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ABSTRACT
We describe multilevel aggregation in the specific context
of using Markov chains to rank the nodes of graphs. More
generally, aggregation is a graph coarsening technique that
has a wide range of possible uses regarding information re-
trieval applications. Aggregation successfully generates effi-
cient multilevel methods for solving nonsingular linear sys-
tems and various eigenproblems from discretized partial dif-
ferential equations, which tend to involve mesh-like graphs.
Our primary goal is to extend the applicability of aggre-
gation to similar problems on small-world graphs, with a
secondary goal of developing these methods for eventual ap-
plicability towards many other tasks such as using the in-
formation in the hierarchies for node clustering or pattern
recognition.

The nature of small-world graphs makes it difficult for
many coarsening approaches to obtain useful hierarchies that
have complexity on the order of the number of edges in the
original graph while retaining the relevant properties of the
original graph. Here, for a set of synthetic graphs with
the small-world property, we show how multilevel hierar-
chies formed with non-overlapping strength-based aggrega-
tion have optimal or near optimal complexity.

We also provide an example of how these hierarchies are
employed to accelerate convergence of methods that calcu-
late the stationary probability vector of large, sparse, ir-
reducible, slowly-mixing Markov chains on such small-world
graphs. The stationary probability vector of a Markov chain
allows one to rank the nodes in a graph based on the like-
lihood that a long random walk visits each node. These
ranking approaches have a wide range of applications in-
cluding information retrieval and web ranking, performance
modeling of computer and communication systems, analysis
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of social networks, dependability and security analysis, and
analysis of biological systems [19].
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1. INTRODUCTION
Information retrieval applications typically involve net-

works that are large, with perhaps billions of connected net-
work members, or nodes, and unstructured, meaning that
there is no regular connection pattern. Further, they are
frequently scale-free, meaning the nodes cannot be arranged
in a low-dimensional manifold without many edges span-
ning relatively long distances. This property is typified by
power-law networks, where the fraction g(k) of nodes in the
network having k connections to other nodes goes for large
values of k as g(k) ∼ k−γ where γ is a constant whose value
is typically in the range 1 < γ < 4. Coarsening the underly-
ing graphs of such networks, while retaining certain relevant
properties, is useful to perform scalable calculations used to
extract relevant features of the network.

For example, schemes that rapidly extract information
from networks often make use of low-rank decompositions
of large, sparse data structures such as matrices or tensors.
These decompositions usually involve the computation of
eigenvectors or singular vectors (or analagous tensor bases)
and fast, scalable approximation to such vectors is impor-
tant for the underlying scheme to be practical for large data
sets. Multilevel hierarchies formed on coarse versions of the
original graphs often allow rapid calculation of low-rank ap-
proximations.

Coarsening a scale-free graph into a hierarchy with op-
timal complexity that is still rich enough to approximate
desired features of the original graph can be difficult, and
approaches that are quite successful for simpler graphs often
fail. In this work, we focus on a specific class of nonsym-
metric eigenvalue problems that arises when computing the
steady-state of a Markov chain, which determines popular-
ity of each entity within a network. Many of the techniques
presented here are specific to this class of problem, however,
similar methods may be employed for eigenproblems relat-



ing to other calculations of interest. A few common applica-
tions include approximating the commute time between two
nodes in a graph using several of the lowest eigenmodes of
the graph Laplacian [15], clustering a graph using an eigen-
vector of the graph Laplacian corresponding to the smallest
positive eigenvalue (Fiedler vector partitioning) [13, 14], and
approximating the number of triangles in a graph using sev-
eral of the largest eigenvalues of the adjacency matrix [33]
We further suggest that the coarsening approaches may be
useful for tasks that do not necessarily involve eigenprob-
lems, such as clustering or pattern recognition (a related
approach to image segmentation is employed in [18]).

A Markov chain with n states is represented by an n× n
non-negative matrix, B, that is column-stochastic, 1tB =
1t. The stationary vector that we seek, x, satisfies the fol-
lowing eigenproblem with known eigenvalue:

Bx = x, ‖x‖1 = 1, x ≥ 0, (1)

where the normalization constraint and the non-negativity
constraint make x a probability vector. If every node in the
underlying network is connected to every other node through
a series of directed arcs, then the matrix B is called irre-
ducible. We assume this property, which guarantees that
there is a unique solution to (1) that is strictly positive
(x > 0), by the Perron-Frobenius theorem (see [2, 10] for
details).

Because the sizes of the graphs of interest tend to grow
very large, it is imperative that we seek solution methods
that are algorithmically scalable. An algorithmically scal-
able method computes an approximate solution (to a spec-
ified error tolerance) with an amount of work proportional
to the amount of information in matrix B, which for the
problems we consider is proportional to the number of edges
in the graph. The simplest solution method is the power
method, which converges to x when B is aperiodic, mean-
ing the lengths of all directed cycles on the graph of B have
greatest common denominator equal to one. Letting Σ(B)
denote the set of eigenvalues of B, it is well-known that the
rate of convergence of the power method is dependent on
the subdominant eigenvalue(s), λ2, where

|λ2| = max |λ| for λ ∈ Σ(B) \ {1}.

When |λ2| ≈ 1, B is called slowly-mixing, and if there exist
eigenvalues λ 6= 1 such that Re λ ≈ 1, then the convergence
rates of the power method and of related classical iterative
techniques are unacceptably close to 1 as well. For many
Markov chains of interest there are nondominant eigenval-
ues that approach 1 as the problem size increases; for these
problems the power method and its relatives are not algo-
rithmically scalable. Moreover, for many of these problems,
applying Krylov acceleration (such as preconditioned GM-
RES) to classical iterative methods does not improve the
scalability. This is largely because these techniques influ-
ence the approximate solution locally, and a great many it-
erations are required to properly obtain the desired global
solution from a poorly distributed initial guess. Multilevel
iterative methods are employed to accelerate convergence
for this type of problem by reducing error components at
different scales on progressively coarser levels.

Methods based on aggregation of Markov states have proven
to be fruitful approaches to accelerating convergence for
slowly mixing Markov chains. In these methods, aggregates
of Markov states are formed and a coarse-level transition

matrix is constructed using basic probability calculus that
describes the transition probabilities between the aggregated
states. Iteration on the fine level is accelerated by iteration
on the coarse level using the coarse-level transition matrix,
followed by multiplicative correction on the fine level. The
earliest work along these lines is Takahashi’s two-level iter-
ative aggregation/disaggregation method for Markov chains
[31]. Two-level aggregation/disaggregation has been studied
extensively since [19, 28, 21, 20, 23, 7, 24, 30]. Convergence
proofs are given for two-level aggregation/disaggregation meth-
ods in [23, 24].

Two-level iterative aggregation/disaggregation can natu-
rally be extended to multiple levels, along the lines of multi-
grid methods for linear systems of equations [6]. Direct
extension of two-level aggregation/disaggregation to multi-
ple levels was first explored in [17, 22], and later also in
[10]. In the latter, aggregates are formed algebraically based
on “strength of connection” in the scaled problem matrix,
where each column is scaled by the value of the the cur-
rent iterate at the corresponding graph vertex. Thus coarse
grids on all levels are formed adaptively, based on the cur-
rent iterate, and are different in each iteration. However,
numerical results in [8] show that the resulting multilevel
aggregation method, while improving on two-level aggrega-
tion results, does not give satisfactory convergence for many
slowly-mixing Markov chains: the number of multigrid itera-
tions required for convergence grows significantly as a func-
tion of problem size, resulting in computational complex-
ity that is much worse than the optimal O(n) complexity.
For many types of problems, employing so-called W-cycles
(in which coarser levels are visited increasingly often) will
restore optimal convergence properties; experience shows,
however, that this is not the case with existing multilevel ag-
gregation methods on scale-free graphs. For a Markov prob-
lem posed on a mesh-like graphs, or a graph whose nodes
can be embedded into low-dimensional manifold with very
few relatively long-distance connections, smoothed aggrega-
tion (SA) may be employed to improve the approximation
properties of the multilevel hierarchy and result in a scalable
method [8].

Often a multilevel hierarchy may not be rich enough to
provide a useful stand-alone method, but a simple top-level
acceleration technique may be employed to greatly improve
convergence. The schemes we present here use multilevel hi-
erarchies that adapt with every cycle and standard Krylov
acceleration cannot be applied to accelerate these methods
because the spaces involved are not related by a fixed pre-
conditioner. However, flexible acceleration is possible for
methods with changing hierarchies or nonstationary precon-
ditioners. In this paper, we do not use flexible GMRES or
flexible CG, but we discuss an acceleration technique that
is customized to solve problem (1), employing a constrained
minimization problem as presented in [11].

This paper demonstrates the use of multilevel hierarchies
within accelerated versions of the classical unsmoothed ag-
gregation algorithm [17, 10] and the SA algorithm given
in [8] in the context of Markov chains posed on scale-free
networks (Figure 1). Since the degrees (number of edges
coming from each node) of the nodes are distributed ac-
cording to a power law, the number of nodes with small
degree is very large while the number of nodes with large
degree is very small (but nonzero) [1]. Scale-free networks
frequently have the small-world property, where the minimal



Figure 1: A small version of the Barábasi-Albert model (described in Section 4.1), coarsened using neighbor-
hood aggregation. To the far left is a visualization of the original graph, center left depicts the first coarsening,
center right the second coarsening, and far right the third coarsening. Black dots represent nodes, and light
gray lines represent bidirectional links. Visualization was performed by randomly distributing nodes in the
unit circle and performing several iterations of sequentially moving the ith node’s location to a weighted
average of the locations of all nodes connected to the ith node and the current location of the ith node itself.

path length between any pair of nodes is small and indepen-
dent of the size of the network. The power-law distribu-
tion and small-world property pose fundamental difficulties
for the multilevel methods we employ, which were originally
designed for graphs coming from discretized partial differ-
ential equations (which are mesh-like and neither scale-free
nor small-world). We show, for a specific class of scale-free
test problems, that a multilevel, pure aggregation approach
can generate multilevel hierarchies with complexity on the
order of the number of edges in the graph while essentially
retaining power-law distributions on coarse levels. Applying
acceleration techniques with these multilevel aggregations
improves convergence to the stationary vector significantly,
but the methods designed for mesh-like graphs are not auto-
matically algorithmically scalable for scale-free graphs. Fur-
ther, we replace the standard aggregation approach with a
simple aggregation routine that takes advantage of tree-like
structure within a graph, and scalability is achieved for a
simple model problem that is highly tree-like.

The rest of this paper is organized as follows. Section 2
mostly reviews several multilevel aggregation techniques for
accelerating ranking calculations, and Section 2.3 introduces
a new aggregation approach that takes advantage of tree-
like structure within a graph. Section 3 reviews a top-
level Krylov-like acceleration that enhances the robustness
of multilevel aggregation techniques. Section 4 presents nu-
merical results and Section 5 has concluding remarks.

2. MULTILEVEL AGGREGATION
FOR MARKOV CHAINS

We briefly review the multilevel aggregation algorithm for
Markov chains from [17, 22, 10, 8] following the presentation
in [8]. Pure aggregation (often called unsmoothed aggrega-
tion) is the process of building integrid transfer operators
from local groupings of the nodes within a graph. Smoothed
aggregation is a commonly used technique where these in-
tergrid transfer operators are smoothed (presented briefly in
Section 2.4) to enhance approximation within coarse spaces.

2.1 Pure Aggregation Multilevel Methods
We describe the process of using aggregation to coarsen a

graph. Let A = I −B and rewrite B x = x as

Ax = 0. (2)

Rewrite the exact solution, x, in terms of the current ap-
proximation, xi, and its multiplicative error, ei, or x =
diag(xi)ei, obtaining

Adiag(xi) ei = 0. (3)

We assume here that all components of xi are nonzero (Per-
ron-Frobenius theory guarantees that the exact solution, x,
also has this property, see [2]). At convergence, the multi-
plicative error is ei = 1, the vector of all ones.

The n fine-level degrees of freedom are aggregated into
m groups according to the columns of aggregation matrix
Q ∈ R

n×m, where qij = 1 if fine-level node i belongs to
aggregate j and qij = 0 otherwise. For example, if the
fine-level degrees of freedom are ordered according to the
aggregates they belong to, then Q has the form

Q =
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Aggregates are determined using strength of connection in
the scaled problem matrix, A diag(xi). The details of the
aggregation algorithms we use are explained below in Sec-
tions 2.2 and 2.3.

Once Q has been determined, a coarse-level version of Eq.
(3) is constructed:

QT Adiag(xi) Q ec = 0, (5)

where ec represents the coarse-level approximation of un-
known fine-level multiplicative error, ei.

Define the restriction and prolongation operators, R and
P , by R = QT and P = diag(xi) Q, and write R A P ec = 0
with the coarse-level operator, Ac, defined by

Ac = R AP. (6)



Note that P T 1 = Rxi = QT xi is the restriction of
current fine-level approximate xi to the coarse level. The
coarse-level error, ec, can be used to define an improved
coarse-level approximation, xc = diag(QT xi)ec, leading to
the coarse-level equation

Ac (diag(QT xi))
−1 xc = 0. (7)

We define coarse-level stochastic matrix, Bc, as

Bc = QT B diag(xi) Q (diag(QT xi))
−1. (8)

This matrix is nonnegative and satisfies 1T
c Bc = 1T

c , with
the coarse-level vector of all ones denoted by 1c. Some al-
gebra shows Ac(diag(QT xi))

−1 = I −Bc.
Coarse-level equation (7) was introduced in [29] and has

a straightforward probabilistic interpretation (see, e.g., [22,
10]). It is well-known that (7) can be used to accelerate sim-
ple one-level iterative methods for Eq. (2), like the power
method or weighted Jacobi relaxation methods. For exam-
ple, a two-level numerical method (aggregation/disaggregation)
may proceed by relaxation on Eq. (2) on the fine level, fol-
lowed by a coarse-level solve of Eq. (7), a coarse-level cor-
rection according to

xi+1 = P (diag(QT xi))
−1 xc = P ec, (9)

and another relaxation on the fine level.
In this paper, we use the weighted Jacobi method for all

relaxation operations. We split problem matrix A into its
diagonal, lower, and upper triangular parts as A = D− (L+
U), using standard notation. Weighted Jacobi relaxation
with weight w ∈ (0, 1) is given by

x← (1− w)x + w D−1 (L + U)x.

A multilevel method can then be obtained by recursively
applying the two-level method to coarse-level equation (7).
In multilevel cycling, a parameter µ is used to determine the
type of cycle employed. From any given level, µ is the num-
ber of times the algorithm cycles to the coarsest grid and
returns to the current level before moving to the next finer
level. In this paper, we consider so-called V-cyles (µ = 1)
and W-cycles (µ = 2); the latter are obtained by apply-
ing coarse-level correction twice. The resulting algorithm is
printed here as Algorithm 1.

Algorithm 1: Multilevel Aggregation
x←−MA(A,x, ν1, ν2, µ):

if not on coarsest level then
x← Relax(A,x) ν1 times.
Build Q.
R← QT and P ← diag(x)Q.
Ac ← R AP .
/* first coarse-level solve. */

xc ←MA(Ac diag(QT x)−1, QT x, ν1, ν2)
/* secondary coarse-level solves. */

for k = 2, ... µ do
xc ←MA(Ac diag(QT x)−1,xc, ν1, ν2)

end
/* coarse-level correction. */

x← P (diag(QT x))−1 xc

x← Relax(A,x) ν2 times.
else

x← direct solve of Ax = 0, ‖x‖1 = 1.
end

2.2 Neighborhood-Based Aggregation Routine
We determine aggregates based on strength of connection

in the scaled problem matrix Â = Adiag(xi) [10]. In this
paper, we use a symmetrized strength of connection mea-
sure and the neighborhood-based aggregation technique of
[34]. Note that this type of aggregation is a more standard
version, typically used for mesh-like graphs, and differs from
the aggregation technique used in [10, 8].

Node i is considered to be strongly connected to node j
in the graph of Â if

−âij ≥ θ max
k 6=i
{−âik} or − âji ≥ θ max

k 6=j
{−âjk}, (10)

where θ is a user-selected ’threshold’ parameter. The strong
neighborhood of any node i, denoted Ni, is the set of all
nodes that are strongly connected to i within the graph of Â,
including i. In the description of the algorithm, QJ stands
for the index set of the nonzero elements of the Jth column
of Q, the aggregation matrix from Eq. (4).

Algorithm 2: Neighborhood-Based Aggregation
{QJ}

m
J=1 ←− NeighborhoodAgg (A diag(x), θ)

For all points i, build strong neighborhoods Ni based
on A diag(x) and θ.
Order the nodes from highest degree to lowest degree.
Set R ← {1, ..., n} and J ← 0.
/* 1st pass: assign entire neighborhoods to

aggregates */

for i ∈ {1, ..., n} do
if (R ∩Ni) = Ni then

J ← J + 1.
QJ ← Ni, Q̂J ← Ni.
R ← R \ Ni.

end

end
m← J .
/* 2nd pass: put remaining points in aggregates

they are most connected to */

while R 6= ∅ do
Pick i ∈ R and set
J ← argmaxK=1,...,m card (Ni ∩QK).

Set Q̂J ← QJ ∪ {i} and R ← R \ {i}.
end

for J ∈ {1, ..., m} do QJ ← Q̂J .

In order to address the scale-free nature of the graphs,
Algorithm 2 orders the nodes by their degree. This allows
the aggregation algorithm to focus on grouping the nodes of
large degree first. This is slightly different from the neigh-
borhood aggregation used in [11], where no sorting was as-
sumed. Ordering the nodes based on their approximate pop-
ularity (nodal value of current iterate, xi) was explored in
[10, 8] and remains another option.

In Section 4, we demonstrate that it is possible for this
simple aggregation technique to yield pure-aggregation multi-
grid hierachies with bounded complexity for a class of scale-
free graphs. This grouping technique may be employed for
efficient ranking calculations on mesh-like graphs [11], but
the same implementation tends not give optimal ranking
calculations for simple scale-free graphs. Instead, we show



that merely replacing neighborhood-based aggregation with
a modified aggregation routine may give better results.

2.3 Leaf-Based Aggregation Routine
Several scale-free graphs of interest are tree-like or have

tree-like components. In this section we develop an aggre-
gation strategy that is applicable to such graphs (the model
we consider in Section 4 produces graphs that are highly
tree-like). Define a leaf node to be a terminal point on the
graph, or a node with only one connection. Any leaf is only
connected to its parent node, and the leaf node’s dependence
is entirely captured by this connection. Therefore, it should
be contained in the same aggregate as its parent. This type
of grouping yields a coarse grid representing a subspace that
has high approximation for all eigenvectors corresponding to
eigenvalues of small magnitude, which allows the multilevel
cycle to efficiently sort out these vectors on coarser grids.
If node i is the leaf and node j is its parent, then consider
rearranging the ith row of (A − λI)y = 0 for any eigenpair
(λ,y),

(aii − λ)yi = −aijyj .

If λ < aii for every leaf i, then sign(yi) = sign(yj), due to
aii > 0 and aij < 0. Further, if λ is known, as it is in
the ranking application, an iterative relaxation method can
quickly resolve the ratio yi/yj .

If the underlying graph of our system is purely a tree, sim-
ply aggregating all leaves with their parents and any parents
with no leaves as children by themselves yields a coarser tree.
This strategy is presented in Algorithm 3. For more general
graphs, this process will only coarsen the parts of the graph
that have tree-like structure.

For highly tree-like graphs, repeating Algorithm 3 yields
a multilevel hierarchy that has excellent capability for ac-
celerating the ranking calculation, or any calculation having
to do with small eigenvectors. In Section 4, we demonstrate
that this approach to aggregation gives algorithmically scal-
able ranking calculations for a class of highly tree-like test
problems.

Algorithm 3: Leaf-Based Aggregation
{QJ}

m
J=1 ←− LeafAgg (Adiag(x), θ)

Let L be the set of leaves, {i : card(Ni) = 1}.
Set R ← {1, ..., n} and J ← 0.
/* 1st pass: group all leaves with their

parents */

for i ∈ L do
if i ∈ R then

Pick parent j ∈ Ni.
J ← J + 1.
QJ ← (Nj ∩ R).
R ← R \ (Nj ∩R).

end

end
m← J .
/* 2nd pass: put remaining points in their own

aggregates */

while R 6= ∅ do
J ← J + 1, QJ ← {i}, R ← R \ {i}.

end

Remark: For a pure tree, consider performing the rank-

ing calculation using Gauss-Seidel relaxation, with parent-
first ordering. Then, consider a multilevel update that em-
ploys Algorithm 3. This approach is a cyclic reduction, and
convergence is attained in one iteration. However, this su-
perb performance will not generalize to more general graphs
or to calculations involving an unknown eigenvalue. There-
fore, we do not implement this in Section 4, where our inten-
tion is to merely show that a change in the aggregation mind-
set gives scalable results with a purely simultaneous relax-
ation scheme like Weighted Jacobi. It should be noted that
a more sophisticated relaxation (one that updates leaf nodes
last) is likely to further improve the efficiency of the calcu-
lation, with high parallelism, even for more general graphs
that have some tree-like structure. More explicitly, in the
first few coarsenings, leaf-based aggregation could be used
to trim away the tree-like components of a graph to obtain a
much coarser graph with decent approximation for a range
of eigenvalues. This idea will be investigated for more com-
plicated networks in further work.

2.4 Operator Smoothing
For multilevel aggregation methods applied to graphs that

have mesh-like structure (e.g. planar graphs), the conver-
gence of the ranking calculation is often greatly improved
by applying a smoothing operator to the intergrid transfer
operators, R and P . This idea is called smoothed aggrega-
tion, and was originally used for related algorithms applied
to nonsinuglar linear systems [34] and later used for Algo-
rithm 1 applied to steady-state Markov eigenproblems [8] on
mesh-like graphs. We refer the reader to [8, 9, 32] for the
additional details of this method and its relatives.

If the error propagation operator of the relaxation process
is sparse, then some version of it is used for smoothing the
intergrid transfer operators. For aggregation methods, the
intergrid transfer operators are set to

R = Qt(I − αRAD−1) and (11)

P = (I − αP D−1A)diag(x̃)Q, (12)

where (αR, αP ) are smoothing parameters. We use αR =
αP = 0.7 for the results in Section 4. Additionally, a process
called lumping may be required to guarantee that coarse-
level problem, Acxc = 0c, has a non-negative solution.

This unfiltered operator smoothing is generally not ac-
ceptable for scale-free graphs as smoothing dilates the ag-
gregates, making coarse-level operators, Ac, essentially full.
For a typical scale-free graph, using larger aggregates does
not remedy this situation; it just decreases the ability of
the coarse-grid correction to accelerate the convergence. We
demonstrate the difficulties with smoothed aggregation in
Section 4. A related method based on algebraic multigrid
(MCAMG [9]) would have similar difficulties for scale-free
graphs, if no modification to the coarsening procedure is
made.

3. TOP-LEVEL ACCELERATION
Multilevel hierarchies may not be rich enough to provide

useful stand-alone solvers for the stationary probability dis-
tribution. However, a simple top-level acceleration scheme
(similar to Krylov acceleration) may be used to greatly im-
prove the convergence properties of the method. This tech-
nique enhances the robustness of this class of methods.



1 2 4 8 16 32 64 128 256 512 1024 2048

1

10

100

1000

10000

degree

fr
eq

ue
nc

y 
of

 n
od

es

Smoothed Aggregation

1 2 4 8 16 32 64 128 256 512

1

10

100

1000

10000

degree

fr
eq

ue
nc

y 
of

 n
od

es

Pure Aggregation

Figure 2: Histograms of nodal degree for the first four levels of both a smoothed neighborhood aggregation
(left) and a pure neighborhood aggregation (right) multigrid hierarchy applied to the p = 1 preferential
attachment model of size n = 32, 768. The histogram for the original graph is shown in the white and
increasingly darker shades of grey represent increasingly coarser levels. The original graph is power law in
nature, but the smoothed aggregation coarse levels do not maintain the power law; after a few coarsenings
the graph matrices are essentially dense. Pure aggregation does a much better job of maintaining a power
law degree distribution for the initial coarsening, but the coarser levels are more hub-like.

Assume we have some version of Algorithm 1 that pro-
duces a sequence of iterates, {xi}

∞
i=1, designed to approxi-

mate the solution of problem (1). At the kth iteration, let
the last m iterates be columns of an n×m matrix,

X = [xk, xk−1, ... ,xk−m+2,xk−m+1], (13)

with xk being the newest iterate. We call m the window
size. All columns of X are assumed to have the following
properties:

xi > 0 and ‖xi‖1 = 1, i = 1, ..., n. (14)

The natural question arises: is there a linear combination
of these m iterates that is optimal in some sense? If the
method that produces iterates {xi}

∞
i=1 is a stationary pre-

conditioned residual correction, such as the weighted Jacobi
iteration or a fixed and additive multigrid correction, the
standard answer to this question is to use a Krylov acceler-
ation technique. Algorithm 1, however, is a nonlinear up-
dating scheme, where the multigrid hierarchy changes with
each iteration. Therefore we take a fairly standard approach
similar to that described in [35], where it is applied to non-
linear PDE problems using FAS full approximation scheme,
a well-known multigrid technique for nonlinear problems [3,
6]. Both approaches are essentially generalized versions of
Krylov acceleration that attempt to minimize the (nonlin-
ear) residual of a linear combination of iterates, each modi-
fied for their respective problems.

We define the subset of probability vectors in n-dimensional
space to be

P := {w ∈ R
n such that ‖w‖1 = 1, and w ≥ 0}.

It is easily seen that the functional F(w) = 〈Aw, Aw〉 is
uniquely minimal in P at the solution to (1). Our goal is
to minimize this functional within a subset, V, of the range
of X, with additional constraints ‖w‖1 = 1 and w ≥ 0,
ensuring that w is a probability vector. Formally, this is

minimize F(w) within V := P ∩ R(X) (15)

We label the requirements imposed on set V in the follow-
ing way:

(C1) (Normalization Constraint) ‖w‖1 = 1
(C2) (Nonnegativity Constraints) w ≥ 0
(C3) (Subspace Constraint) w ∈ R(X)

Note that (C1) is a single equality constraint while (C2)
is a set of inequality constraints. Also, (C3) is technically a
set of equality constraints which determine a linear subspace
of R

n. However, because m << n and dim(R(X)⊥) ≈ n,
it is more convenient (and equivalent) to use the fact that
there exists a vector z such that w = Xz for any w satisfying
(C3). This approach is preferred versus explicitly address-
ing the constraint equations, which are less accessible and
inefficient to deal with.

If (C2) holds, then the absolute values in ‖w‖1 are un-
necessary. Thus, (C1) is a linear constraint,

P

i
wi = 1.

Furthermore, because w ∈ R(X), there exists a vector z
such that w = Xz. This implies that

‖w‖1 =
n

X

i

wi =
n

X

i=1

m
X

j=1

Xijzj =
m

X

j=1

zj

n
X

i=1

Xij =
m

X

j=1

zj ,

due to each column in X being a probability vector. There-
fore, the constrained subset is equivalently written as

R(X) ∩ P =

(

w = Xz :
m

X

i=1

zi = 1 , Xz ≥ 0

)

. (16)

This is a convex subset of R
m defined by a single equality

constraint and a large number, n, of inequality constraints.
Formally, we rewrite the minimization problem as

minimize: zt(XtAtAX)z,
subject to: 1tz = 1, and

Xz ≥ 0.
(17)

A solution to (17) is given by any vector

x∗ = Xz = z1xk + z2xk−1 + ... + zmxk−m+1, (18)



where coefficients zi are selected to minimize 〈AXz, AXz〉
with the equality constraint satisfied,

Pm

j=1
zj = 1, and the

full set of inequality constraints satisfied,
Pm

j=1
xijzj ≥ 0,

for any 1 ≤ i ≤ n.
It is shown in [12] that for the m = 2 case, we are guaran-

teed that only two constraints are necessary, and the other
n − 2 constraints may be ignored when solving (17). For
slightly larger sets of the iterates, say m = 3 or m = 4,
we assume that the constrained minimization is performed
in O(n) operations, near the cost of a cycle of Algorithm 1
itself, which is consistent with what we have observed in the
experiments. The implementation for the experiments in
this paper employs the active set method from the quadprog
function in Matlabr [16].

4. NUMERICAL RESULTS
In this section, we assess the use of aggregation-based mul-

tilevel hierarchies for some scale-free graphs. First we con-
sider Cop, the operator complexity of the algorithm. Cop is
defined as the sum of the number of nonzero elements in all
problem matrices, Ac, on all levels, divided by the number
of nonzero elements in the fine-level matrix, A. Note that
all operators on each level are counted in Cop (i.e., for W-
cycles, we count two operators on level two, four on level
three, eight on level four, etc.). Since most of the work in
our algorithms consist of relaxations, whose work is propor-
tional to the number of nonzeros in the operator matrix, Cop

gives a good indication of the amount of work required for
a cycle. The work per cycle scales linearly as a function of
problem size if Cop is bounded by a constant. More gener-
ally, a multigrid method attains optimal scalability (linear
in the number of unknowns) when the number of iterations
is bounded as a function of problem size, and the work per
iteration scales linearly as a function of problem size. In
the tables ‘n’ is the number of nodes, ‘levs’ is the number
of levels used in the multilevel hierachy, ‘iteration counts’
is the number of iterations until the convergence tolerance
is reached, and ‘Cop’ is the operator complexity of the last
cycle.

We then show numerical performance tests for calculat-
ing the stationary probability distribution of a Markov chain
with a few versions of Algorithm 1: both stand-alone and ac-
celerated cycles involving neighborhood-based aggregation
(smoothed and unsmoothed) and unsmoothed leaf-based ag-
gregation. For all the numerical results presented, we start
from a random, strictly positive, initial guess and iterate
until the 1-norm residual, ‖Axi‖1, has been reduced by a
factor of 10−8. We do a direct solve on the coarsest level. All
multilevel cycles used are (1,1) cycles (ν1 = ν2 = 1 in Algo-
rithm 1), and we use strength threshhold parameter θ = 0.25
for all test problems on all levels, as in [8, 9]. For simplic-
ity, the weight in our weighted Jacobi relaxation scheme is
always chosen as 0.7. Accelerated methods use window size
m = 3.

4.1 Example: Barabási-Albert Model
We present a test problem associated with a synthetic,

small-world graph generated using a common random graph
model, a version of the preferential attachment model pro-
posed in [1]. Random graphs are generated by starting with
a small graph with 5 nodes and successively adding new
nodes with a fixed number of edges, p. These edges are
randomly attached to an old node with probability that is

Smoothed Aggregation Pure Aggregation
n p = 1 p = 2 p = 1 p = 2

1024 3.23 3.89 1.23 1.34
2048 3.37 5.17 1.22 1.36
4096 4.34 7.03 1.23 1.38
8192 5.63 9.14 1.24 1.41

16384 7.48 11.42 1.24 1.42
32768 9.54 14.62 1.24 1.44

Table 1: Operator complexities for multilevel hier-
archies created to coarsen graphs generated using
the preferential attachment model adding either one
edge per node (p = 1) or two edges per node (p = 2).
For the p = 2 cases, each hierarchy has only 3 or 4
levels. The hierarchies for the p = 1 case are used
in the other tables below to solve for steady state
probability distributions.

Iteration Counts
n Cop levs SAM SAM+

1024 3.26 4 166 28
2048 3.53 4 224 31
4096 4.82 4 303 38
8192 5.63 4 430 63

16384 7.48 4 670 79
32768 9.54 5 862 83

Table 2: Calculating stationary probability distribu-
tions on preferential attachment graphs using stand-
alone and accelerated smoothed neighborhood ag-
gregation versions of Algorithm 1 with µ = 1 (V-
cycles).

Iteration Counts
n Cop levs V V+

1024 1.23 4 355 59
2048 1.23 4 366 58
4096 1.22 4 696 69
8192 1.24 5 745 82

16384 1.24 5 >999 127
32768 1.23 5 >999 142

Table 3: Calculating stationary probability distribu-
tions on preferential attachment graphs using stand-
alone and accelerated pure neighborhood aggrega-
tion versions of Algorithm 1 with µ = 1 (V-cycles).

Iteration Counts
n Cop levs W W+

1024 1.52 4 233 37
2048 1.50 4 319 47
4096 1.53 4 326 51
8192 1.55 5 492 63

16384 1.55 5 >999 96
32768 1.54 5 >999 109

Table 4: Calculating stationary probability distribu-
tions on preferential attachment graphs using stand-
alone and accelerated pure neighborhood aggrega-
tion versions of Algorithm 1 with µ = 2 (W-cycles).



Iteration Counts
n Cop levs V V+

1024 1.55 4 12 8
2048 1.57 5 12 8
4096 1.59 6 12 8
8192 1.59 6 12 8

16384 1.61 8 12 8
32768 1.61 9 12 8

Table 5: Calculating stationary probability distribu-
tions on preferential attachment graphs using stand-
alone and accelerated pure leaf-based aggregation
versions of Algorithm 1 with µ = 1 (V-cycles).
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Figure 3: Histograms of nodal degree for levels 1, 3,
5, and 7 of a pure, leaf-based aggregation multigrid
hierarchy for the same graph as in Figure 2. The his-
togram for the original graph is shown in the white
and increasingly darker shades of grey represent in-
creasingly coarser levels. The leaf-based aggregation
routine maintains the power law degree distribution
on all levels.

proportional to the old node’s degree. An example is shown
in the leftmost panel of Figure 1.

Table 1 shows that pure neighborhood-based aggregation
methods coarsen the graphs into hierarchies appearing to
have bounded Cop, independent of problem size, whereas the
smoothed neighborhood-based aggregation methods demon-
strate complexities that grow dramatically. Thus the com-
plexity of multilevel hierarchies is acceptable for pure aggre-
gation for the graphs generated by adding either one (p = 1)
or two (p = 2) edges per new node (see Table 1). Addition-
ally, the power law degree distributions are better main-
tained on coarser levels for pure aggregation (see Figure 2).
If p = 1, the stochastic matrices associated with the graphs
tend to be slowly mixing: there are subdominant eigenval-
ues with Reλ ≈ 1 for the matrices we generated. If simi-
lar graphs are generated with more than one edge per new
node (p > 1), our observations suggest that the associated
stochastic matrices have high probability to not be slowly
mixing (|λ2| < 0.9 for all of a small number of randomly
sampled graphs of various size), and multilevel methods are
not required for calculating the stationary vector. There-
fore, we only apply the multilevel eigensolver techniques to
the graphs generated by adding one edge per node.

We form stochastic matrices associated with random walks
on these random graphs. Note that the steady-state solu-

tion for these test problems can be easily calculated using
the relative size of the degree of each node, because they are
unweighted random walks on undirected graphs. Still, this
scale-free example is a good test problem for our methods,
which can also handle directed graphs without such simple
solutions.

The results of applying the smoothed neighborhood aggre-
gation version of Algorithm 1 to this example problem are re-
ported in Table 2. The iteration counts for the unaccelerated
method (labeled SAM) increase rapidly with the problem
size. The iteration counts for the accelerated method (la-
beled SAM+) are significantly reduced, but are not bounded
independent of the problem size. Additionally, the operator
complexity is growing rapidly for large problems.

Better results are obtained by applying the accelerator to
the pure neighborhood aggregation version of Algorithm 1.
Table 3 contains results for V-cycles and Table 4 contains
results for W-cycles. The iteration counts for the unac-
celerated method (labeled V and W) increase rapidly with
the problem size. The iteration counts for the accelerated
method (labeled V+ and W+) are again significantly re-
duced, but are still not bounded independent of the problem
size. The operator complexities, however, do not increase for
larger problem sizes as noted earlier. W-cycles have slightly
better performance than V-cycles.

The leaf-based aggregation provides scalable ranking cal-
culations, as displayed in Table 5. Independent of the prob-
lem size, the multilevel hierarchies have bounded operator
complexity and the iteration counts are bounded as well.
Also, for a specific problem, Figure 3 shows that the power-
law structure of the original graph is maintained on coarse
levels of the multilevel hierarchy.

5. CONCLUSIONS AND FUTURE WORK
We have shown examples of small-world graphs where

pure neighborhood aggregation achieved multilevel hierar-
chies of optimal complexity and retained power-law distri-
bution on coarse-grids, whereas smoothed neighborhood ag-
gregation did neither. Additionally, these multilevel hierar-
chies were used to calculate stationary probability vectors
for Markov chains, where a Krylov-like acceleration tech-
nique was developed and employed to significantly reduce
iteration counts.

Using an aggregation routine that takes advantage of tree-
like structure within graphs allows pure aggregation solvers
that are scalable for a class of test problems. Next, we intend
to generalize this algorithm to be robust and scalable for a
wider class of complicated network graphs. Additionally,
we are developing related algorithms that compute multiple
eigenvectors that are to be used for several types of network
calculations relevant to information retrieval.

6. REFERENCES
[1] A.-L. Barabási, and R. Albert, Emergence of

scaling in random networks, Science 286, 509, 1999

[2] A. Berman and R. J. Plemmons, Nonnegative
Matrices in the Mathematical Sciences, SIAM,
Philadelphia, 1987.

[3] A. Brandt, Multigrid techniques: 1984 guide with
applications to fluid dynamics, Gesselschaft für
Mathematik und Datenverarbeitung, St. Augustin,
GMD-Studien Nr.85, 1984.



[4] M. Brezina, R. Falgout, S. MacLachlan, T.

Manteuffel, S. McCormick, and J. Ruge,
Adaptive smoothed aggregation (aSA) multigrid, SIAM
Review 47:317-346, 2005.

[5] M. Brezina, R. Falgout, S. MacLachlan, T.

Manteuffel, S. McCormick, and J. Ruge,
Adaptive algebraic multigrid, SIAM J. Sci. Comp.
27:1261-1286, 2006.

[6] W.L. Briggs, V.E. Henson, and S.F. McCormick,
A multigrid tutorial, SIAM, Philadelphia, 2000.

[7] T. Dayar and W. J. Stewart, Comparison of
Partitioning Techniques for Two-Level Iterative
Solvers on Large, Sparse Markov Chains, SIAM J. Sci.
Comp. 21:1691, 2000.

[8] H. De Sterck, T. A. Manteuffel, S. F.

McCormick, K. Miller, J. Pearson, J. Ruge,

and G. Sanders, Smoothed Aggregation Multigrid for
Markov Chains, SIAM J. Sci. Comp. 32:40-61, 2010.

[9] H. De Sterck, T. A. Manteuffel, S. F.

McCormick, K. Miller, J. Ruge, and G.

Sanders, Algebraic Multigrid for Markov Chains,
SIAM J. Sci. Comp. 32: 544-562, 2010.

[10] H. De Sterck, T. A. Manteuffel, S. F.

McCormick, Q. Nguyen, and J. Ruge, Multilevel
adaptive aggregation for Markov chains, with
application to web ranking, SIAM J. Sci. Comp.
30:2235-2262, 2008.

[11] H. De Sterck, T. A. Manteuffel, K. Miller,

and G. Sanders, Top-level Acceleration of Adaptive
Algebraic Multilevel Methods for Steady-State Solution
to Markov Chains, submitted to Advances in
Computational Mathematics, 2009.

[12] H. De Sterck, K. Miller, G. Sanders, and M.

Winlaw, Recursively Accelerated Multilevel
Aggregation for Markov Chains, submitted to SIAM J.
Sci. Comput., September 2009.

[13] M. Fiedler, Algebraic connectivity of graphs,
Czechoslovak Mathematical Journal, 23:298-305, 1973.

[14] M. Fiedler, A property of eigenvectors of
non-negative symmetric matrices and its application to
graph theory, Czechoslovak Mathematical Journal,
25:619-632, 1975.

[15] F. Fouss, A. Pirotte, J.-M. Renders, M.

Saerens, Random-Walk Computation of Similarities
between Nodes of a Graph with Application to
Collaborative Recommendation, IEEE Transactions on
Knowledge and Data Engineering, Volume 19 , Issue 3
(March 2007)

[16] P.E. Gill, W. Murray, and M.H. Wright,
Practical Optimization, Academic Press, London, UK,
1981.

[17] G. Horton and S. T. Leutenegger, A Multi-Level
Solution Algorithm for Steady-State Markov Chains,
ACM SIGMETRICS, 191-200, 1994.

[18] T. Inglis, H. De Sterck, G. Sanders, H.

Djambazian, R. Sladek, S. Sundararajan, and

T. J. Hudson, Multilevel Space-Time Aggregation for
Bright Field Cell Microscopy Segmentation and
Tracking, International Journal of Biomedical
Imaging, accepted, 2010.

[19] J.R. Koury, D.F. McAllister, and W. J.

Stewart, Iterative Methods for Computing Stationary

Distributions of Nearly Completely Decomposable
Markov Chains, SIAM Journal of Algebraic and
Discrete Methods 5:164-186, 1984.

[20] U. R. Krieger, On a two-level multigrid solution
method for finite Markov chains, Linear Algebra and
its Applications 223/224:415-438, 1995.

[21] U. R. Krieger, B. Müller-Clostermann, and M.

Sczittnick, Modeling and Analysis of Communication
Systems Based on Computational Methods For Markov
Chains, IEEE Journal on Selected Areas in
Communication, 8-9:1630-1648, 1990.

[22] S. T. Leutenegger and G. Horton, On the Utility
of the Multi-Level Algorithm for the Solution of Nearly
Completely Decomposable Markov Chains, In W.
Stewart, ed., Numerical solution of Markov chains,
Kluwer Publishers, 425-443, 1995.

[23] I. Marek and P. Mayer, Convergence analysis of an
iterative aggregation/disaggregation method for
computing stationary probability vectors of stochastic
matrices, Numerical Linear Algebra with Applications
5:253-274, 1998.

[24] I. Marek and P. Mayer, Convergence theory of
some classes of iterative aggregation/disaggregation
methods for computing stationary probability vectors of
stochastic matrices, Linear Algebra and its
Applications 363:177-200, 2003.

[25] M. K. Molloy, Performance analysis using
stochastic Petri nets, IEEE Transactions on
Computers C-31:913-917, 1982.

[26] B. Philippe, Y. Saad and W. J. Stewart,
Numerical Methods in Markov Chain Modeling,
Operations Research 40: 1156-1179, 1992.

[27] J. Ruge and K. Stueben, Algebraic multigrid, in:
S.F. McCormick (Ed.), Multigrid Methods, Frontiers
in Applied Mathematics, vol. 3, SIAM, Philadelphia,
PA, 73-130, 1987.

[28] P. J. Schweitzer and K. W. Kindle, An iterative
aggregation-disaggregation algorithm for solving linear
equations, Appl. Math. Comp. 18:313-354, 1986.

[29] H.A. Simon and A. Ando, Aggregation of variables
in dynamic systems,

[30] W. J. Stewart, An Introduction to the Numerical
Solution of Markov Chains, Princeton University
Press, Princeton, 1994.

[31] Y. Takahashi, A lumping method for numerical
calculations of stationary distributions of Markov
chains, Research Report B-18, Department of
Information Sciences, Tokyo Institute of Technology,
1975.

[32] E. Treister and I. Yavneh, Square & Stretch
Multigrid for Stochastic Matrix Eigenproblems,
preprint, 2009.

[33] C. E. Tsourakakis, Fast Counting of Triangles in
Large Real Networks, without counting: Algorithms
and Laws in IEEE International Conference on Data
Mining (ICDM 2008).
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