ẑ0)‖2 ≤ r ⇔ (ẑ� − ẑ0)
T D−1

0 (ẑ� − ẑ0) ≤ 1, (17)

where D0 = r2(Â
T
Â)−1. Therefore, it follows by (17)

that the optimal solution ẑ� belongs to the ellipsoid E0 =
E(ẑ0, D0).

The ellipsoid method can also be used to solve the two-
norm minimization problem, which is equivalent to (15) with
the objective function given by

f0(ẑ) = 〈Â ẑ+ a1, Â ẑ+ a1〉.

Since in this case the objective function is convex and differ-
entiable, its subdifferential is equal to its gradient ∇ f0(ẑ) =
2Â

T
(Â ẑ + a1). An initial ellipsoid E0 = E(ẑ0, D0) that

contains the optimal solution can be similarly defined with

r = ‖Â ẑ0 + a1‖2 + min
i=1,...,m

‖AXei‖2.

Given the form of the subgradient it is clear that the cost per
iteration of the ellipsoid method for two-norm minimization
is approximately equal to the cost per iteration for one-norm
minimization.

It is necessary to consider whether D0 exists, i.e., if Â
T
Â

is invertible. It is clear that Â
T
Â is an (m − 1) × (m − 1)

symmetric positive-semidefinite matrix, and provided that Â
is of full rank, D0 exists and is symmetric positive-definite.
The following proposition establishes necessary and suffi-
cient conditions for the existence of D0.

123

58 H. De Sterck et al.

Proposition 1 The matrix Â has full rank if and only if X̂
has full rank and the exact solution of (2) is not in the range
of X̂.

Proof We prove the contrapositive statement: Â is rank defi-
cient if and only if X̂ is rank deficient or x ∈ range(X̂). Recall
that Â = −AX̂. If X̂ is rank deficient, then X̂ has a nontrivial
nullspace, and hence Â must also have a nontrivial nullspace.
If x ∈ range(X̂), then there exists a nonzero vector y such
that x = X̂y. Since Ax = 0, it follows that y ∈ null(Â).
In either case it is clear that Â must be rank deficient. Now
suppose that Â is rank deficient. Then there exists a nonzero
vector y such that Ây = 0, which implies that X̂y ∈ null(A).
Since null(A) = span(x), this implies that either X̂y = x
or X̂y = 0. This is equivalent to the statement that either
x ∈ range(X̂) or X̂ is rank deficient. ��

We can now use Proposition 1 to identify two possible
but exclusive cases under which Â is rank deficient and our
proposed initial ellipsoid does not exist:

Proposition 2 Let Xk−1 be the matrix of fine-level iterates
after k − 1 multigrid cycles with iterant recombination, and
suppose that x �∈ range(Xk−1) and Xk−1 has full rank. More-
over, let Xk be the corresponding matrix after the kth multi-
grid cycle with iterant recombination. If Âk is rank deficient,
then either x ∈ range(X̂k) or X̂k is rank deficient, but not
both.

Proof Since Âk is rank deficient, it follows by Proposition 1
that either X̂k is rank deficient or x ∈ range(X̂k). With-
out restricting generality suppose that X̂k is rank deficient.
This implies that Xk is also rank deficient, and by the full
rank assumption on Xk−1 it follows that xk ∈ range(Xk−1).
Thus, range(Xk) ⊂ range(Xk−1), and hence x �∈ range(Xk).
The desired result now follows by the fact that range(X̂k) ⊂
range(Xk). ��

Now suppose we run the iterant recombination algorithm
until at some point Â is rank deficient and our proposed initial
ellipsoid does not exist (note that in practice this may never
occur, see below). Then Proposition 2 implies that only one of
the following two cases is possible, and we give a strategy for
handling each case in our iterant recombination algorithm:

Case 1: If X̂ is rank deficient, then X is also rank defi-
cient. Here, the most obvious approach is to drop
all the columns of X except for xk , and to skip the
kth iterant recombination step. Doing so implies
that X = [xk] has full rank (since xk �= 0) and
x �∈ range(X). Therefore, the results of Proposi-
tion 2 may be applied to future iterant recombina-
tion iterations.

Case 2: If X̂ has full rank, then it must be true that x ∈
range(X̂). Thus, one can solve the following full
rank overdetermined system of equations for y

(AX̂)y = 0

and then compute the exact solution according to
x = X̂y/‖X̂y‖1.

In practice, rank deficiency of Â is typically not an issue. In
fact, rank deficiency of Â was not observed for any of the iter-
ant recombination numerical tests. This is most likely due to
the nonlinear nature of the underlying multilevel algorithm,
i.e., the range of the multilevel operator changes with each
iteration.

As one final note we mention some overhead costs of
using iterant recombination in conjunction with one-norm or
two-norm minimization. These costs are in addition to those
described above, however they represent only a small part of
the overall ellipsoid method cost per multigrid cycle. After
each multigrid cycle it is necessary to update AX with the new

approximation, build Â and build Â
T
Â. To leading order this

requires 2 nnz(A)+m2n flops, where nnz(A) is the number of
nonzero entries in the sparse matrix A. To initialize the ellip-

soid method it is necessary to compute D0 = r2(Â
T
Â)−1.

For window sizes m ≤ 4 there exist analytic formulas for the
inverse that require 32 flops when m = 4 and 7 flops when
m = 3 (in general for m > 4 computing the inverse requires
(8/3)m3 flops). The computation of r requires (m + 1)n
flops.

5 Numerical results

In this section we perform numerical tests of the iterant
recombination acceleration algorithm for a variety of test
problems that appear in [12,14]. Two of these test prob-
lems are standard Markov chain tests from [39] and [23].
Each of the test problems is slowly mixing (see Sect. 2.1)
and has a complex spectrum. The code was implemented
and executed in Matlab 7.5.0 on a 2.50 GHz Intel Core
2 Duo CPU with 4 GB of RAM. Tests are conducted for
window sizes m = 1, 2, 3, 4. We consider both the one-
norm and two-norm minimization problems, where the
former is solved by the ellipsoid method, and the lat-
ter is solved by the ellipsoid method and also by Mat-
lab’s built-in quadratic programming solver quadprog, as
in [14]. In particular, the medium-scale quadprog algo-
rithm which employs an active set method is used, since
only a few of the inequality constraints may be relevant.
Also, instead of using quadprog to solve the two-norm min-
imization problem with window size 2 we use the effi-
cient algorithm employed in [14,15]. We note that in some
cases the solution generated by quadprog may have nega-
tive entries even though positivity constraints were enforced.
If this robustness problem occurs, then at most ten addi-

123

Iterant recombination for Markov chains via the ellipsoid method 59

tional relaxations are performed (see also Theorem 5.1
in [14]). If after ten relaxations the improved approxima-
tion still does not have strictly positive entries, it is dis-
carded, and the most recent fine-level iterate is used. We
note that the time to perform extra relaxations is added to
the overall solve time. Entries in the tables for which extra
relaxations were necessary are indicated by a superscript
asterisk.

As the primary standalone solver to be accelerated we
consider the unsmoothed multilevel aggregation algorithm
(AGG) of [23] with neighborhood-based aggregation [14].
We also compare AGG with the more sophisticated MCAMG
algorithm from [12]. Weighted Jacobi relaxation is used on all
levels, except on the coarsest level where a direct solve is per-
formed via the GTH algorithm [20]. For the MCAMG algo-
rithm we use V-cycles, and for the AGG algorithm we exper-
iment with F-cycles and W-cycles, since this gave the most
favorable results. We note that for both AGG and MCAMG
the transfer operators are frozen after 10 multigrid cycles,
however, the coarse-level operators are always rebuilt on each
level. Furthermore, in order to obtain competitive operator
complexities for MCAMG we use the first pass only of the
classical Ruge-Stüben AMG coarsening algorithm (see [12]).
As our stopping criterion we use

stop if k > maxit or ‖A xk‖1 < 10−8‖A x0‖1,
where k is the iteration count and maxit is the maximum
number of iterations the algorithm will be allowed to per-
form. The initial guess x0 is uniformly randomly generated;
it has strictly positive entries and unit one-norm. We note
that all iterates have strictly positive entries and are normal-
ized to have unit one-norm. The parameters for the AGG and
MCAMG algorithms are given in Table 1.

The ellipsoid method with deep cuts is given by Algo-
rithm 2 with Ek+1 updated according to (8)–(12). The stop-
ping criterion parameters are maxit = 300 with converge-
nce tolerances ε1 = 10−8 for one-norm minimization and
ε2 = 10−21 for two-norm minimization. These values were
determined experimentally to give good results for a wide
range of test problems.

Table 1 MCAMG and AGG parameters

Parameter Value

Number of pre-relaxations ν1 1

Number of post-relaxations ν2 1

Strength of connection parameter θ 0.25

Lumping parameter η (MCAMG only) 0.01

Weighted Jacobi relaxation parameter ω 0.7

Max number of points on coarsest level ncoarse 12

Max number of iterations maxit 700

Fig. 3 Tandem queueing network

In the tables below we report the total number of iterations
required by the iterant recombination accelerated MCAMG
and AGG algorithms to converge for window size m. For
tests without iterant recombination acceleration we report
the number of levels, lvls, the number of iterations, i t , and
the operator complexity on the last cycle, Cop. The operator
complexity is defined as the sum of the number of nonzero
elements in all operators, A, on all levels divided by the num-
ber of nonzero elements in the fine-level operator. This num-
ber gives a good indication of the amount of work required
for a cycle and, for a scalable (or optimal) method, it should
be bounded by a constant not too much larger than one as the
problem size increases. In what follows we refer to the iterant
recombination acceleration with two-norm minimization as
“two-norm acceleration” and in the one-norm case we say
“one-norm acceleration”.

5.1 Tandem queue

The first test problem we consider is the tandem queueing
network from [39], where two finite queues with single serv-
ers are placed in tandem. Customers arrive according to a
Poisson distribution with rate μ, and the service time distri-
bution at the two single-server stations is Poisson with rates
μ1 and μ2. This is illustrated in Fig. 3. The states of the sys-
tem can be represented by tuples (n1, n2), where ni is the
number of customers waiting in the i th queue. We choose
(μ, μ1, μ2) = (10, 11, 10) for the weights, which leads to
a case of slow mixing.

The results of applying the acceleration schemes to AGG
F-cycles and W-cycles are given in Table 2. We note that
MCAMG was not considered for this test problem since
it produces scalable results without acceleration. From the
table it is clear that W-cycles outperform F-cycles, and
that iterant recombination acceleration is able to signifi-
cantly reduce the iteration counts and make the method
more scalable. For n= 262,144 there is an 83% reduction
in the iteration count for F-cycles and a 74% reduction for
W-cycles. We also observe a roughly equivalent decrease
in iterations between the one-norm and two-norm accel-
eration routines for each window size, where it is evident
that window sizes 2 and 3 give the most significant reduc-
tion. We note that in the window size 4 column for quad-
prog with W-cycles the iteration count is significantly higher
for n= 262,144 than for the other methods. This is due
to the fact that quadprog failed to converge a large num-
ber of times for this problem. In fact over all the numerical
tests the ellipsoid method demonstrated robustness in terms

123

60 H. De Sterck et al.

Table 2 Tandem queue

n lvls Cop i t Ellipsoid (one-norm) Ellipsoid (two-norm) Quadprog (two-norm)

Window size Window size Window size

2 3 4 2 3 4 2 3 4

AGG F-cycles

1,024 4 1.45 136 50 46 42 52 56 44 52 56 44

4,096 4 1.47 173 57 50 51 64 60 59 63 61 59

16,384 5 1.47 328 83 72 66 77 68 71 77 67 68

65,536 6 1.47 395 100 79 92 106 77 89 106 80 85

262,144 6 1.46 629 135 112 146 131 116 132 130 116 129

AGG W-cycles

1,024 4 1.47 121 47 44 42 49 53 43 49 53 43

4,096 4 1.50 143 55 46 45 54 53 52 54 53 52

16,384 5 1.51 210 66 61 55 66 56 52 67 57 54

65,536 6 1.50 231 71 61 65 66 63 64 66 63 63

262,144 6 1.50 315 94 81 86 86 80 85 86 77 117

Iteration counts for various window sizes for one-norm and two-norm minimization strategies applied to the AGG algorithm. The number of levels
lvls, the operator complexities Cop , and the iteration counts i t are given for the unaccelerated AGG algorithm

 0 1e5 2e5 3e5
0

50

100

150

200

250

300

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 2

AGG
Ellipsoid 1−norm
Ellipsoid 2−norm
Quadprog

 0 1e5 2e5 3e5
0

50

100

150

200

250

300

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 3

 0 1e5 2e5 3e5
0

50

100

150

200

250

300

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 4

Fig. 4 Total execution time for accelerated AGG F-cycles applied to the tandem queue problem. The solid gray line with cross ‘×’ markings is
for unaccelerated AGG F-cycles

of iteration counts that is comparable or superior to quad-
prog.

Figures 4 and 5 show the total execution times for accel-
erated AGG F-cycles and W-cycles as well as for unac-
celerated AGG cycles. We note that total execution time
refers to the multigrid solve time plus the iterant recom-
bination time. The figures clearly demonstrate that AGG
with window size 2 acceleration gives the best overall solve
times, while window size 4 acceleration results in slower
overall performance. The best results are achieved by the

efficient algorithm for two-norm minimization with win-
dow size 2 from [14,15], which is very hard to compete
with. In fact, for n= 262,144 we obtain a 62% iterant
recombination speedup for F-cycles and a 48% speedup for
W-cycles. The figure also shows that the ellipsoid method
for one-norm minimization tends to be a bit faster than the
ellipsoid method for two-norm minimization. An examina-
tion of the data shows that in general the ellipsoid method for
two-norm minimization requires more iterations per multi-
grid cycle to converge, which explains its performance given

123

Iterant recombination for Markov chains via the ellipsoid method 61

 0 1e5 2e5 3e5
0

50

100

150

200

250

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 2

AGG
Ellipsoid 1−norm
Ellipsoid 2−norm
Quadprog

 0 1e5 2e5 3e5
0

50

100

150

200

250

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 3

 0 1e5 2e5 3e5
0

50

100

150

200

250

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 4

Fig. 5 Total execution time for accelerated AGG W-cycles applied to the tandem queue problem. The solid gray line with cross ‘×’ markings is
for unaccelerated AGG W-cycles

that the per iteration cost of the two methods is roughly equiv-
alent.

5.2 Directed random planar graph (DRPG)

In this test problem we consider a random walk on an unstruc-
tured, directed planar graph. To construct the directed planar
graph D we begin by randomly distributing n points in the
unit square (0, 1) × (0, 1). These points are then connected
via Delaunay triangulation, which yields an undirected pla-
nar graph G. To obtain a directed graph D, we randomly
select a set of edges from G and make them uni-directional.
This is done in such a way that irreducibility is preserved
(see [14] for further details regarding the construction of D).
A Markov chain is then obtained by performing a random
walk on D, where the probability of transitioning from node
i to node j is given by the reciprocal of the number of out-
ward arcs from node i . It is clear by the construction of D
that the resulting Markov chain has a nonsymmetric sparsity
structure. Furthermore, numerical computations of the tran-
sition matrices’ spectra confirms that this is a slowly mixing
problem.

The results of applying the acceleration schemes to
MCAMG V-cycles and AGG W-cycles are given in Table 3.
We note that although MCAMG with two-pass coarsening
performs quite well for this problem in terms of iteration
counts, its operator complexity is high (see [12,14]). For
this reason, we consider one-pass coarsening here, which
reduces the operator complexity (and thus memory usage) but
increases the iteration counts. The results in Table 3 show that
by applying iterant recombination acceleration with one-pass

coarsening we can improve the iteration counts with good
operator complexity. We observe a significant reduction in
iteration counts with comparable performance between one-
norm and two-norm acceleration. For n= 262,144 there is a
63% reduction for MCAMG V-cycles and a 90% reduction
for AGG W-cycles.

Figures 6 and 7 show the execution time results for
MCAMG V-cycles and AGG W-cycles, respectively. It is
evident that the fastest solve times are again given by win-
dow size 2 acceleration. For MCAMG we observe simi-
lar execution times for the ellipsoid method one-norm and
two-norm minimization approaches with a 36% speedup
for n= 262,144 and window size 2. In the case of AGG
W-cycles ellipsoid method two-norm minimization slightly
outperforms the one-norm minimization. For n= 262,144
we obtain an impressive 56% speedup with window size 2
acceleration. It is also interesting to note that in tandem queue
problem window size 4 acceleration lead to a much slower
solver, whereas here we obtained some improvement. How-
ever, the numerical results still imply that window size 4
acceleration is unnecessary in the context of AGG F-cycles
and W-cycles.

5.3 Stochastic Petri net

The final test problem we consider was previously consid-
ered in [23], and is derived from a stochastic Petri net (SPN).
Petri nets are a formalism for the description of concurrency
and synchronization in distributed systems. They consist of:
places, which model conditions or objects; tokens, which
represent the specific value of the condition or object; tran-

123

62 H. De Sterck et al.

Table 3 Directed random planar graph

n lvls Cop i t Ellipsoid (one-norm) Ellipsoid (two-norm) Quadprog (two-norm)

Window size Window size Window size

2 3 4 2 3 4 2 3 4

MCAMG V-cycles

1,024 5 1.56 37 19 16 16 23 18 17 23 18 17

4,096 6 1.56 37 19 18 17 21 18 17 21 18 17

16,384 7 1.59 46 23 22 22 25 21 20 25 21 20

65,536 8 1.59 62 26 24 24 29 25 23 29 25 23

262,144 9 1.59 65 32 27 24 34 28 26 34 28 26

AGG W-cycles

1,024 4 1.32 113 41 58 64 49 38 37 35 45 50

4,096 4 1.34 166 62 28 37 42 37 39 49 42 57

16,384 5 1.36 231 62 71 38 57 42 39 58 37 39

65,536 6 1.37 316 39 45 47 62 54 45 61 69 38

262,144 6 1.37 373 36 42 51 71 58 47 39 46 48

Iteration counts for various window sizes for one-norm and two-norm minimization strategies applied to the AGG and MCAMG algorithms. The
number of levels lvls, the operator complexities Cop , and the iteration counts i t are given for the unaccelerated AGG and MCAMG algorithms

 0 1e5 2e5 3e5
0

10

20

30

40

50

60

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 2

MCAMG
Ellipsoid 1−norm
Ellipsoid 2−norm
Quadprog

 0 1e5 2e5 3e5
0

10

20

30

40

50

60

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 3

 0 1e5 2e5 3e5
0

10

20

30

40

50

60

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 4

Fig. 6 Total execution time for accelerated MCAMG V-cycles applied to the directed random planar graph problem. The solid gray line with cross
‘×’ markings is for unaccelerated MCAMG V-cycles

sitions, which model activities that change the value of con-
ditions or objects; and arcs, which specify interconnection
between places and transitions. A stochastic Petri net is a
standard Petri net together with a tuple λ = (r1, . . . , rn)

of exponentially distributed transition firing rates. We know
from [34] that a finite place, finite transition, marked sto-
chastic Petri net is isomorphic to a one-dimensional discrete-
space Markov process. For an in-depth discussion of Petri
Nets we refer to [1,34].

The results of applying the acceleration schemes to AGG
F-cycles and W-cycles are given in Table 4. We note that
MCAMG was not considered for this test problem since it
produces scalable results without acceleration. In this case
we observe scalable performance with AGG W-cycles. As
before there is little difference between one-norm and two-
norm acceleration except in the case of quadprog where extra
relaxations were necessary to obtain a strictly positive solu-
tion. The asterisks in the table show that, for this test problem,

123

Iterant recombination for Markov chains via the ellipsoid method 63

 0 1e5 2e5 3e5
0

20

40

60

80

100

120

140

160

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 2

AGG
Ellipsoid 1−norm
Ellipsoid 2−norm
Quadprog

 0 1e5 2e5 3e5
0

20

40

60

80

100

120

140

160

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 3

 0 1e5 2e5 3e5
0

20

40

60

80

100

120

140

160

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 4

Fig. 7 Total execution time for accelerated AGG W-cycles applied to the directed random planar graph problem. The solid gray line with cross
‘×’ markings is for unaccelerated AGG W-cycles

Table 4 Stochastic Petri net

n lvls Cop i t Ellipsoid (one-norm) Ellipsoid (two-norm) Quadprog (two-norm)

Window size Window size Window size

2 3 4 2 3 4 2 3 4

MCAMG V-cycles

2,470 5 1.75 78 33 33 35 41 49 35 33 47∗ 41∗

10,416 5 1.67 87 36 30 30 37 33 51 31 34∗ 34∗

23,821 5 1.56 75 45 46 31 38 41 38 46 28∗ 31∗

45,526 6 1.51 86 39 32 35 31 34 34 45 46∗ 28∗

121,836 6 1.46 106 30 31 36 36 27 31 33 55∗ 52∗

AGG W-cycles

2,470 5 1.83 65 29 30 30 34 36 29 33 37∗ 33∗

10,416 6 1.88 66 30 26 36 35 31 34 30 30∗ 32∗

23,821 6 1.77 65 35 39 29 34 34 35 34 25∗ 28∗

45,526 6 1.67 66 33 34 33 30 30 32 35 39∗ 27∗

121,836 6 1.58 66 29 28 29 32 26 29 31 38∗ 29∗

Iteration counts for various window sizes for one-norm and two-norm minimization strategies applied to the AGG algorithm. The number of levels
lvls, the operator complexities Cop , and the iteration counts i t are given for the unaccelerated AGG algorithm. The superscript asterisks (∗) indicate
that extra relaxations were necessary to obtain a strictly positive solution

quadprog is less robust than the ellipsoid methods in terms of
maintaining the sign constraints. For n= 121,836 we obtain
a 75% reduction in iterations for F-cycles and a 61% reduc-
tion for W-cycles.

Figure 8 shows the execution times for AGG W-cycles. For
n= 121,836 the fastest solve time is given by window size
2 acceleration with a modest but still relevant 16% speedup
over the unaccelerated cycles. We observe that in this case the
ellipsoid method with one-norm minimization outperforms

the two-norm method. We also observe that the quadprog
execution times are quite high for window sizes 3 and 4,
which is due to the extra relaxations.

6 Concluding remarks

In this paper we proposed a one-norm minimization method
for the constrained iterant recombination acceleration app-

123

64 H. De Sterck et al.

 0 0.5e5 1e5 1.5e5
0

5

10

15

20

25

30

35

40

45

50

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 2

AGG
Ellipsoid 1−norm
Ellipsoid 2−norm
Quadprog

 0 0.5e5 1e5 1.5e5
0

5

10

15

20

25

30

35

40

45

50

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 3

 0 0.5e5 1e5 1.5e5
0

5

10

15

20

25

30

35

40

45

50

Problem size

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

)

Window size 4

Fig. 8 Total execution time for accelerated AGG W-cycles applied to the stochastic Petri net problem. The solid gray line with cross ‘×’ markings
is for unaccelerated AGG W-cycles

roach for Markov chains developed in [14]. We formulated a
nonlinear convex optimization problem and proposed a solu-
tion via the ellipsoid algorithm. We showed how an initial
ellipsoid can be constructed that is guaranteed to contain the
exact solution, and how rank deficiencies can be addressed.
We also showed how the ellipsoid method could be used to
minimize the constrained two-norm problem.

The numerical tests indicated that in terms of the reduction
of iterations, there is little difference between the one-norm
or two-norm variants. Furthermore, as was demonstrated in
[14], it was confirmed that window sizes of 2 or 3 are suf-
ficient to reduce the iteration count, and that the number of
iterations is not further significantly reduced for larger win-
dow sizes. In fact, for window sizes larger than 3, the added
overhead of solving a larger minimization problem lead to
increasing execution times. The execution time data also
showed that for window size 2, the one-norm and two-norm
acceleration procedures were comparable, while for win-
dow size 3, the one-norm acceleration was typically faster.
Our numerical tests illustrated that iterant recombination can
make the simple aggregation method from [23] competitive
with the more advanced methods from, for example, [11,12].
It was also shown how iterant recombination acceleration
could provide significant speedup when MCAMG does not
scale well (i.e., iterations increase with the problem size).
Overall, the tests indicated that one-norm acceleration with
the ellipsoid method is competitive with two-norm acceler-
ation in terms of running time. It is interesting that we see
a similar reduction in multigrid iterations for the one-norm
and two-norm minimization. Also, the ellipsoid method is

more robust than quadprog in terms of maintaining the sign
constraints.

There is another approach to iterant recombination accel-
eration with one-norm minimization that we did not consider.
Instead of solving a nonlinear convex optimization problem,
we could have instead formulated the equivalent linear pro-
gramming problem from (14) and used the simplex method
to obtain the solution. It is possible that this approach could
result in a faster accelerated solver, and we will consider it
in the future.

Acknowledgments The authors would like to thank Steve Vavasis for
his insightful comments and suggestions.

References

1. Bause, F., Kritzinger, P.: Stochastic Petri Nets. Springer, Germany
(1996)

2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Program-
ming: Theory and Algorithms, 3rd edn. Wiley, New Jersey (2006)

3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathe-
matical Sciences. SIAM, Philadelphia, PA (1987)

4. Bertsimas, D., Tsitisklis, J.N.: Introduction to Linear Optimiza-
tion. Athena Scientific, Belmont, MA (1997)

5. Bland, R.G., Goldfarb, D., Todd, M.J.: The ellipsoid method: a
survey. Oper. Res. 29(6), 1039–1091 (1981)

6. Brandt, A., Mikulinsky, V.: On recombining iterants in multigrid
algorithms and problems with small islands. SIAM J. Sci. Com-
put. 16, 20–28 (1995)

7. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tuto-
rial, 2nd edn. SIAM, Philadelphia, PA (2000)

8. Buchholz, P.: Multilevel solutions for structured Markov
chains. SIAM J. Matrix Anal. Appl. 22(2), 342–357 (2000)

123

Iterant recombination for Markov chains via the ellipsoid method 65

9. Cao, W.L., Stewart, W.J.: Iterative aggregation/disaggregation
techniques for nearly uncoupled Markov chains. JACM 32(3),
702–719 (1985)

10. Chatelin, F., Miranker, W.L.: Acceleration by aggregation of
successive approximation methods. Linear Algebra Appl. 43,
17–47 (1982)

11. De Sterck, H., Manteuffel, T., McCormick, S.F., Miller, K., Pear-
son, J., Ruge, J., Sanders, G.: Smoothed aggregation multigrid for
Markov chains. SIAM J. Sci. Comput. 32, 40–61 (2010)

12. De Sterck, H., Manteuffel, T., McCormick, S.F., Miller, K., Ruge,
J., Sanders, G.: Algebraic multigrid for Markov chains. SIAM J.
Sci. Comput. 32, 544–562 (2010)

13. De Sterck, H., Manteuffel, T., McCormick, S.F., Nguyen, Q., Ruge,
J.: Multilevel adaptive aggregation for Markov chains, with appli-
cation to web ranking. SIAM J. Sci. Comput. 30, 2235–2262 (2008)

14. De Sterck, H., Manteuffel, T., Miller, K., Sanders, G.: Top-level
acceleration of adaptive algebraic multilevel methods for steady-
state solution to Markov chains. Adv. Comput. Math. 35, 375–403
(2010)

15. De Sterck, H., Miller, K., Sanders, G., Winlaw, M.: Recursively
accelerated multilevel aggregation for Markov chains. SIAM J.
Sci. Comput. 32(3), 1652–1671 (2010)

16. Dziuban, S.T., Ecker, J.G., Kupferschmid, M.: Using deep cuts in
an ellipsoid algorithm for nonlinear programming. Math. Program.
Stud. 25, 93–107 (1985)

17. Ecker, J.G., Kupferschmid, M.: An ellipsoid algorithm for nonlin-
ear programming. Math. Program. 27, 83–106 (1983)

18. Frenk, J.B.G., Gromicho, J., Zhang, S.: A deep cut ellipsoid algo-
rithm for convex programming: theory and applications. Math. Pro-
gram. 63, 83–108 (1994)

19. Goldfarb, D., Todd, M.J.: Modifications and implementation of the
ellipsoid algorithm for linear programming. Math. Program. 23,
1–19 (1982)

20. Grassmann, W., Taksar, M., Heyman, D.: Regenerative anal-
ysis and steady-state distributions for Markov chains. Oper.
Res. 33(5), 1107–1116 (1985)

21. Haviv, M.: Aggregation/disaggregation methods for computing
the stationary distribution of Markov chains. SIAM J. Numer.
Anal. 24(4), 952–966 (1987)

22. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University
Press, New York, NY (1985)

23. Horton, G., Leutenegger, S.T.: A multi-level solution algorithm for
steady-state Markov chains. In: Proceedings of the 1994 ACM SIG-
METRICS Conference on Measurement and Modeling of Comput-
er Systems, pp. 191–200 (1994)

24. Iudin, D.B., Nemirovskii, A.S.: Informational complexity and
effective methods of solution for convex extremal problems. Mate-
kon Transl. Russ. East Eur. Math. Econ. 13, 3–25 (1976)

25. Khachiyan, L.G.: A polynomial algorithm in linear program-
ming. Sov. Math. Doklady 20, 191–194 (1976)

26. Koury, J.R., McAllister, D.F., Stewart, W.J.: Iterative meth-
ods for computing stationary distributions of nearly completely
decomposable Markov chains. SIAM J. Alg. Disc. Meth. 5(2),
164–186 (1984)

27. Krieger, U.R.: Numerical solution of large finite Markov chains
by algebraic multigrid techniques. In: Stewart, W. (ed.) Numer-
ical Solution of Markov Chains, pp. 403–424. Kluwer, Dordr-
echt (1995)

28. Krieger, U.R.: On a two-level multigrid solution method for Mar-
kov chains. Linear Algebra Appl. 223–224, 415–438 (1995)

29. Leutenegger, S.T., Horton, G.: On the utility of the multi-level algo-
rithm for the solution of nearly completely decomposable Markov
chains. Tech. Rep. 94-44, ICASE (1994)

30. Lüthi, H.-J.: On the solution of variational inequalities by the ellip-
soid method. Math. Oper. Res. 10(3), 515–522 (1985)

31. Mandel, J., Sekerka, B.: A local convergence proof for the iterative
aggregation method. Linear Algebra Appl. 51, 163–172 (1983)

32. Marek, I., Mayer, P.: Convergence analysis of an iterative aggre-
gation/disaggregation method for computing stationary proba-
bility vectors of stochastic matrices. Numer. Linear Algebra
Appl. 5, 253–274 (1998)

33. Marek, I., Mayer, P.: Convergence theory of some classes of
iterative aggregation/disaggregation methods for computing sta-
tionary probability vectors of stochastic matrices. Linear Algebra
Appl. 363, 177–200 (2003)

34. Molloy, M.K.articletitlePerformance analysis using stochastic
Petri nets : IEEE Trans. Comput. C-31, 913–917 (1982)

35. Philippe, B., Saad, Y., Stewart, W.J.: Numerical methods in Markov
chain modeling. Oper. Res. 40(6), 1156–1179 (1992)

36. Rockafellar, R.T.: Convex Analysis. Princeton University
Press, New Jersey (1970)

37. Shor, N.Z.: Cut-off method with space extension in convex pro-
gramming problems. Cybernetics 13, 94–96 (1977)

38. Simon, H.A., Ando, A.: Aggregation of variables in dynamic sys-
tems. Econometrica 29, 111–138 (1961)

39. Stewart, W.J.: An Introduction to the Numerical Solution of Mar-
kov Chains. Princeton University Press, Princeton, NJ (1994)

40. Takahashi, Y.: A lumping method for numerical calculations of sta-
tionary distributions of Markov chains. Tech. Rep. B-18, Depart-
ment of Information Sciences, Tokyo Institute of Technology
(1975)

41. Treister, E., Yavneh, I.: On-the-fly adaptive smoothed aggregation
for Markov chains. SISC 33, 2927—2949 (2011)

42. Treister, E., Yavneh, I.: Square and stretch multigrid for stochastic
matrix eigenproblems. Numer. Linear Algebr. 17, 229–251 (2010)

43. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Elsevier
Academic Press, San Diego, California (2001)

44. Washio, T., Oosterlee, C.W.: Krylov subspace acceleration for
nonlinear multigrid schemes. Electron. Trans. Numer. Anal. 6,
271–290 (1997)

123

	Iterant recombination with one-norm minimization for multilevel Markov chain algorithms via the ellipsoid method
	Abstract
	1 Introduction
	2 Background
	2.1 Standalone multigrid solver
	2.2 Constrained iterant recombination acceleration

	3 The ellipsoid method
	4 Ellipsoid method for Markov acceleration
	5 Numerical results
	5.1 Tandem queue
	5.2 Directed random planar graph (DRPG)
	5.3 Stochastic Petri net

	6 Concluding remarks
	Acknowledgments
	References

