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Abstract. Recently, it has been shown that for strong upstream magnetic field,
stationary three-dimensional magnetohydrodynamic (MHD) bow shock flows exhibit
a complex double-front shock topology with particular segments of the shock fronts
being of the intermediate MHD shock type. The large-scale stability of this new
bow shock topology is investigated. Two types of numerical experiments are
described in which the upstream flow is perturbed in a time-dependent manner.
It is found that large-amplitude noncyclic localized perturbations may cause the
disintegration of the intermediate shocks, which are indeed known to be unstable
against perturbations with integrated amplitudes above critical values, but that
in the driven bow shock problem there are always shock front segments where
intermediate shocks are reformed dynamically, resulting in the reappearance of the
new double-front topology with intermediate-shock segments after the perturbation
has passed. These MHD results indicate a theoretical mechanism for the possible
intermittent formation of shock segments of intermediate type in unsteady space
physics bow shock flows when upstream magnetic fields are strong, for example,
in the terrestrial bow shock during periods of strong interplanetary magnetic field,
which are more common under solar maximum conditions, or in leading shock
fronts induced by fast coronal mass ejections in the solar corona. It remains to
be confirmed if intermediate-shock segments would be formed when kinetic effects
and realistic dissipation in real space plasmas are taken into account. The detailed
interaction of realistic, wave-like cyclic perturbations with the intermediate-shock
segments in bow shock flows may lead to unsteady structures composed of (time-
dependent) intermediate shocks, rotational discontinuities, and nonlinear wave
trains, as in the scenarios proposed by Markovskii and Skorokhodov [2000]. The
possible relevance of the new bow shock topology with intermediate shocks for space
weather phenomena is discussed.

1. Introduction

laboratory plasmas may be described by the equations ot
of magnetohydrodynamics (MHD) [Landav and Lif-
shitz, 1984]. The equations of ideal single-fluid MHD in
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Figure 1.

Simulation result of a three-dimensional (3-D) MHD bow shock flow around a

perfectly conducting paraboloid surface with strong upstream magnetic field. The flow comes in
from the right. Density contours in three planes and magnetic field lines (with arrows) are shown.
A complex double-front topology is obtained. The upstream parameters are § = 0.4, the Mach
number M = v/c = 2.6 (where ¢ is the sound speed), and the angle between the velocity and
magnetic field 6,5 = 15°. The upstream velocity is parallel to the z axis, which is the symmetry
axis of the paraboloid, and the magnetic field is parallel to the zy plane, which is a plane of

symmetry.

is the total energy density of the plasma. I is the unity
matrix. The magnetic permeability g = 1 in our units.
We take v = 5/3 for the adiabatic index. These equa-
tions describe the conservation of mass, momentum,
magnetic field, and energy, respectively.

MHD allows for three different anisotropic wave
modes: the fast, the Alfvén, and the slow wave, with
phase speeds in arbitrary direction = denoted by ¢y,
CAz, and cgy, respectively. Corresponding to the three
types of waves, the nonlinear MHD equations allow for
three different types of shocks, namely the fast, inter-
mediate, and slow shocks.

Important examples of shock phenomena in solar and
space plasmas are the bow shocks induced by obstacles
in fast plasma streams. Space physics bow shock flows
have been studied extensively by observations and nu-
merical simulations, and a rich literature exists on the

Earth’s bow shock and magnetosheath induced by the
solar wind [Walters, 1964; Spreiter et al., 1966; Song
et al., 1990; Phan et al., 1994; Cairns and Lyon, 1996;
Yan and Lee, 1996; De Sterck and Poedts, 1999b, 2000;
De Sterck, 1999], and on the leading shocks induced by
fast solar coronal mass ejections (CMEs) [Sheeley et
al., 1985; Steinolfson and Hundhausen, 1990; De Sterck
and Poedts, 1999c; De Sterck, 1999].

Recent simulations of stationary three-dimensional
(3-D) bow shock flows around perfectly conducting rigid
obstacles in MHD plasmas with small dissipation [De
Sterck and Poedts, 1999b, 1999c¢, 2000; De Sterck, 1999]
have shown that a new complex double-front bow shock
topology (Figure 1) arises when the flow upstream from
the obstacle satisfies the following conditions of strong
magnetic field B:

B> vp —7_1_
Y-8+ 1

where v, is the velocity along the upstream magnetic
field, and 8 = 2p/B? is the plasma 3. We call a state

pvi > B*> pv?

3)
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(b) intermediate  (c) slow (d) fast switch—on

Figure 2. (a—d) MHD shock types. The magnetic
field (arrowed) is refracted at the shock (thick). The
shock normal is dashed. Region 1 is upstream, and
region 2 is downstream.

satisfying these conditions “magnetically dominated”,
as opposed to “pressure-dominated.”

For the case of the terrestrial bow shock, for exam-
ple, statistical study of solar wind parameters at 1 as-
tronomical unit (AU) [De Sterck, 1999; De Keyser et
al., 2001] has revealed that condition (3), for which can
be expected that space physics bow shocks assume the
new double-shock structure, is satisfied overall ~ 5% of
the time, during periods of time that last up to several
hours, and more often so around solar maximum. The
perfectly conducting rigid paraboloid of Figure 1 can
be thought of as crudely modeling the magnetopause in
the context of the terrestrial bow shock flow [De Sterck
and Poedts, 1999b].

It has been shown that in this new shock topology,
particular segments of the shock fronts are of the in-
termediate MHD shock type [De Sterck and Poedts,
2000; De Sterck, 1999]. Intermediate shocks are known
to be completely unstable in ideal MHD [Landau and
Lifshitz, 1984] and to be stable in MHD with small dis-
sipation only when perturbations are small enough, in
a specific sense, to be explained below in section 2 [ Wu,
1988, 1991; Freistuehler, 1991, 1998; Myong and Roe,
1997]. This calls for an investigation of the large-scale
stability of the new bow shock topology with interme-
diate shocks against perturbations, which is done in the
present paper.

The paper is organized as follows. Section 2 describes
the different types of MHD shocks and their stability
properties. Section 3 briefly explains the topology of the
magnetically dominated double-front bow shock flow of
Figure 1. Section 4 describes two numerical experi-
ments in which an initial stationary magnetically dom-
inated bow shock flow around a conducting paraboloid
is perturbed in order to investigate its large-scale sta-
bility. Section 5 discusses the results and presents our
conclusions.

2. MHD Shocks and Shock Stability

There are three types of MHD shocks (Figure 2), con-
necting plasma states which are traditionally labeled
from 1 to 4, with state 1 superfast (v, > cs, in the
shock frame, where n is the direction of the shock nor-
mal), state 2 subfast but super-Alfvénic, state 3 sub-
Alfvénic but superslow, and state 4 subslow. The 1-2
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fast shock connects a superfast state of type 1 with a
state of type 2 and refracts the magnetic field away from
the shock normal. The 3-4 slow shock refracts the field
toward the normal. A limiting case of the fast shock is
the switch-on shock, for which the upstream magnetic
field is parallel to the shock normal, while the magnetic
field makes a nonzero angle with the shock normal in the
downstream state. Intermediate shocks (1-3, 1-4, 2-3,
and 2-4) bring a super-Alfvénic upstream plasma to a
sub-Alfvénic downstream state, while the magnetic field
is flipped over the shock normal: the tangential compo-
nent of the magnetic field changes sign. All MHD shocks
have the property of coplanarity, which means that the
downstream magnetic field lies in the plane defined by
the upstream magnetic field and the shock normal.
While fast and slow MHD shocks are known to occur
in plasma flows, it has been believed for a long time
that intermediate MHD shocks are unphysical [Lan-
dau and Lifshitz, 1984]. This belief still lingers on, and
in most present-day textbooks on space physics and
MHD, intermediate shocks are simply left out of the
picture when shocks are discussed [e.g., Kivelson and
Russell, 1995; Gombosi, 1998]. In the dissipationless,
or ideal, MHD system, intermediate shocks are indeed
unstable as they disintegrate instantaneously and split
up into fast and slow shocks upon arbitrary small per-
turbation of the magnetic field component out of the
plane of coplanarity (by Alfvén waves) [Landau and Lif-
shitz, 1984; Wu, 1988] (Figure 3). However, recently, it
has been shown that intermediate shocks can be stable
when dissipation is taken into account [ Wu, 1988, 1991;
Freistuehler, 1991, 1998; Myong and Roe, 1997]. The
precise influence of dissipation mechanisms and mag-
nitudes on the stability of intermediate MHD shocks
is complicated, and the analysis remains incomplete.
Nevertheless, the following general statements can be
made. Intermediate shocks are stable in the dissipative
MHD system for wide ranges of the dissipative coeffi-
cients [Wu, 1988, 1991; Freistuehler, 1991, 1998; My-
ong and Roe, 1997]. They can be destabilized by local-
ized Alfvénic perturbations (Figure 3), but only when
the total amplitude I, = [ B, dn of the noncoplanar

t=0 =1
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Figure 3. Schematic representation of a 1-3 interme-
diate shock splitting up into a 1-2 fast shock and a 3—4
slow shock when perturbed by an Alfvén wave.
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magnetic field perturbation component B, integrated
over the perturbation in the direction n normal to the
shock, is larger than a critical value [Wu, 1988; Liu,
1991]. This critical value depends on the left and the
right states and on the magnitudes of the dissipation
coeficients, and it vanishes with vanishing dissipation
[Freistuehler, 1998]. The stability issues involving in-
termediate shocks are due to mathematical properties
peculiar to MHD, namely nonstrict hyperbolicity [Wu,
1991; Freistuehler, 1998], nonconvexity [Wu, 1991; My-
ong and Roe, 1997; De Sterck et ol., 1999], and rota-

tional invariance [Freistuehler, 1998; Markouvskii, 1999].
The fact that intermediate shocks may be unstable

against Alfvén waves, while fast and slow shocks are
stable, can intuitively be understood as follows [Liu,
1991; Wu, 1991]. Consider a stationary shock with the
upstream state on the left and with n denoting the di-
rection normal to the shock. In the following we discuss
the interaction of the shock with a one-dimensional (1-
D) wave perturbation that is traveling in the direction
of the shock normal n, and thus without variation in
the other directions, and that is of localized spatial ex-
tent, i.e. a localized wave packet. Consider a fast wave
perturbation traveling on the upstream side with speed
v, — ¢fn and an Alfvénic perturbation traveling with
speed v, — can. The shock is coplanar, and the fast
wave perturbation can only carry magnetic field per-
turbations lying in this plane of coplanarity, while the
Alfvén wave carries a perturbation in B,.

In the case of a 1-2 fast shock a fast upstream wave
perturbation with speed v, — c¢sy travels toward the
shock (rightward) as v, > c¢f, upstream (on the left).
After interaction with the shock, the fast wave pertur-
bation cannot keep on traveling to the right, as on the
downstream side v, < cfn, and the speed is thus neg-
ative. Instead, the wave perturbation makes the shock
position shift, with the magnitude of the shift propor-
tional to the integrated amplitude of the wave [Liu,
1991]. It is said that the fast wave converges into the
fast shock, as v, — cyr is directed toward the shock on
both sides. In contrast, an Alfvénic perturbation travel-
ing with speed v, — can approaching the shock from the
left is able to continue rightward away from the shock
after interaction, as v, > ca, downstream of a 1-2 fast
shock. The shock position does thus not need to shift
in this case.

For a 1-3 intermediate shock, however, the situation
is different. Indeed, as the downstream state is both
subfast and sub-Alfvénic, both v, — ¢, and v, — can
are negative and thus directed toward the shock on the
downstream (right) side. The shock is called overcom-
pressive as more than one wave mode converges into
the shock. A fast wave perturbation makes the shock
position shift again. An Alfvén wave, however, can-
not just make the shock shift, because the shock needs
to remain coplanar and the Alfvén perturbation is not
coplanar. Like the fast wave, the Alfvén wave cannot
travel back to the left (v, — can, > 0 upstream), and
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neither can it travel to the right (v, — can < 0 down-
stream). In ideal MHD the only solution is that upon
Alfvénic perturbation the 1-3 intermediate shock splits
up into a leftward propagating 1-2 fast shock and a
rightward propagating 3-4 slow shock (Figure 3). The
B, perturbation can then propagate between the two
shocks. The 1-3 intermediate shock splits up instan-
taneously upon interaction with even the smallest B,
perturbation. Therefore it is said that it is generically
unstable (or “nonevolutionary” [Landaeu and Lifshitz,
1984]) in ideal MHD.

In dissipative MHD, however, the 1-3 intermediate
shock can be conditionally stable. In ideal MHD, shocks
are pure discontinuities, but in the dissipative system
the shock transition occurs continuously in a thin shock
layer. It turns out that the B, perturbation can be ab-
sorbed in the shock layer of the 1-3 intermediate shock
as long as I, = [ B, dn, now integrated over the shock
layer, does not exceed a critical value. Hence the so-
lution in the shock layer does not have to be coplanar,
whereas for the left and right states it is still required
that they are coplanar. For Alfvénic perturbations with
supercritical I, the 1-3 intermediate shock still splits up
into a 1-2 fast shock and a 3-4 slow shock (Figure 3),
but this happens not instantaneously but after a certain
time. It can be concluded that 1-3 intermediate shocks
are conditionally stable in dissipative MHD.

In interesting recent work by S.A. Markovskii [Mar-
kovskii, 1998a, 1998b, 1999; Markovskii and Skorokho-
dov, 2000], mainly concerning the interaction of small-
amplitude, low-frequency cyclic waves with intermedi-
ate shocks, new aspects of the behavior of intermedi-
ate shocks have been revealed. Markovskii proposes a
mechanism of cyclic oscillatory disintegration of inter-
mediate shocks, which may be time-dependent [ Wu and
Kennel, 1992a, 1992b], in agreement with the principle
of evolutionarity [Markovskii, 1998a, 1998b; Markovskii
and Skorokhodov, 2000]. Markovskii’s work is espe-
cially relevant for the question of what happens with
intermediate shocks when the stability threshold is re-
peatedly exceeded by perturbations of a cyclic nature
[Markovskii and Skorokhodov, 2000]. Such cyclic per-
turbations are more typical for space plasmas than are
single, localized perturbations.

Markovskii [1998a, 1998b, 1999] emphasizes that when
the stability threshold is exceeded in a perturbed Rie-
mann problem (a Riemann problem is defined as a prob-
lem with an initial condition composed of two constant
states separated by a discontinuity), the intermediate
shocks in the dissipative system break up, leading to
a solution “at large times” which is exactly the same
as the solution to the perturbed Riemann problem in a
system without dissipation. The threshold for breakup
can be exceeded when the integrated amplitude of a lo-
calized wave packet perturbation is large enough, as dis-
cussed above. For periodic perturbations, for example,
sinusoidal waves, of a given amplitude, the threshold
will be exceeded (repeatedly, in every single half wave-
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length between two points of zero perturbation) when

the wavelength is long enough, or equivalently, when
the frequency of the wave is low enough. Markovskii
focuses much of his analysis on periodic perturbations
[Markovskii, 1998b] and says rightfully that for pertur-
bations with low enough frequency the ideal and dis-
sipative systems behave similarly “at large times” for
Riemann-like problems.

Markovskii and Skorokhodov [2000] show in 1D sim-
ulations that the interaction of small-amplitude low-
frequency waves with intermediate shocks can lead to
the formation of cyclic unsteady structures composed
of (time-dependent) intermediate shocks, rotational dis-
continuities, and nonlinear wave trains. They empha-
size the important point that small-amplitude, almost
linear perturbations can result in a strongly nonlin-
ear response due to the repeated accumulation of the
perturbation in the shock layer and subsequent non-
linear release when the stability threshold is exceeded.
Our simulations do not directly deal with cyclic per-
turbations, but like in the early 1-D simulations on
intermediate-shock stability [ Wu, 1987, 1988] , we focus
for our large-scale 3-D simulations on single, localized
perturbations, because those are more simple and eas-
ier to analyze and understand. We leave the study of
the interaction of bow shocks with cyclic perturbations
for future work, but the results obtained by Markovskii
and Skorokhodov [2000] will give us guidelines to spec-
ulate about what can happen with the intermediate-
shock segments in the bow shocks to be described below
when they are exposed to cyclic perturbations.

To summarize the discussion on intermediate-shock
stability, we can say that fast and slow shocks are sta-
ble against Alfvénic perturbations in both dissipative
and ideal MHD, because noncoplanar B, perturbations
can be carried away on the downstream side by Alfvén
waves, which do not converge into the shocks. Interme-
diate shocks are unstable in ideal MHD and condition-
ally stable in dissipative MHD, with instability due to
the fact that noncoplanar Alfvén waves converge into
intermediate shocks.

The theoretical results on intermediate-shock stabil-
ity were initially confirmed in 1-D simulations [Wu,
1987, 1988], but 1-D simulations are of limited gener-
ality because coplanarity of left and right states has
to be imposed explicitly in order to obtain persistent
intermediate shocks. The first clear confirmation of
the natural occurrence of intermediate shocks in gen-
eral 3-D MHD flows (where coplanarity is not explicitly
imposed) was provided by the simulations of the new
complex stationary bow shock topology (Figure 1) [De
Sterck and Poedts, 2000; De Sterck, 1999]. However,
some concerns regarding the stability and occurrence of
intermediate shocks still remain unaddressed. Indeed,
it has been argued that intermediate shocks cannot or
can only very rarely be observed “at large times” in
real plasma flows [Falle and Komissarov, 2001; My-

ong and Roe, 1997], because initially present intermedi-
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ate shocks would disintegrate after short times due to
Alfvénic perturbations with supercritical I, (Figure 3),
which are believed to occur in most real plasma flows
with small dissipation. Intermediate shocks can cer-
tainly not survive for long times in physical situations
that can be described by 1-D perturbed Riemann prob-
lems. The question whether intermediate shocks can be
present “at large times” in more general plasma flows
with perturbations is addressed in the present paper. It
will turn out that intermediate shocks can be present
“at large times”, at least in an intermittent manner, be-
cause after having disintegrated, they can be reformed
in driven 3-D plasma flows.

3. Stationary 3-D Bow Shock Flows
With Intermediate-Shock Segments

In the present section we briefly explain the topology
of the magnetically dominated double-front bow shock
flow of Figure 1 [De Sterck and Poedts, 2000; De Sterck,
1999]. Figure 4a shows that for a pressure-dominated
upstream flow (with a weak upstream magnetic field,
for which conditions (3) are not satisfied) the classi-
cal single-front bow shock topology (Figure 4c) that
is well-known from hydrodynamic bow shocks is ob-
tained. However, Figure 4b shows that for a magneti-
cally dominated flow (with a strong upstream magnetic
field, for which conditions (3) are satisfied) the leading
bow shock front is followed by a secondary shock front.
In this complex topology (Figure 4d), shock fronts AB
and DE are 1-2 fast, BD is 1-3 intermediate, and DG
is 2-4 intermediate close to point D, evolving into 3—4
slow along the front [De Sterck and Poedts, 1999b; De
Sterck, 1999]. The need for this complex topology in
the case of magnetically dominated upstream param-
eters (satisfying conditions (3)) can be explained in
terms of the geometrical properties of MHD shocks [De
Sterck and Poedts, 2000; De Sterck, 1999; De Sterck
et al., 1998; Steinolfson and Hundhausen, 1990]. The
intermediate-shock segments arise when a fast switch-
on shock occurs at the point B on the leading shock
front (Figure 4d) where the upstream magnetic field is
perpendicular to the shock front. Conditions (3) are
precisely the conditions under which the intrinsically
magnetic effect of the switch-on shock can occur [Ken-
nel et al., 1989].

Note that the angle 6,p between the upstream mag-
netic and velocity fields breaks the symmetry of the
flow. In Figure 4b the upstream velocity is oriented
slightly upward (6,5 = 5°), leading to an asymmet-
ric flow with the secondary shock on the upward side
of the sphere. If the upstream velocity were oriented
downward, the secondary shock would be located on the
downward side of the sphere. This symmetry breaking
does not occur for two-dimensional (2-D) field-aligned
flow around a cylinder, for which a symmetrical flow
with multiple shock fronts and intermediate-shock seg-
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X

Figure 4. (a-b) Bow shock flows over a sphere (thick solid) and (c-d) the two bow shock
topologies in the xy symmetry plane. The flow comes in from the left. Density contours (thin
solid) in a plane through the sphere center are shown in Figures 4a and 4b. The incoming
magnetic field is aligned with the z axis. Figure 4a shows the pressure-dominated flow (Ma, =
vy /car = 3.985, B = 0.4, 6,5 = 5°), and Figure 4b shows the magnetically dominated flow
(Ma, = 1.5, 3 =04, 6,5 = 3.8°). In Figures 4c and 4d thick lines are shock fronts, thin lines
are magnetic field lines, and shock normals are dashed. Figure 4c shows the pressure-dominated
flow topology, and Figure 4d shows the magnetically dominated flow topology.

ments is obtained [De Sterck et al., 1998, 1999; De
Sterck and Poedts, 1999a; De Sterck, 1999].

In the simulations the ideal MHD equations are solved
using a conservative finite volume shock capturing
scheme which is second-order accurate in space and
time, employing a slope-limiter approach [De Sterck et
al., 2001, 1998; De Sterck, 1999]. The stationary 3-D
bow shock flows are obtained starting from a uniform
initial condition and by advancing the time-dependent
MHD equations until a steady state solution is reached.
These steady solutions are then perturbed in the simu-
lations to be described in section 4, by varying the up-
stream conditions at the boundary in a time-dependent
manner.

For reasons of numerical stability, dissipation has to
be introduced in shock-capturing numerical schemes.
This numerical dissipation vanishes for vanishing grid
cell size, but because of limited computer resources, the
numerical dissipation is always orders of magnitudes
larger than the physical dissipation in space plasmas.
Many space plasmas are collisionless, such that the dis-
sipation is provided not by collisions but by electromag-
netic effects on kinetic scales [e.g., Burgess, 1995]. In
such plasmas the dissipation is often very small, with,
for instance, magnetic Reynolds numbers of the order of
108 — 10'2. In our numerical simulations the magnetic
Reynolds number is of the order of 10% - 10%. In addi-
tion, the numerical dissipation is dependent on the di-
rection in the numerical grid. Within these limitations,
numerical dissipation can be interpreted as playing a
role analogous to that of a small physical dissipation.

As the stability of intermediate shocks depends on the
values of the upstream and downstream state and on
the magnitudes of the dissipation coefficients (actually
rather on the ratios between the coeflicients of the differ-
ent dissipation mechanisms in a plasma, like viscosity,
resitivity, and heat conduction [Freistuehler, 1998]), it
would be preferable to perform simulations with explicit
discretization of the dissipative terms of the MHD equa-
tions. Our results on steady and perturbed bow shock
flows are likely to have a general character, however, be-
cause qualitatively we obtain the same physical effects
using various grid sizes and various numerical schemes,
i.e. various effective dissipation and ratios of dissipation
coefficients. In anticipation of future simulations with
very high resolution and explicit discretization of the
dissipative terms, the numerical method employed in
this paper is suitable to give a qualitative picture of the
general large-scale stability of MHD bow shock flows
with intermediate-shock segments, but limited to the
parameter regime that can be covered by our numerical
schemes using present-day computational resources.

It is conceivable that for realistic levels of dissipa-
tion a steady state solution may not exist to the above
problem and that a qualitatively different solution may
develop, like in the case of the well-known Kelvin-
Helmholtz instability that occurs in neutral fluids when
the viscosity drops below a critical value. However, we
have not found indications for such a bifurcation in our
simulations as a function of dissipation. As said above,
it is rather the ratios of dissipation coefficients than
their absolute values that determine bifurcations in the
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stability of intermediate MHD shocks [Freistuehler,
1998] and that could cause a bifurcation in the solu-
tion to our bow shock problem. We have to be aware
that it remains to be proved that for realistic levels of
plasma dissipation the effects that are described in this
paper occur.

4. Perturbation of Bow Shock Flows

In the present section we perform two numerical ex-
periments in which we perturb an initial, stationary
magnetically dominated bow shock flow around a per-
fectly conducting, rigid paraboloid with upstream pa-
rameters p = 1,p = 0.2,B, = 1,B, = 0,B, = 0,v, =
1.3 cos(5°),v, = 1.3sin(5°), and v, = 0, or equiva-
lently, 8 = 0.4, M4, = 1.295, and 6,5 = 5°. The z axis
is an axis of rotational symmetry for the paraboloid.
The nose of the paraboloid is located at (—1,0,0), and
the intersections of the paraboloid with the y axis in the
zy plane are located at (0, —1,0) and (0,1,0). When the
simulation parameters are scaled back to the physical
quantities describing the interaction of a solar wind with
speed 450 km s~! with the terrestrial magnetosphere,
with the Earth located at (—0.65,0,0) such that its dis-
tance from the magnetopause along the Sun-Earth line
can be taken to be 10 Earth radii R, and its distance
perpendicular to that line can be taken to be 17 R,,
we find that a unit time interval in our simulations cor-
responds to a physical time interval of the order of 10
min. The initial flow has the topology of Figure 1. The
(total) Alfvén speed cq4 = 1. The perturbations are
chosen large (of the order of the background field) and
of sufficiently long duration (several minutes), such that
we can be sure that the intermediate shocks become un-
stable, regardless of the precise values of the dissipation
coefficients.

In the first experiment (Figure 5) we perturb the
noncoplanar magnetic field component B, at the in-
flow boundary with a Gaussian profile in time, cen-
tered around ¢ = 0.5 and with half-width 0.2 (B, =
exp{—[(t — 0.5)/0.2]2}). During the initial evolution
(from ¢ = 0.5 to t = 1) the topology changes sub-
stantially as the secondary shock front DG disappears.
The intermediate-shock segment BD disappears as well,
as the leading shock front seems to be entirely of the
fast type (zy magnetic field integral curves are refracted
away from the normal) between approximately ¢ = 0.7
and t = 1.4. Between t = 0.8 and t = 1.0 there are
traces of a second discontinuity following the leading
shock front, which may indicate that the 1-3 intermedi-
ate shock BD has split up into two shocks as in Figure
3. This should be investigated further in simulations
on finer grids. Obviously, limitations in computing re-
sources Go not allow us to use in the present 3-D sim-
ulations the fine resolution that was employed to study
the details of intermediate-shock breakup in 1-D simu-
lations [Wu, 1988, 1991; Markouskii and Skorokhodov,
2000]. Also, detailed identification of shock types in
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such high-resolution simulations of the perturbed flow

would be difficult, compared to the case of the steady

flow. In the steady flow the shock types in the zy sym-

metry plane can be determined easily from the breaking
of the magnetic field lines (which lie in the symmetry

plane) or from velocity and wave speed profiles along
cuts in the zy plane normal to the shock fronts. In the

perturbed flow, however, the zy plane is not a plane of
symmetry anymore, such that magnetic field lines and

directions normal to the shock fronts are not confined to

the zy plane but lie in 3-D space, and together with the

fact that the shocks are moving and velocities have to

be determined relative to this shock motion, this means

that detailed identification of shock types would be dif-

ficult in such high-resolution simulations. When the

perturbation has passed, the 1-3 and 2-4 intermediate-

shock segments BD and DG are dynamically reformed

starting from ¢ = 1.4, and at ¢t = 11 the initial steady

state topology is recovered.

In these simulations, perfectly conducting rigid wall
boundary conditions are imposed on the paraboloid sur-
face (see Figure 1). In this way, the paraboloid acts as
an obstacle which makes the bow shock form in the
superfast incoming flow. The obstacle forms the bow
shock by deflecting the incoming flow. This implies, on
the scale of small-amplitude waves, that those waves
are reflected from this rigid boundary. The simulation
domain boundaries on the sides of the paraboloid are
free outflow boundaries, at which the flow quantities
are extrapolated such that wave perturbations are not
reflected.

In Figure 6 the temporal evolution of the B, compo-
nent of the magnetic field is shown along a cut y = 0 (see
Figure 5) in a grid plane slightly above the zy plane,
which is a symmetry plane in the steady initial bow
shock flow. The B, perturbation is imposed at the left
roughly from ¢ = 0 to ¢ = 1 and propagates into the
bow shock solution. At ¢t = 0.4 a large B, peak seems
to accumulate in the shock layer. Afterward the pro-
file exhibits a lot of variation brought about by the 3-D
reaction of the paraboloid obstacle against the pertur-
bation. When the perturbation has long passed, the B,
profile settles back to the initial condition, correspond-
ing to the double-shock bow shock topology with the
intermediate-shock segments.

The disintegration of the initial shock and the waves
resulting in Figure 6 may be interpreted to correspond
qualitatively to the wave structures that are seen in 1-
D simulations of the breakup of an intermediate shock
perturbed by a localized perturbation as in the works
of Wu [1987, 1988] and Markovskii and Skorokhodov
[2000]. However, because of the much lower resolution
in our 3-D simulation, it is hard to make detailed com-
parisons. The interaction problem is also more com-
plicated in our simulation because the waves propa-
gate in 3-D space and because the paraboloid surface
acts as a wave reflector. Precisely due to the presence
of the paraboloid, the bow shock with the interme-



30,030

t=0.0 t=0.4

DE STERCK AND POEDTS: INTERMEDIATE SHOCKS IN MHD BOW SHOCK FLOWS

t=0.5

=0.7

t=1.1

t=1.5 X t=2.5

X X

X X

Figure 5. Experiment 1: temporal evolution of the bow shock flow in the zy symmetry plane,
during and after perturbation of B, with a Gaussian profile, centered around t = 0.5 and with
half-width 0.2. Density contours and integral curves of the magnetic field in the zy plane are
shown. Coordinate x ranges from -1.5 to -0.3, and coordinate y ranges from -0.8 to 0.9 (40 x 60 x 60

grid).

diate segments is reformed after the perturbation has
passed, and this makes the final state of our simulation
very different from what is obtained in earlier 1-D per-
turbed Riemann problem simulations [ Wu, 1987, 1988;
Markovskii and Skorokhodov, 2000].

In our simulations intermediate shocks are reformed
exactly as in the initial condition, whereas in 1-D simu-
lations the initial intermediate shocks are not reformed.

In some 1-D cases (e.g., 2-3 shocks) the initial inter-
mediate shock may decay into a time-dependent in-
termediate shock that evolves toward a rotational dis-
continuity [Wu and Kennel, 1992a, 1992b; Markovskii
and Skorokhodov, 2000]. However, this final rotational
discontinuity is not the same as the initial, not time-
dependent intermediate shock. For cyclic perturba-
tions, oscillatory disintegration of time-dependent inter-
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mediate shocks can be obtained in a 1-D setting, during
which the time-dependent intermediate shocks repeat-
edly transform [Markovskii and Skorokhodov, 2000].
In Figure 7 the temporal evolution of the B, compo-
nent of the magnetic field is shown along a cut y = 0
in a grid plane slightly above the zy plane, which is
a symmetry plane in the steady initial bow shock flow.
The cut runs through the initial intermediate-shock seg-
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ment, seen by the fact that B, becomes strongly nega-
tive downstream of the shock (see the field lines in Fig-
ure 5, intermediate shocks flip the magnetic field lines
over the shock normal). The B, component is not per-
turbed at the boundary. At t = 0.6 the downstream B,
has become positive. Together with the information on
shock normal and field line orientation in Figure 5, this
indicates that the shock at this location has become of

=0.0 t=0.4 t=0.5 t=0.6
15 1.5 150 15’-

1 1 1+ 1
T 05% osw h
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Figure 6. Experiment 1: temporal evolution of the B, component of the magnetic field along a
cut y = 0 in a grid plane slightly above the zy plane, which is a symmetry plane in the steady
initial bow shock flow. The B, perturbation is imposed at the left from ¢ = 0 to ¢t = 1 and
propagates into the bow shock solution. At ¢t = 0.4 a large B, peak seems to accumulate in the
shock layer. Afterward the profile exhibits a lot of variation brought about by the 3-D reaction
of the paraboloid obstacle against the perturbation. When the perturbation has long passed,
the B, profile settles back to the initial condition, corresponding to the double-shock bow shock

topology with the intermediate-shock segments.
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Figure 7. Experiment 1: temporal evolution of the B, component of the magnetic field along a
cut y = 0 in a grid plane slightly above the zy plane, which is a symmetry plane in the steady
initial bow shock flow. The cut runs through the initial intermediate-shock segment, seen by the
fact that B, becomes strongly negative downstream of the shock (see the field lines in Figure 5;
intermediate shocks flip the magnetic field lines over the shock normal). The B, compornent s
not perturbed at the boundary. At ¢ = 0.6 the downstream B, has become positive. Together
with the information on shock normal and field line orientation in Figure 5, this clearly indicates
that the shock at this location has become of the fast type (fast shocks refract the magnetic field
away from the shock normal): The initial leading intermediate shock has disintegrated, and a fast
shock has taken its place. The leading shock remains of the fast type until approximately ¢ = 2,
after which the perturbation has passed. The intermediate shock is reformed consecutively, as
can be seen from the downstream B, turning negative again from t = 2.5 on.

the fast type (fast shocks refract the magnetic field away
from the shock normal): The initial leading intermedi-
ate shock has disintegrated and a fast shock has taken
its place. The leading shock remains of the fast type
until approximately ¢t = 2, after which the perturbation
has passed. The intermediate shock is reformed consec-

utively, as can be seen from the downstream B, turning
negative again from ¢t = 2.5 on. For the terrestrial case,
along the cut y = 0, intermediate shocks thus start to
be formed again ~ 10-20 min after the perturbation
has passed. For the same geometrical reasons as those
for which intermediate shocks are formed in the flow of
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Figure 1, it is well conceivable that intermediate shocks
have been forming at other locations on the bow shock
from the very onset of the perturbation on. Indeed,
intermediate shocks form near so-called perpendicular
points where the upstream magnetic field is perpendic-
ular to the shock front, because they are topologically
unavoidable there [De Sterck and Poedts, 2000]. Inter-
mediate shocks are thus likely to have been disintegrat-
ing and reforming on various segments of the bow shock
during the whole perturbation.

In the second experiment (Figs. 8 and 9) the inflow
magnetic field is not directly perturbed, but the large-
scale flow is perturbed by gradually rotating the inflow
velocity field from the xy plane to the zz plane between
t=0and t = 1. From t = 1 on the inflow is kept at
its new stationary value, which is different from the
initial inflow at ¢ = 0. In this experiment the final
uniform steady inflow state is thus different from the
initial inflow state, which is not the case in the first
experiment.

In the initial stationary state (¢ = 0) the zy plane ex-
hibits the topology of Figure 4d, while the leading shock
front is mainly 1-2 fast in the zz plane, except for the
central 1-3 intermediate segment close to the z = 0
plane. During the evolution the topology changes sub-

30,033

stantially in both the zy and the zz planes, with leading
segments of intermediate type changing to fast type but

also conversely new intermediate-shock segments being
tormed dynamically. In the end a new stationary flow

is obtained (¢ = 11) with the same topology with in-
termediate shocks as the original steady flow (Figure 1)
but rotated over 90° around the z axis, consistent with
the fact that the inflow state has been rotated over that
angle too.

This experiment clearly shows that when intermediate-
shock segments disappear at certain locations owing
to time-dependent changes in the upstream conditions,
they are automatically and unavoidably reformed at dif-
ferent locations, owing to the nature of the 3-D flow
around the obstacle. Indeed, the geometrical consider-
ations that explain why the topology of Figure 4d arises
when the upstream flow is magnetically dominated, im-
ply that as long as the upstream flow is magnetically
dominated, the topology of Figure 4d with intermedi-
ate shocks will arise nea:- the point B, where the up-
stream magnetic field is perpendicular to the leading
shock front [De Sterck and Poedts, 2000; De Sterck,
1999]. This argument assumes that the intermediate
shocks have enough time to form, and in physical plas-
mas with realistic perturbations it may well be that the
intermediate shocks can only exist intermittently.

t=11}

t=0 t=1L
> >
X
t=3¢ t=4 L
> >
X

X
Figure 8. Experiment 2: temporal evolution ot the bow suuus now 11 Lnexzy plane during and
after rotation of the inflow velocity field from the zy plane to the zz plane between t = 0 and
t = 1. Density contours and integral curves of the magnetic field are shown. Coordinate x ranges
from -1.3 to -0.3, and coordinate y ranges from -1 to 1 (40 x 60 x 60 grid).
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Figure 9. Experiment 2: temporal evolution of the bow shock flow in the zz plane during and
after rotation of the inflow velocity field from the zy plane to the zz plane between ¢t = 0 and
¢t = 1. Density contours and integral curves of the magnetic field are shown. Coordinate z ranges
from -1.3 to -0.3, and coordinate z ranges from -1 to 1 (40 x 60 x 60 grid).

5. Discussion and Conclusion

We have shown that localized perturbations may cause
the disintegration of the intermediate shocks in the new
magnetically dominated bow shock topology but that
the intermediate shocks are dynamically reformed in
the driven bow shock flow such that the new topology
is regained when perturbations have passed. More gen-
erally, we have shown that intermediate shocks can be
present “at large times” in plasma flows. It is true that
initially present intermediate shocks may disintegrate
after short times, owing to Alfvénic perturbations with
supercritical I, but in 3-D driven flows intermediate-
shock segments may be reformed such that they may be
present “at large times” as well, at least intermittently.

Qualitatively, we can say that in the context of a
given physical plasma with small dissipation the dis-
tribution of perturbation amplitudes and frequencies,
as related to the critical I, values and the time of
intermediate-shock formation, will ultimately determine
if intermediate shocks can occur for long enough times
to be observed.

It is a complicated task to quantify such require-
ments, for example, for the Earth’s magnetosphere

plasma. From our simulation results we can estimate
that it would take ~ 30 min for the secondary shock to
form in the magnetosheath (Figure 5). Statistical study
of solar wind parameters at 1 astronomical unit (AU)
[De Sterck, 1999; De Keyser et al., 2001] has revealed
that condition (3), for which it can be expected that
space physics bow shocks assume the new double-shock
structure with intermediate-shock segments, is satisfied
overall ~ 5% of the time, during periods of time that
last up to several hours and more often so around so-
lar maximum. Periods of magnetically dominated so-
lar wind thus last long enough for the secondary-shock
structure to develop, but during such a period the so-
lar wind is generally quite unsteady such that the sec-
ondary shock would not be steady either. It is, for in-
stance, well known that large-amplitude Alfvén waves
are generally present in the solar wind [e.g., Hada 1993].
The intermediate shocks can thus be expected to be
formed and to disintegrate in an intermittent manner.
For the magnetosheath this would mean that the sec-
ondary intermediate shock with its associated large den-
sity jump (of magnitude up to a factor 2 [see De Sterck
and Poedts, 1999b; De Sterck, 1999]) and with its asso-
ciated strong fieldline and flow deflection, could be ex-
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pected to roam the magnetosheath on the quasi-parallel
side.

The detailed interaction of realistic, wave-like cyclic
perturbations with the intermediate-shock segments in
bow shock flows may well lead to unsteady structures
composed of (time-dependent) intermediate shocks, ro-
tational discontinuities, and nonlinear wave trains, as in
the scenarios proposed by Markovskii and Skorokhodov
[2000]. It would be very interesting to investigate
the reaction of the bow shock flow with intermediate-
shock segments to cyclic perturbations as in the work
of Markovskii and Skorokhodov [2000] in very high res-
olution simulations, but this is beyond the scope of the
present paper.

Markovskii and Skorokhodov [2000] investigate the
question of whether intermediate shocks in a 1-D set-
ting, after they have disintegrated under the action of
a perturbation, may be reformed and may then disinte-
grate and reform again repeatedly. In our present sim-
ulations, intermediate shocks are indeed reformed after
having disintegrated. However, our simulation is 3-D,
whereas their work is situated in 1-D space. Our per-
turbation is localized, but their perturbation is cyclic.
These constitute important differences. Indeed, in our
simulation the intermediate shocks are reformed, ow-
ing to the presence of the 3-D obstacle in the flow and
owing to the geometrical properties of MHD shocks in
the magnetically dominated regime. In our simulations
the reformation of the intermediate shocks thus seems
not to be related to their inherent stability properties,
whereas inherent instability seems to be the reason for
the oscillatory disintegration proposed by Markovskii
[1998a, 1998b] and Markovskii and Skorokhodov [2000].

In the case of space physics plasmas, kinetic effects
and the collisionless nature of the plasma complicate the
stability of shocks [Lee et al., 1989; Wu and Hada, 1991;
Markovskii, 1999; Kivelson et al., 1991]. It thus remains
to be confirmed if intermediate-shock segments would
be formed when kinetic effects and realistic dissipation
in real space plasmas are taken into account. There is
evidence from observations, simulations, and theoreti-
cal analysis that intermediate shocks may form in colli-
sionless plasmas [Kivelson et al., 1991; Wu and Hada,
1991; Markovskii, 1999]. Results on intermediate-shock
stability from kinetic simulations do not fully agree with
resistive MHD simulations [Lee et al., 1989], but it is
unclear how much kinetic effects would change the ef-
fects described in this paper. This remains an impor-
tant topic for future research.

The ultimate test for the applicability of our predic-
tive theoretical results is confrontation with observa-
tions. New satellites (Cluster II and Stereo) may pro-
vide observations of the new bow shock topology with a
secondary shock and with intermediate-shock segments,
in the Earth’s bow shock flow or in shocks induced by
fast CMEs in the solar corona.

It can be speculated as follows that the phenom-
ena described in the present paper may be relevant for
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space weather. The MHD solutions were obtained in
the idealized setting of flow around a rigid conduct-
ing paraboloid surface. It would be interesting to see
how the secondary-shock structure influences the inner
magnetosphere and the ionosphere in Geospace Global
Circulation Model simulations [e.g., Raeder et al., 1998)].
When the secondary shock is present, the magnetic field
topology in the magnetosheath is changed substantially,
which may be important for magnetic reconnection pro-
cesses at the magnetopause and for storm and substorm
mechanisms.

It is generally believed that geoeffective magnetic
clouds introduce magnetic field with a negative B,
component into the magnetosheath which, upon ar-
rival at the magnetopause, leads to enhanced reconnec-
tion with the Earth’s positive B, magnetic field and
in this way contributes to the generation of a mag-
netic storm. It is not well understood how and how
fast this negative B, field reaches the magnetopause.
Our simulation results suggest that magnetic clouds
during which condition (3) is satisfied (clouds with a
strong magnetic field may indeed satisfy this condition;
the January 1997 cloud is a good example [De Sterck
and Poedts, 1999b; De Sterck, 1999; De Keyser et al.,
2001]) would not simply propagate through the mag-
netosheath, but could rather cause a temporary global
reconfiguration of the magnetosheath flow, involving
leading intermediate-shock segments and a secondary
shock in the sheath. When such a magnetic cloud ar-
rives at the bow shock and a secondary shock forms,
the characteristic time of this global reconfiguration of
the magnetosheath may determine when negative B,
reaches the magnetopause and may thus influence the
timing of magnetic storm onset. The possible inter-
mittent formation of intermediate-shock segments and
the associated nonlinear wave trains [Markovskii and
Skorokhodov, 2000] may contribute to enhanced wave
activity in the magnetosheath during magnetic cloud
events for which condition (3) is satisfied.

These scenarios remain speculative for now, but it
would certainly be interesting to investigate them more
closely in time-dependent numerical simulations in which
the magnetopause is modeled more realistically and in
which reconnection can be described, and to look for ob-
servational signatures that could confirm it. The Clus-
ter II mission may well provide us with detailed obser-
vations of the terrestrial bow shock and magnetosheath
region which may confirm the existence of intermediate-
shock segments in the bow shock and secondary shocks
in the magnetosheath for solar wind parameter values
in the magnetically dominated regime (condition (3)).
While speculating about these possible consequences of
our MHD simulation results, however, we have to keep
in mind that it remains to be proved that the phenom-
ena described in this paper occur when kinetic effects
and realistic dissipation in real space plasmas are taken
into account.
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