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Due to ever­increasingdatasizesandthe high computationalcomplexity of many algo­
rithms, there is a naturaldrive towardsapplying parallel and distributed computingto
bioinformaticsproblems. Grid computingtechniquescanprovide �e xible, portableand
scalablesoftwaresolutionsfor parallelbioinformatics.Herewe describetheTaskSpaces
softwareframework for grid computing.TaskSpacesis characterizedby two majordesign
choices: decentralization,provided by an underlyingtuple spaceconcept,andplatform
independence,providedby implementationin Java. We discussadvantagesanddisadvan­
tagesof thisapproach,anddemonstrateseamlessperformanceonanad­hocgrid composed
of a wide varietyof hardwarefor a real­life parallelbioinformaticsproblem.Speci�cally,
we performedvirtual experimentsin RNA folding on computationalgrids composedof
fastsupercomputers,in orderto estimatethesmallestpoolof randomRNA moleculesthat
would containenoughcatalyticmotifs for startinga primitive metabolism.Theseexperi­
mentsmayestablishoneof themissinglinks in thechainof eventsthatled to theorigin of
life.

—
Note: To appearasa Chapterin thetextbookParallel Computingin Bioinformatics
andComputationalBiology, A. Zomaya,editor, JohnWiley andSons,2005.
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32.1 INTRODUCTION

In recentyears,parallel and distributed computingtechniqueshave steadilybeen
gainingpopularityfor tacklingdif�cult bioinformaticsproblems.Two importantrea­
sonsfor theuseof paralleltechniquescanbeidenti�ed easily. First, bioinformatics
problemsinvolve increasinglylargedatasets.For example,the2003releaseof Gen­
bankcontained36.6billion basepairsand118,689differentspecies,andin routine
proteomicsexperiments,examinationof asinglesamplemayeasilyproducemillions
of peptidespectrato beprocessed.Second,thealgorithmsusedin many bioinformat­
icsapplicationscanbecomputationallyprohibitive. For example,thecomputational
complexity of algorithmsfor phylogeneticstypically scalescubically to exponen­
tially in thenumberof species,andin proteomicsdataprocessingapplications,the
algorithmsusedto identify proteinsandgenesfrom peptidespectrainvolvesearches
with high complexity. For many bioinformaticsproblemsit is thereforeclear that
computationslimited to a singleCPUcannotdeliver therequiredcomputingpower,
andthat parallelanddistributedcomputingapproachesarethereforenecessary. A
largeclassof bioinformaticsproblemscanbeparallelizedeasily, with minimalor no
interprocesscommunication.Thesetypesof problemsarecalled looselycoupled,
and they are especiallysuitablefor distributed processing. More tightly coupled
problemsrequireintensive interprocess­communication.Ef�cient parallelanddis­
tributedcomputingis typically morechallengingfor this type of problems. In the
presentChapterwediscussbothtypesof problems.

Consider, for example, the caseof a university researcherwho is confronted
with a complex bioinformaticsproblem. The researchertypically hasaccessto a
wide rangeof computationalresourceson differentscales.Theseresourcesinclude
desktopmachinesthatmaybeavailablein theresearcher's own lab (of theorderof
10CPUsor so),PCclustersthatmaybeavailableat thedepartmentlevel (order100
CPUs),parallelcomputersthatmaybeavailablein theuniversity's computercenter
(order100­1000CPUs),andlarge parallelsupercomputers(up to several thousand
CPUs)thatcanbeaccessedatnationalsupercomputercenterssuchastheUSNational
Centerfor SupercomputingApplications(NCSA)andtheSanDiegoSupercomputer
Center(SDSC).In this Chapter, we proposeanapproachto parallelbioinformatics
that,ideally, allows theresearcherto developthebioinformaticssoftwarelocally on
a singlePC. Then,dependingon the sizeof the problemat hand,the taskcanbe
distributedseamleslyoverany or all of thewidevarietyof machinesavailable.

This`universalcomputingdream'is hardto realizefor severalreasons.Thehard­
ware,operatingsystems(andversionsof operatingsystems),supportingsoftware,
andqueueingsystemsmayall vary amongavailablemachines.Theresearcherwill
wonderhow to install andmaintaincodeon all thesemachines,how to distribute
tasksanddata,how theresultswill becollectedandcentralized,andsoforth. Scripts
thatautomatesomeof thesetaskswill bebrittle whensoftwareis upgraded,or ma­
chinesareaddedor removed. In thelight of theseobstacles,the`universalcomputing
dream'seemslittle morethananever­recedingmirage.
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However, in this Chapterwe describeTaskSpaces,a systemwe developedthat
demonstratesthat many componentsof the `universal computingdream' can be
realizedontoday's infrastructureusinggrid computing.Thegrid computingconcept
canbeeasilyunderstoodby consideringtheanalogywith apowergrid. A powergrid
useraccessesthegrid in orderto obtainelectricalpower, whichis aninterchangeable
commodity. Indeed,theuser's machinesdo not carewhereor how thepower they
useis produced(the usermay have ethicalconcernsthat affect the desirabilityof
particularpowersources,but, to thehardware,all electricityis equivalent).

Two crucialpropertiesmake thepowergrid work:

1. Thegrid canbeaccessedthroughastandardinterface.
In thecaseof apowergrid, thestandardinterfaceis simply theelectricalplug,
which givesaccessto the power grid that operatesat standardvoltagesand
frequencies.

2. Thegrid is scalable.
This scalability works both from the user's side (the usercan accessmore
power asneeded),andfrom thepower producer's side(thegrid operatorcan
switchin additionalpowergeneratorsasdemandrises).

Fig. 32.1 Analogybetweenapowergrid (left) andacomputationalgrid (right). Bothexhibit
scalabilityfromtheuser'sandtheproducer'ssides,andneedtobeaccessiblethroughastandard
interface.

Ideally, grid computingwould work in exactly thesameway: a useraccessesthe
geographicallydistributedgrid in orderto obtainCPUcycles,which areconsidered
an interchangeablecommodity(theuserdoesnot carewherethecomputingcycles
areproduced)(Fig. 32.1). Unfortunately, accessibilitythrougha standardinterface
(the �rst of the two essentialpropertiesof a grid) canbe dif�cult to achieve with
computers. In TaskSpaces,the standardinterfaceis provided by the Java virtual
machine,which is almostuniversallyavailable. Java behavesalmostexactly in the
sameway on all thosemachines,and Java's `executablebyte­code'is, in theory,
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fully interchangeablebetweenmachines.In TaskSpaces,the secondessentialgrid
property, scalability, is realizedthroughthe conceptsof `bag­of­tasks'computing
andtuplespaces.Consequently, eachusercansubmitmany tasksconcurrently, and
thegrid operatorcanswitchin additionalcomputefarmswhendemandis high.

The analogybetweencomputationalandpower grids is not perfect: computing
cyclesanddataaremorecomplex thanelectricalpower units. We canidentify the
following additionalrequirementsfor computinggrids, someessentialand others
pragmatic.

3. Informationis not interchangeable,andmustoftenbekeptcon�dential (unlike
electricalpower). Thegrid mustallow secureresourcesharing.

4. Informationis not easilyreplaceable(unlike electricalpower). Thegrid must
provide fault­tolerancemechanismssuchastransactions.

5. Parallelcomputersusemany differentqueueingsystems.Thegridmustprovide
resourceallocationandscheduling.

6. Largeproblemsmayrequiredeploymentonheterogeneoushardwareandsoft­
ware.Thegrid mustprovideamechanismfor distributingtheapplicationcode
transparentlyto themachinesonwhichcalculationsareultimatelyperformed.

7. Many problemsrequire interprocesscommunication. The grid must allow
ef�cient communicationbetweenprocesses.

8. Computingresourcesareexpensive. The grid mustallow usersto be billed
accordingto cycleusage.

9. Someproblemsrequirespeci�c turnaroundtime,datatransferbandwidth,fault­
tolerance,etc. Thegrid mayneedto providequality­of­serviceguarantees.

10. Problemsmustbeconnectedwith computingresources.Either thegrid must
allow theuserto discover resources,or thegrid mustbeableto discover tasks
asthey arepresented(TaskSpacesusesthe latterapproach,resemblinga real
powergrid).

Many efforts to realizetheconceptsof grid computingarenow underway. Some
projects,suchasGlobus, try to de�ne standardsfor what eventuallymay become
a worldwide, uni�ed, computationalgrid (`The Grid'), very muchalong the lines
of `The Internet' and `The World Wide Web'. However, many of the dif�culties
summarizedabovearestill farfrom beingresolvedin ageneral,satisfactoryway, and
it isnotclearthatgenerallyusablestandardsfor gridcomputingwill becomeavailable
andacceptedsoon.Therefore,wehavedevelopedTaskSpaces,asoftwareframework
for a smaller­scalecomputationalgrid. TaskSpacesis basedon the designcriteria
of decentralization,provided by an underlyingtuple spaceconcept,and platform
independence,provided by implementationin Java. Our goal was to producea
lightweightgrid environmentthat is easyto install andoperate,andto demonstrate
thatit canbeusedef�ciently for real­world parallelbioinformaticsproblems.In this
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effort, wehaveattemptedtodealwith some,butnotall, of thechallengeslistedabove.
Besidesproviding anenvironmentfor solvingrealbioinformaticsproblemsonsmall,
`privately operated'grids,we hopethat our experiencesmay reveal somemethods
of overcomingthechallengesmentionedabove,andthatthesemethodsmaybecome
more generallyuseful in guiding standardsadoptedfor larger grids. At present,
many differentapproachesarebeingtestedon small­scale,privatelyoperatedgrids,
both in researchandcommercialsettings.The successfulapproacheswill survive,
and,drivenby demandandcostsavingsthroughef�ciency gains,theseprivatelyrun
gridsmayeventuallybecomeconnectedto form a World WideGrid, verymuchlike
nationalpower gridsarepresentlyconnectedto neighboringgrids throughoutmost
of theworld.

The rest of this Chapteris organizedas follows. The next Sectiondescribes
TaskSpaces,our prototypesoftwareframework for grid computing,which we based
on tuplespaceconceptsandimplementedin Java. Section32.3describesa loosely
coupledparallelbioinformaticsapplicationthatwe investigatedon a computational
grid, namelytheproblemof �nding correctlyfoldedRNA motifs in sequencespace.
Section32.4describesour experiencewith operatingthe softwareframework on a
computationalgrid composedof local workstationsandparallel clustersat super­
computercenters.Brief resultsfor theRNA motif problemarepresentedin Section
32.5.TheChapterconcludeswith aSectiononfuturework, andaChaptersummary.

32.2 THE TASKSPACESFRAMEW ORK

TaskSpacesis aprototypelightweightgrid computingframework for scienti�c com­
putingcharacterizedby two majordesignchoices:decentralization,providedby an
underlyingtuplespaceconcept,andobject­orientationandplatform­independence,
providedby implementationin Java. TheTaskSpacesframework hasbeendescribed
in full detail in [9]; in thisSectionwesummarizeits mainproperties.

Tuplespaceswerepioneeredin thelate1970s,andwere�rst realizedin theLinda
systemandlanguage[2]. In a tuplespacedistributedcomputingenvironment,pro­
cessescommunicatesolelyby addingtuplesto andtakingthemfrom a tuplespace,
a form of independentassociative memory. A tuple is a sequenceof �elds, each
of which hasa type andcontainsa value. Fig. 32.2 shows conceptuallyhow dis­
tributedcomputationworks in a tuplespaceenvironment. An applicationprogram
placessubtasksresulting from the partitioning of a large computationalproblem
into a tuple space(which in the Bag­of­Tasksparadigmis calleda `taskbag' [1]),
in which eachsubtaskis representedasa tuple. `Worker processes'take the task
objectsfrom thetaskbag,executethetasks,andplacetheresultin a `resultbag' as
anothertuple. Thetuplespaceconceptallowstaskstobedecoupledbothin spaceand
time. The distributedcomputingprocessis decoupledin space,asthe application,
taskandresultsbags,andthe variousworker processesmay resideon a heteroge­
neouscollectionof machinesthatareconnectedby a network but thatareotherwise
widely geographicallydistributed. This decouplingallows �e xible topologyfor the
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Fig. 32.2 Thetuplespaceparadigmfor distributedcomputing.

computation,permittingautomaticcon�gurationbasedon theavailability of worker
processes.Thedistributedcomputingprocessis alsodecoupledin time: sincespaces
arepersistent,tuplesarepersistentwhile residentin the space,andprocessescan
accesstupleslongafterthedepositingprocesshascompletedexecution.

Fig. 32.3shows a conceptualdeploymentdiagramof theTaskSpacesframework.
TaskSpacesusesanevent­drivenmodel.Onstartup,workerprocessesregisterwith a
taskbag.Theapplicationprocesssendssubtaskobjectsto thetaskbag,andthetask
bagsendsthosetaskobjectstoavailableworkers.Thetaskbagactsasa`superqueue',
andthusalleviatesthe problemof schedulingwhenmultiple supercomputerswith
differentunsynchronizedqueueingsystemsareused.Scalabilityis inherentbecause
usersmay put several applicationsin the task bag at the sametime, and the grid
operatorcanadd`worker farms'whenneeded.After a taskis processed,theworker
putsa resultobjectin theresultbag,from which theresultobjectsarecollectedfor
�nal assemblyby the application. TaskSpacesis implementedin Java, providing
a standard,platform­independentinterfaceto thegrid systemandexploiting Java's
built­in networkingandsecurityfeatures.

TheTaskSpacescodeconsistsof severalclasses.All classes,exceptfor theRunner
class,areservedto participantmachinesvia HTTP servers. Con�gurableproperties
�les which containsysteminformationandparameters,describedfurtherbelow, are
alsoservedby HTTPservers.

TheRunnerclassis thedriverof thesystem;it is a2KB Javabytecodeexecutable
whichcontainsa main()method,andit is executedfrom thecommandline (or from
aqueuescript). This is theonly �le whichÄ mustbeinstalledonamachineto enable
the machineto participatein the grid systemin any of the possiblefunctionssuch
asrunninganapplication,runninga bag,or runninga computenode. TheRunner
acceptsasacommandlineargumenttheURL identi�er of aJavaproperties�le which



6

containsany numberof resourceURLs. TheseresourceURLscontaincompiledJava
classesor JAR formatarchive �les, with methodsthatcanbeusedduringoperation.
Thebuilt­in securityfeaturesof Java,suchasdigitally signedJAR �les andtoolsfor
creatinga con�gurablesandbox for the JVM interpreterwhich canrestrictaccess
to local andremoteresourcesfor thedownloadedcode,canbe incorporatedat this
level. The�nal argumentpassedto aRunnerprocessis thenameof theclassto run.
This is typically eitherNode(for a computenode),Space(for a tuplespacebag),or
thenameof a TaskSpacesapplication.TheRunnerdownloadstheappropriateclass
from theinputargumentsetof URL resources,castsit to aninstanceof theJavaclass
Runnable,andbeginsexecutionby calling its run() method.Any additionalclasses
requiredfor executionareautomaticallydownloaded,provided they arepresentin
thesetof URL resources.

TheNodeclassrepresentsa computenodewhich participatesin thesystem.The
properties�le, alsoidenti�ed by commandline argument,containsapropertynamed
"spaces"whichidenti�es theIPaddressandportnumberof any existingSpaceservers.
TheNoderegisterswith theseSpaceserverobjectsonstartup.Otherpropertiesde�ne
themaximumruntimefor theNode,afterwhichit automaticallyterminates,adefault
port numberon which to begin to run theNode,andthemaximumnumberof Task
objectsto processbeforetermination.Uponstartup,theNodecreatesaninstanceof
theServer classandan instanceof theWorker class. TheServer registerswith the
remotetaskSpaceobjectthat is identi�ed in the properties�le, andthenwaits for

application
host

configuration and class
server

task
task

task

result
result

result
task

application

worker worker worker worker worker

task bag result bag

worker host 2 worker host 3worker host 1 (parallel)

task/result host

...
...

...

configuration file

application_task.class

Fig. 32.3 TaskSpacesframework deploymentdiagram.
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incomingrequests.Incomingrequestsmaybeof threepossibleobjecttypes,Task,
Agent, and Message.Task objectsare applicationsor applicationcomponentsto
be executed.Theseobjectsarepassedto a TaskStoreobjectwhich wascreatedby
theNodeon startup,andis monitoredby theWorker thread. TheWorker executes
the Task,which may, for applicationswith interprocessorcommunication,contain
codeto monitorthelocalMessageStoreobject,alsoinitiatedin aseparateThreadby
theNodeat startup.Whenreceived,Messageobjectsareplacedby theServer into
the MessageStore.The MessageStoreis monitoredby the Task,andthe Message
objectsarepulledinto theTaskandthedatais extractedandusedby theTaskduring
execution.Agentsareexecutedimmediatelyby theServer uponarrival, andmaybe
usedfor avarietyof systemfunctions,includingshuttingdowntheNodeorextracting
dataheld in a Nodedatastructurewhich is availableto the applicationfor storing
data,or systemor stateinformation.

TheSpaceclasscontainsseveraldatastructures(mainlysynchronizedArrayLists)
andmethodsfor acceptingandstoringtheaddressesof registeringNodes,andTask
Objects. IP addressesand port numbersof registeredNodesare storedin two
structures,onewhich is permanent,andonefrom which addressandport identi�ers
aredeletedasindividual Tasksaresentto theregisteredNodesin FIFO order. The
permanentaddressescan be usedby Agentsto identify all Nodeswhich may be
participatingin the system. This informationcanbe usedby Agentsto shutdown
runningNodesor performotherapplication­dependentfunctions.Spaceobjectsare
createdin thesamemannerasstartinga Node. Thesystemproperty�le mentioned
above speci�es the IP addressand port numberof Spacesin the systemthat act
as taskor resultbags. On startup,a Spacecreatesa server on a port speci�ed in
theproperties�le. It is expectedthat theSpaceswill typically bestartedonceand
thenleft runningaslong asworker nodesmaybeactive,similarly to HTTP servers.
Spacesaremulti­threadedandcreatea new threadfor eachincomingrequest.Each
new threadis an instanceof theSpaceConnectionclass,within which thenatureof
the requestis identi�ed andinternalprocessingis performed.Whena Taskobject
arrives,it is sentto a worker nodeif any Nodesarecurrentlyregisteredasavailable
Nodes. If not, the Taskis temporarilystoreduntil worker Nodesregisterwith the
taskSpaceto indicatetheiravailability. Spacescanalsotransmitmessagesto Nodes
runningapplications,andcanbeusedasanintermediarymessagingstore,or asthe
mediumfor Nodesto exchangeaddressinginformationin caseapplicationsrequire
directTaskto Taskcommunication(see[9]).

An additionaloptimizationcanbemadefor applicationsfor whichthesubtasksdo
nothavealargeinputdataset,andhavealimitednumberof inputparametersthatvary
in a systematicway. In this case,it is bene�cial to generatethe (potentiallymany)
Taskobjectswithin thetaskSpace,ratherthanhavetheApplicationprocessgenerate
all theseparateTaskobjects,andthensendthemto thetaskSpaceoneby one. The
Applicationprocesscande�ne anobjectof classTaskAgent.TheTaskAgentis sent
to thethetaskSpace,andtherea methodis calledon theTaskAgentto createa new
applicationtask. The Spaceadvancesthe databy calling the next() methodof the
TaskAgentwhichcallstheinternallyheldapplicationTaskobjectto advanceits state
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(whateverthismaymeanin thecontext of theapplication)to createanew application
Task. The new Task is returnedto the Spaceandthe Spacesendsthis Taskto an
availableNode.

Applicationprocessescanchooseto haveNodessendresultdatato aresultSpace,
or directly backto the application. In the �rst case,the Application registerswith
theresultSpacein orderto receive any arriving resultswhich aresub­classesof the
Resultclass.Theapplicationcanthenstorethedatalocally on the�le system,send
it to adatabase,or processthedataanddisplayoutputonaconnecteddisplaydevice.

The �nal classof the TaskSpacessystemis the Communicator. The Communi­
catorcontainsmethodsanda protocolde�nition for all of theothercomponentsto
communicatewith eachother. All thecomponentssub­classCommunicatortoenable
remotecommunicationwith theothercomponentsof thesystem.TheCommunicator
classcentralizescommunicationin a singleobjectfor simpli�ed error trackingand
modi�cation which arecomplex problemsin suchwidely distributedsystems.The
communicationis performedusingintegeridenti�ers andserializedJavaobjectsover
sockets.

Applicationcodeneednot be installedandmaintainedon workers,becauseit is
downloadedfrom acentralserverwhentaskobjectsarriveateachworker. Installing
andexecutinga Java bytecodeexecutableof size< 2kB allows any worker hostto
participatein thegrid. Thus,installationandmaintenanceof TaskSpacesisextremely
lightweightandeasy. In fact,thecompleteTaskSpacescodebaseis extremelysmall
andcompact,dueto thesimplicity of thedesign,andtheavailability of Java'sbuilt­in
networkingandobjectmanipulationcapabilities.

BlueHorizon,SDSC,SanDiego,CA (4 workers/processor) 64 128 240

P4Linux, CU Boulder, CO(2 workers/processor) 4 4 4

ItaniumLinux, CU Boulder, CO(2 workers/processor) 4 4 4

forseti1,NCSA,Urbana,IL (1 worker/processor) 16 16 16

hermod,NCSA,Urbana,IL (1 worker/processor) 16 16 16

Total numberof workers 104 168 280

Total executiontime 105s 103s 101s

Table 32.1 High­thr oughput grid experiment for a tightly coupled numerical linear
algebra scienti�c computing problem with 5002 grid points per worker. The number of
worker processesand the total executiontimes are shown. The problem sizeis constant
per worker process,sothe nearly constant total executiontimes indicate almost perfect
scalability.

TaskSpacescanbe usedin taskfarmingmodefor problemsthat do not require
interprocesscommunication,suchasindependentfolding of many RNA sequences
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(seebelow). It canalsobe usedfor otherapplicationsthat do requireinterprocess
communication,handlingsuchcommunicationin ascalablewayby transmittingse­
rialized Java objectsover sockets. Table32.1demonstratesthat TaskSpacesscales
well on largegridscomposedof supercomputersat NCSA,SDSC,andothersuper­
computercenters,connectedover the internet,for a parallelcomputingproblemin
numericallinearalgebra[9]. This problemrequiresneighbor­neighborinterprocess
communication,andit is thussurprisingthat thescalabilityfor this problemin the
heterogeneousgrid environmentis sogood.

Looking backat theprerequisiteswe setout in thepreviousSectionfor the`uni­
versalcomputingdream'we pursue,it is instructive to considerhow our prototype
grid implementationperformswith respectto our aspirations. Someof the func­
tionality is only presentin a rudimentaryway in our prototypeimplementation,but
moresophisticatedversionsbasedon the generalconceptspresentedcaneasilybe
imagined.

1. Standardinterface:YES.
Throughimplementationin Java. In thestrictsensethis limits theapplications
to codewritten in Java, but, with limited sacri�ces in generality, application
codein otherlanguagescanbeusedaswell (seebelow).

2. Scalable:YES.
Throughthe tuple spaceconcept. Scalability from the producerside is cur­
rently performed̀ by hand', but automatedstrategiescaneasilybe imagined.
Also, bagscanin principlebereplicatedwhenaccessloadsbecomehigh and
bottlenecksarise,and automaticstrategies to this end can be consideredas
well.

3. Secureresourcesharing:not implementedyet in TaskSpaces.
But de�nitely feasibleusingJava's built­in mechanismsof digital signatures
andpublic­privatekey cryptography.

4. Fault­tolerance:not implementedyet in TaskSpaces.
But, for instance,automaticduplicationof bagsfor backupreasonscouldeasily
beachievedvia simplecloningof Javaobjects.

5. Resourceallocationandscheduling:YES.
Thetaskbagactsasa `superqueue'.

6. Automaticdistributionof applicationcodeto workermachines:YES.
By downloadingJavaobjectsfrom thetaskbags.Theobjectscontainboththe
dataandreferencesto theapplicationcode,whichisdownloadedautomatically
from theclassserverupon�rst useby aworker.

7. Scalableinterprocesscommunication:YES.
Throughdirectexchangeof serializedJavaobjectsoversocketsbetweenwork­
ers,seealso[9]. Ef�cient collectivecommunicationswouldrequireadditional
featuressuchasmulti­level communicationschemes(seebelow).
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8. Userchargingalgorithms:not implementedyet in TaskSpaces.
Simplechargingstrategiesarestraightforwardto implement.

9. Quality­of­service:not implementedyet in TaskSpaces.
This may requirethoroughstudyof the particulargrid environmentsconsid­
ered,andinstrumentationof objectsandworker machineswith performance
measuresandpriority mechanisms.

10. Resourcediscovery: YES.
Computingresourcesdiscover tasksby making themselves available to the
task bags,ratherthan the other way around. Computefarmsare presently
assignedto taskbagsby hand,but automatic,multi­level assignmentstrategies
arefeasible.

The overview above shows that the TaskSpacesdesign,despiteits simplicity,
is quite effective in realizingmany of the conceptualaspirationsof the `universal
computingdream'. In thefollowing Sections,we illustratehow theframework, with
minimaleffort, canbeusedfor apractical,real­lifeparallelbioinformaticsapplication
on ad­hoccomputationalgridscomposedof a varietyof widely availablehardware
types.

32.3 APPLICATION: FINDING CORRECTLY FOLDED RNA MOTIFS IN
SEQUENCE SPACE

We have applied the TaskSpacesframework to the following problem, which is
relevantbothtonaturalevolutionandtoaprocessof arti�cial evolutioncalledSELEX
thathasbeenwidely usedto selectnew molecularfunctionsfrom randompoolsof
RNA. Givenapoolof randomRNA moleculesof aspeci�edlength(typically 50­200
bases),whatis theprobabilitythattherandompoolcontainsmoleculesthathave the
right sequenceandarefoldedinto theright structureneededfor aparticularchemical
function? This questionis critical for the RNA world hypothesis: if molecules
thatcancatalyzea particularreactionareespeciallycommon,the ideathat the tiny
amountsof RNA that would be producedby prebioticsynthesiscould producean
RNA metabolismbecomesmoreplausible(Fig. 32.4) [5]. Chemicallyactive RNA
moleculesarealsoroutinely synthesized,in SELEX laboratoryexperiments,from
intially randompools of RNA molecules[6]. Speci�cally, we have focussedon
determiningthe abundanceof isoleucineandhammerheadRNA motifs in random
molecules[6]. The isoleucinemotif is the shortestRNA motif capableof binding
speci�cally to the amino acid isoleucine,while the hammerheadmotif cuts RNA
at speci�c locationsandhasbeenfound both in cells and throughSELEX. It has
beendeterminedexperimentallythat chemicalfunction of a certain type appears
whenthe randomRNA moleculecontainsa prescribedmotif, which is composed
of several moduleswith partially speci�ed sequence,andhasa prescribedfolding
structure(seeFig. 32.5). Theprobability thata randommoleculematchesboth the
prescribedsequenceand the structure,P(seq; str uct), is calculatedin two steps
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Fig. 32.4 The RNA world hypothesis:if a small numberof randomRNA molecules,say
a pool of 106 to 109 sequences,hasa reasonableprobability of containingmoleculeswith
variouschemicalfunctions,thenprimitivemetabolismswouldbeexpectedtohavearisenmany
timeson theearlyEarth.

as P(seq; str uct) = P(seq) P(str uctjseq). The sequenceprobability P(seq)
canbe approximatedaccuratelyby combinatorialformulas[5, 6]. The conditional
probabilityof obtainingtheright foldingstructure,givenapartiallyrandommolecule
that containsthe right sequence,cannotbe approximatedanalytically. In stead,
we approximatethis probabilityby computationalfolding of largesamplesof RNA
molecules(asamplesizeof 10,000is typicallyused):theprobabilityisapproximated
by the numberof partially randommoleculesthat fold into the correctstructure,
dividedby thetotal numberof moleculesin thesample.Oneimportantquestionof
interestis thevariationof theprobabilityP(seq; str uct) asthecompositionof the
randompoolchanges,sincethecompositionof RNA poolsmayhavevariedwidelyon
theprimitive earthandsincemoderngenomesvary widely in composition,possibly
affectingtheevolutionof speci�c functions.Wesetoutto investigatewhetherspeci�c
kindsof chemicalfunctionarisemoreoftenin poolswith overall compositionbiases
in particulardirections. This requiredthe computationalfolding of many samples
in f A; C; G; Ug compositionspace. We used5% intervals in compositionspace,
leadingto 969differentcompositionsto betested.Varyingthelengthof therandom
molecules(we have consideredlengthsof 50, 100, and 150 nucleotides),further
increasedthe numberof foldings required. For the resultsto be discussedbrie�y
below (see[6] for a moredetaileddiscussion),we performedabouthundredmillion
computationalfoldings. This constitutesa computationalproblemof moderately
large size,which would requireweeksto monthson a singlefastworkstation. We
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decidedto usea grid computingapproach,mainly for �e xibility , portability and
scalabilityreasons.

(c) Hammerhead

(b) Isoleucine

SSU Archaea

(a) Sequences
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contain sites:
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Fig. 32.5 Procedurefor determiningthe effects of folding and sequencecompositionon
motif abundance.(a)themotifsareidenti�ed by comparingsequenceswith thesamefunction.
The isoleucineaptamer(b) andthe hammerheadribozyme(c) both consistof modulesthat
musthave anexactsequence,and�anking helicesthatmustbasepair but needmeetno other
constraints.Thesediagramsshow theexactsequenceandstructurerequirementsthatwereused
in thecalculations:basepairsareindicatedby connectinglines. WecalculatePr(sequence)(d)
from thesequencerequirements,andPr(structurejsequence)(e)by constructinglargesamples
of randomsequencesthat containthe motif andcomputationallypredictingtheir structures.
Theoverall probabilityof �nding a correctlyfoldedsequence(f) is obtainedby multiplying
theprobabilitiesfrom (d) and(e).

We usedtheViennaRNA folding package[3], which is written in C, for folding
individual sequences.TheRNAfold executableis calledby theJava applicationon
eachworker nodeasneeded.Non­Java executablesmustbe compiledin advance
for eachworker architecture,andcanbe downloadedfrom the codeserver by the
workersupon�rst use. Thus,althoughrelianceon codewritten in otherlanguages
increasestheeffort requiredfor cross­platformoperation,it is still feasible.
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32.4 CASE STUDY: OPERATING THE FRAMEW ORK ON A
COMPUTATION AL GRID

We simulatedthe RNA function probability problemon a grid composedof the
NCSA IA32 Linux PlatinumSuperclusterandvariousP4Linux workstationsat CU
Boulder, Colorado. The Platinummachinefeatures968 P3 computeprocessors
(1GHz). For codedevelopmentandexecutionof somesmallersubproblems,only the
local workstationswereused,while for largerproblemsthelocal workstationswere
combinedwith up to 200 Platinumprocessorsconcurrently. The total computing
time usedfor this projectso far, including extensive initial runs for exploring the
problemanddeterminingtheright approachandquestionsto beanswered,amounts
to approximately10,000Platinumprocessorhours.

The framework waseasyto install on candidateworker machines.Even though
Java is normally not thoughtof very muchasa languagefor supercomputing,it is
actuallyavailableon all machineswe obtainedaccessto, even the largestparallel
supercomputers.In fact, Java is catchingup fast in executionspeedwith other
languages,andthe advantagesin easeof useandportability may actuallygive it a
goodfuturein scienti�c computing.LocatingtheJavaexecutable(which is typically
not includedin thestandardpath),copying theJava worker bytecodeto theworker
machine,andstartingtheworkers,wastypically very fast: for mostmachinesit did
not take more than 15 minutesto make them participatein the grid. On parallel
computes,the standardqueueingsystemswere used. Varying queuedelayson
concurrentlyparticipatingmachinesdid not causea problem,becausethe taskbag
(typically locatedon a workstationin Boulder)actsasa superqueue,andtheRNA
folding tasksarelooselycoupledanddonotrequireany interprocesscommunication
andsynchronization.TheInternetwasusedasnetwork connectionbetweenthegrid
machines,andnetwork performancewasadequateatall times.

A major obstaclein constructingad­hocgrids like this is security, which will
becomeincreasinglyimportantasresearchnetworksandinstitutionsareincreasingly
targetedby maliciousintruders. Underpressurefrom maliciousattacks,potential
worker machineswill often be protectedby �re walls. Participationin a grid then
requiresadditional�re wall con�guration,asourframeworkrequiresatpresentworker
nodeswith externally accessibleIP addresses.Securityis anotherreasonwhy we
expect, as arguedbefore, that grids will develop as `islands' for the foreseeable
future,furtherdelayingtheconceptof a `World WideGrid'. Anotherinconvenience
in operatingagrid is thevarietyof queueingsystemsoperatingonparallelcomputers
andclusters. If machineswereavailablewhereTaskSpacesworkerswould be the
only, continuouslyrunningprocesses,thenmuchof thequeueingconsiderationscould
bedealtwith in moreef�cient waysthatdecreaseturnaroundtimes,for instanceby
extendingtheuseandfunctionalityof taskbagsassuperqueues.

We can summarizeour experienceswith operatingthe grid framework for a
realproblemon a realmoderatelysizedgrid, by sayingthat the framework mostly
deliveredthepromised�e xibility , portabilityandscalability.
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32.5 RESULTS FOR THE RNA MOTIF PROBLEM

We estimatedthe abundanceof two motifs, the hammerheadribozyme and the
isoleucineaptamer, in random­sequencepools of many compositionsand several
lengths. Thesetwo well­studiedmotifs provide test casesfor our code on the
TaskSpacesframework,with whichweplanto analyzedozensto hundredsof motifs.
Knowing whereparticularkindsof RNA sequencesaremostlikely to befoundin the
spaceof possiblecompositions,andwherethesesequencesaremost likely to fold
into thecorrectstructureif they arefound,will provide striking new insightinto the
conditionsunderwhichparticularRNA activitiescanevolve.

To test the effectsof nucleotidecompositionon the probability of meetingthe
sequencerequirementsandthe probabilityof correctfolding, we generated10,000
randomsequencesateachof the969possible5%intervalsof sequencecomposition.
Thesequenceswereof totallength50,100,and150nucleotides,meetingthesequence
requirementsfor eachof the hammerheadandisoleucinemotifs. We repeatedthe
analysisfor sequencelength50 allowing G­U basepairs(a weaker type of pairing
thanthemorefamiliar `Watson­Crick'G­C andA­U basepairs,which arefoundat
a smallbut not negligible frequency in biologicalRNA structures).Thuswe folded
a total of 77,520,000sequencesfor thisexperiment.

Wefoundthatthecompositionof therandomizedsequenceshadastrikingeffecton
boththeprobabilityof �nding eachmotif andtheprobabilityof correctfolding. Figure
32.6 shows the probability of meetingthe sequencerequirements,the probability
of correctfolding given that the sequencerequirementsweremet, and the overall
probabilityof �nding themotif, for eachof the9695%compositionsthatincludeat
leastsomeof eachof thefournucleotidesU, C,A, andG.Thepatternsin thedifferent
diagramsarestrikingly different,indicatingthatfolding andsequenceabundancecan
actually have antagonisticeffects on the overall probability of �nding a correctly
foldedmotif.

Theprobabilityof correctfolding rangedover many ordersof magnitude.Figure
32.6shows, for all 5% intervalsof nucleotidecompositionin thespaceof possible
compositions,theprobabilityof meetingthesequencerequirementsin a completely
randomsequencefor thehammerheadandisoleucinemotifs (left andright respec­
tively; Figure32.6aand32.6b),theprobabilityof correctfolding in partially random
sequencesthatalreadymeetthesequencerequirements(Figure32.6cand32.6d),and
thecombinedprobabilityof �nding thecorrectlyfoldedmotif. In sequencesof total
length100,heprobabilityof �nding theisoleucinemotif rangedfrom 1:44� 10� 21

to 5:71 � 10� 10 with a meanof 3:62 � 10� 11, reachinga valueof 1:71 � 10� 10

at unbiasednucleotidefrequency anda maximumat thecoordinates15%A, 25%C,
35%G,and25%U.theprobabilityof �nding thehammerheadmotif rangedfrom 0
to 4:58 � 10� 10 with a meanof 7:37 � 10� 12, reachinga valueof 3:38 � 10� 11

at unbiasednucleotidefrequency anda maximumat thecoordinates35%A, 10%C,
25%G,and30%U.

Sequencelengthalsohadasubstantialeffectontheprobabilityof correctfolding.
As expected[8, 10, 5], longersequenceshada large combinatorialadvantageover
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Fig. 32.6 Foldingresultsfor thehammerhead(left) andisoleucine(right) motifs. Probability
of �nding the requiredsequenceelements(a andb), probability of folding correctlygiven
that therequiredsequenceelementswerepresent(c andd), andoverall probabilityof having
the requiredsequenceelementsand folding correctly (e and f). Volume of eachsphereis
proportionalto theprobabilityateachof the969internal5%intervalsin thespaceof possible
compositions.Radii arescaledsuchthat themaximumradiusin eachdiagramis setto 0.01
compositionunit. Theseresultsarefor sequencelength100.
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Fig. 32.7 Fine­grainedanalysisof regions betweenthe two most probablepoints for
isoleucineaptamerfolding, which wereACGU = [10,30,35,25]andACGU = [10,30,40,20]
with atotalsequencelengthof 50nucleotides.Wemadetenindependentsamples(dots),each
of 100,000sequences,at eachof ten equalintervals betweenthe two mostprobablepoints
(smootherline shows the mean),andmadetwenty­�ve independentsamples(dots),eachof
10,000sequences,ateachof forty equalintervalsbetweenthesesametwo points(morewiggly
lineshowsthemean).Bothseriesareshownatthesamescalein termsof absolutecomposition.
The linesfor themeansaresmoothin bothcases,although(asexpected)thescatteris lower
for thepointsat thelargersamplesize.

short sequencesin meetingthe sequencerequirements(maximumprobabilitiesof
1:74 � 10� 8, 1:42 � 10� 6, and 7:87 � 10� 6 for 50, 100, and 150 nucleotides
for the hammerheadmotif, and 3:46 � 10� 9, 3:20 � 10� 8 and 8:94 � 10� 8 for
isoleucine:theprobabilityfor theisoleucineaptamerchangesmoreslowly becauseit
hastwo modulesinsteadof threefor thehammerhead).However, thiscombinatorial
advantagewasoffset somewhat by substantiallyworsefolding at greatersequence
lengths(maximumprobabilitiesof 5:64� 10� 2, 2:49� 10� 2, and1:08� 10� 2 for 50,
100,and150nucleotidesfor thehammerheadmotif, and3:17� 10� 1, 1:78� 10� 1 and
1:29� 10� 1 for isoleucine).Themaximumoverallprobabilitiesfor thetwositeswere
4:27� 10� 12, 4:57� 10� 10, and8:61� 10� 10 for 50,100,and150nucleotidesfor the
hammerheadmotif, and1:88� 10� 10, 5:71� 10� 10 and1:06� 10� 9 for isoleucine
(notethatthesearenot theproductsof thebestprobabilitiesfor �nding thesequence
requirementsandfor folding,becausetheoptimaoccurredatdifferentcompositions).
These�ndings aredif�cult to reconcilewith experimentsthat show thatmotifs are
muchmoredif�cult to �nd in longerrandomregions[4, 7]. Onepossibility is that
the computationalfolding systematicallyoverestimatesthe probability of a correct
fold in longersequences;anotheris that othereffectsof sequencelength,notably
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ampli�cation ef�ciency, outweigh the effects of function at the RNA level. We
planto testtheseeffectsdirectlyby synthesizingsequencesthatarecomputationally
predictedto fold intoonemotif or theother. Wewill thenusechemicalandenzymatic
probingto testthe structuralpredictionsaroundeachmotif, andassaythe relevant
catalyticandbinding parametersto determinewhetherthe moleculesperformthe
predictedfunction.

To testwhetherthecompositionalgrid wassuf�ciently �ne to locatetheregionof
maximumprobability, weperformedamoredetailedanalysisof thetransectbetween
the two best­foldingpointsfor the isoleucineaptamerusinga largersamplesizeof
100,000sequencesperpoint to reducetheeffectsof samplingerror. Fig. 32.7shows
thefoldingprobabilitiesat10intervalsbetweenthetwobestpointsatsequencelength
50: 10%A, 30%C,35%G,25%U and10%A, 30%C,40%G,20%U. Interestingly,
the region of maximumprobability was insensitive to the lengthof the sequence,
although(asseenabove) thelengthof thesequencechangedtheprobabilityat each
pointby ordersof magnitude.

Theseresultsdemonstratestriking relationshipsbetweennucleotidecomposition
andtheprobabilityof �nding speci�c sequences,andsuggestthatwemaybeableto
predictwhich kindsof random­sequencepools(for SELEX or in organisms)might
be mostableto evolve particularfunctions. The probabilityof �nding the speci�c
functionswe searchedfor (10� 8 to 10� 12) areratherlower thanwe hadpredicted
from previous work, demonstratingthat the effects of folding are importantand
cannotbeignored.These�gures areconsistentwith theobservationthatnew RNA
activities are routinely isolatedin the laboratoryfrom random­sequencepools of
1012 to 1015 molecules,althoughthey do not provide supportfor the ideathat an
RNA metabolismcouldhavearisenfrom only afew hundredthousandrandomRNA
moleculesasmight have beenpresenton the prebioticEarth. Due to the chemical
problemsin synthesizinglargeamountsof RNA without enzymes,it hasoftenbeen
suggestedthat a simpler self­reproducingRNA systemprecededthe RNA World.
However, onceRNA was�rst synthesized(perhapsfor anentirelydifferentreason),
our resultsshow that catalyticactivity would soonbe likely to emerge: 1015 100­
nucleotideRNA moleculesis about50microgramsof RNA, lessthantheamountof
RNA foundin asinglegramof moderntissue.

32.6 FUTURE WORK

As demonstratedabove,ourprototypegrid framework deliverspromising�e xibility ,
portability andscalabilityfor real­life applicationson ad­hocgrids. However, there
aremany interestingwaysin which theframework canbeextended.

First of all, we areplanningto build full Pythonlanguagefunctionality into the
framework to allow researchersfamiliarwith thatlanguageto scaletheirsingle­CPU
taskseasilyto thegrid. Pythonis becomingincreasinglypopularasa languagefor
bioinformatics,mirroringits successfor otherscienti�c computingtasks.Second,as
indicatedin theenumerationin Section32.2,theframework implementationneedsto
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beextendedwith regardsto scalability, fault­tolerance,security, chargingalgorithms,
andquality­of­service.For example,fault­tolerancemaybeenhancedby cloningof
objectsandbags,andtransaction­typecommunication.Third, we planto addmore
extensive functionality, in termsof supportfor complex parallelwork�o ws (seeFig.
32.8),connectionwith databasesfor datafurnishingandresultcollection,andmulti­
level tree­basedcollective communicationfor tightly­coupledparallelapplications.

configuration/controller host

configuration bag
-node registrations

controller
application

worker

worker

worker

worker

task bag

...

worker

worker

worker

worker

task bag

...

workertask bag

comparison
result

data store host

-data item
-data item
-data item
-data item

...

process 1 process 2 process 3

application
data producing

Fig. 32.8 Proposedagent­mediatedwork�o w diagram. In the �rst phase,a con�guration
agentsetsup a work�o w topologyfor a work�o w, consistingof two parallelprocessesanda
serialprocessin this example.In thesecondphase,thedataarecarriedthroughthework�o w
by executionagents.For fault­tolerancepurposes,thework�o w couldbemadeself­migrating.

On theparallelbioinformaticsapplicationside,additionallooselycoupledparal­
lel bioinformaticsapplicationswill be studied,includingvariantsof the previously
consideredRNA folding statisticsproblem(for instance,investigationof theeffect
of the lengthof the moleculeson correctfolding), andan examinationof whether
certaincompositionalfeaturesof ribosomalRNA areuniversalacrossorganismsor
acrossRNA molecules.We arealsoconsideringmorechallengingapplications,in­
cludingproteomicswork�o ws andtightly coupledproblemssuchasbuilding large
phylogenies.

32.7 SUMMARY AND CONCLUSION

We have describeda softwareframework for scienti�c computingon computational
grids that is basedon tuple­spaceprinciplesandimplementedin Java, andwe have
demonstratedthatseamlesssimulationonanad­hocgrid composedof awidevariety
of hardwareis feasiblefor real­life parallelbioinformaticsproblems.Thelanguage
andgeneralapproachwe usedis mostappropriatein casesin which �e xibility and
easeof con�guration outweighconcernsaboutextractingmaximalperformanceon
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agivenarchitecturefor agiven,�x ed,applicationwith �x ed,largeproblemsizethat
mustbeexecutedrepeatedly. In this lattersituation,it is oftena goodinvestmentto
developspeci�c optimizedsoftwaresolutionsof `high­performancecomputing'type.
In many situations,however, researchis dynamic,andresearchgoalsanddirections
changecontinuously. In sucha rapid­prototypingenvironmentwith wide variations
in problemsizes,with complex changingwork�o ws, and with fast variationsin
applicationcode,aplatform­independent̀high­throughputcomputing'grid solution
of the typeproposedin this Chaptermaybemostappropriate,becauseof thegains
in �e xibility , portabilityandcross­platformscalability.
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