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this mini-course 
“Numerical Magnetohydrodynamics with Application to 

Space Physics Flows” 

•  lecture 1: Structure of MHD as a Hyperbolic System 
 (conservation, waves, shocks; differences with Euler) 

•  lecture 2: Finite Volume Methods for MHD 
 (FV methods, divergence constraint, high-order methods, 
adaptive cubed-sphere grids) 

•  lecture 3: Numerical Methods for Transonic Solutions 
 (transitions from supersonic to subsonic flow (e.g., solar wind), 
critical points, dynamical systems methods) 

Numerical MHD -  hans.desterck@uwaterloo.ca 

(slides: goo.gl/5X5LSm ) 
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lecture 2: Finite Volume Methods for MHD 

2.1 finite volume methods for conservation laws  
  (bird’s eye view) 

2.2 numerical strategies for  

2.3 high-order FV methods for MHD 

2.4 adaptive cubed-sphere grids for space physics flows 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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2.1 finite volume methods for conservation 
laws  

linear advection 
equation 

central 
differences 

upwind 
differences 

stable: 
( a > 0 ) 

unstable! 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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conservative form 
rewrite 

as 

with numerical flux function 

conservative form: exact discrete conservation 
gives correct 
shock speeds 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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nonlinear conservation law 

nonlinear flux function f(u): 

conservative upwind method 

with numerical flux function 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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nonlinear conservative system 

nonlinear system: 

with 

Numerical MHD -  hans.desterck@uwaterloo.ca 

(flux functions: Lax-Friedrichs, 
        Roe (based on Jacobian eigenvalues and eigenvectors),  
        ...) 
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system in 2D: upwind finite volume method 
2D grid with discrete unknowns: 

use integrated form over 
finite volume cell: 

(use upwind numerical fluxes F*) 

Numerical MHD -  hans.desterck@uwaterloo.ca 

order of accuracy higher than 1: 
polynomial reconstruction, limiters 
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2.2 numerical strategies for  

•  compressible ideal MHD is a nonlinear hyperbolic 
conservation law, so we can use standard finite volume 
methods from gas dynamics! 

•  we need the Jacobian eigenvalues and eigenvectors 
 (properly handle indeterminacies: Roe and Balsara, 1996) 

•                 is a headache! 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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the              constraint in MHD 

•  on the analytical level: 

•  in numerical methods: 
due to discretization/rounding errors: 
this may (and typically does) lead to 
severe numerical instabilities! 

•  consider remedies (similar to incompressible flow, Maxwell, ...) 

Numerical MHD -  hans.desterck@uwaterloo.ca 

 

as an initial condition should suffice! 
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2.2.1 projection 

•  solve a scalar elliptic PDE in every time step to make the 
magnetic field divergence-free 

•  works, but elliptic correction is not natural in hyperbolic 
system solver (upstream perturbations, elliptic operator 
couples solution variable in entire domain, expensive, ...)  

Numerical MHD -  hans.desterck@uwaterloo.ca 
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2.2.2 Powell’s 8-wave solver (source term) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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add ‘Powell source term’ 

Numerical MHD -  hans.desterck@uwaterloo.ca 

•  eighth wave advects 
divergence error 
•  can be derived from 
‘physical form’ of MHD 
equations without 
assuming 
•  non-conservative source 
term: Toth showed RH 
may be violated  
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2.2.3 ‘constrained transport’ 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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CT: general idea 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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CT on structured grids 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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CT on unstructured grids 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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need vector basis functions 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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magnetic field representation 

Numerical MHD -  hans.desterck@uwaterloo.ca 



20 of 68 

magnetic field representation 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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interpretation: differential geometry 

Numerical MHD -  hans.desterck@uwaterloo.ca 

also: 
-mimetic schemes 
-Raviart-Thomas elements 
-compatible discretizations 
-... 
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application to ‘shallow water MHD’ 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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SMHD Riemann problem 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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divergence of magnetic field 

Numerical MHD -  hans.desterck@uwaterloo.ca 

 this works well, but may be cumbersome to implement 
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(telegraph equation; same for        ) 

2.2.4 ‘generalized Lagrange multipliers’ (GLM) 

•  Dedner et al., JCP, 2002 
   (earlier work on this technique for Maxwell by Munz et al.) 

•  general approach 

Numerical MHD -  hans.desterck@uwaterloo.ca 

(‘mixed hyperbolic-parabolic’ variant; 
provides advection and diffusion for        ) 
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GLM for MHD 

•  eigenvalues: 

•  parameter choice:   

Numerical MHD -  hans.desterck@uwaterloo.ca 
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integrating the source term contribution 

1.  source term integration: 

2.  operator splitting: first solve without source term, then 
update using 

–  advantage: no additional time step restriction from source term 
–  potential disadvantage: operator splitting may decrease order of 

accuracy (?) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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operator splitting error for GLM 

Numerical MHD -  hans.desterck@uwaterloo.ca 

let 

using Taylor expansion, one can show that the splitting error is given by 

(see, e.g., Leveque, 2002) 
where    is the exact solution. 
we find 
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operator splitting error for GLM 

Numerical MHD -  hans.desterck@uwaterloo.ca 

where    is the exact solution. 
we find 

since                  and 
(and then entire splitting error vanishes)   

consequences: 
- operator splitting does not degrade  
 accuracy 
- no need to discretize    with 
 high-order accuracy 
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GLM 

•  fits nicely into hyperbolic code 
•  automatically handles grid resolution changes 
•  can naturally be done with high order accuracy 
•  just one extra equation, but      can be discretized with 

low accuracy 
•  operator splitting for source term does not degrade 

accuracy  

Numerical MHD -  hans.desterck@uwaterloo.ca 
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2.3 high-order FV methods for MHD 

Numerical MHD -  hans.desterck@uwaterloo.ca 

(CENO = central essentially non-oscillatory) 
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High-Order Finite-Volume Formulation  

Numerical MHD -  hans.desterck@uwaterloo.ca 
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CENO method 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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piecewise-polynomial reconstruction 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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Gauss quadrature 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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smoothness indicator to decide on order of 
reconstruction 

Numerical MHD -  hans.desterck@uwaterloo.ca 

 = 1,    large: smooth flow 
 <1,     small: discontinuous or under-resolved flow  
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smoothness indicator 

Numerical MHD -  hans.desterck@uwaterloo.ca 

 = 1,    large: smooth flow 
 <1,     small: discontinuous or under-resolved flow  
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reconstruction stencils for cubic (K=3) 
reconstruction 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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2D test problems 

superfast rotating outflow from cylinder 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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GLM handles          at grid resolution changes 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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MHD version of Shu-Osher 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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dynamic adaptive refinement for Orszag-Tang 
vortex 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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dynamic adaptive refinement for Orszag-Tang 
vortex 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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2.4 adaptive cubed-sphere grids for space 
physics flows 

•  goal: solve PDE systems on a sphere (2D), or in a 3D domain 
between two concentric spheres 

•  cubed-sphere grids are attractive because 
–  quasi-uniform (Cartesian panels) 
–  no strong polar singularity  

(image: Akshay Kulkarni (Harvard)) 

(image: mitgcm.org) 

Numerical MHD -  hans.desterck@uwaterloo.ca 



45 of 68 

cubed-sphere grids 

•  cubed-sphere grids are rapidly gaining popularity in a wide area of 
application fields (weather, climate, oceans, astrophysics, space 
physics, Earth mantle, ...) 

•  Sadourny, 1972; Ronchi et al., 1996; and many more authors since 

icosahedral grid 
(image: Washington et al.)  

(image: Akshay Kulkarni (Harvard)) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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3D cubed-sphere grids 

•  solve PDEs in domain between two 
concentric spheres 

•  6 ‘sectors’ of the cubed-sphere grid 
(in 2D: panels) 

•  each sector is logically Cartesian 

•  sector boundaries and corners can 
cause difficulties 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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our goals 
•  solve nonlinear hyperbolic conservation laws on 3D cubed-sphere 

grids, uniform 4th-order accuracy 
•  block-based adaptive grid refinement framework (logically Cartesian, 

self-similar blocks) 
•  large-scale parallelism: >30,000 adaptive blocks, >6,000 parallel 

CPU cores 
•  challenge: properly treat sector boundaries and corners 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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our goals 

•  our application areas: 
–  solar wind simulation (from Sun to 

Earth, ‘Space Weather’) 
–  simulation of magnetic environments 

of Moon and Mars  

  projects sponsored by the  
  Canadian Space Agency  
 (“Cluster for Lunar and Planetary 
Sciences: Advanced Coupled Models, 
Scientific Mission Definition, and Data 
Interpretation”) 

(image: SOHO/EIT consortium) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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our approach 

   1. use a fully multi-dimensional finite-volume 
discretization (not dimension-by-dimension) 

–  least-squares based 
–  can automatically handle varying stencil size 

(at sector corners) 
–  at sector boundaries, can use cells from 

adjacent sectors directly, without need for 
special interpolation or reconstruction  

–  maintains uniform 4th-order accuracy 
–  discretization handles sector boundaries and 

corners in a ‘transparent’ (consistent, uniform) 
way (important for >30,000 adaptive blocks!) 

(image: Paul Ullrich) 
Numerical MHD -  hans.desterck@uwaterloo.ca 
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our approach 
 2. use multi-block approach where ‘all blocks are treated equally’ 

–  use sufficiently rich implementation concepts and data structures to 
make blocks ‘clever’ enough to handle sector boundaries and 
corners automatically/uniformly 

–  sector boundaries and corners are treated ‘transparently’ 
–  this is a ‘software engineering’ CSE aspect, but it is crucial for 

managing code complexity if you want to do >30,000 adaptive 
blocks on >6,000 CPU cores 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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our approach 
 use multi-block approach where ‘all blocks are treated equally’ 

 in particular: 
–  multi-dimensional discretization 
–  multi-block code with unstructured root block connectivity 
–  consistently keep track of (i,j,k) orientation and ordering of adjacent 

blocks (we use ‘Computational Fluid Dynamics General Notation 
System’ (CGNS))  

Numerical MHD -  hans.desterck@uwaterloo.ca 
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our contributions 
•  L. Ivan, H. De Sterck, S. Northrup, and C. Groth, ‘Three-Dimensional 

MHD on Cubed-Sphere Grids: Parallel Solution-Adaptive Simulation 
Framework’, AIAA CFD Conference, 2011, AIAA paper 2011-3382 

•  Lucian Ivan, Hans De Sterck, Scott A. Northrup, and Clinton P. T. 
Groth, ‘Multi-Dimensional Finite-Volume Scheme for Hyperbolic 
Conservation Laws on Three-Dimensional Solution-Adaptive Cubed-
Sphere Grids’, Journal of Computational Physics, accepted, 2013 

•  L. Ivan, A. Susanto, H. De Sterck, and C. Groth, ‘High-Order Central 
ENO Finite-Volume Scheme for MHD on Three-Dimensional Cubed-
Sphere Grids’, Seventh International Conference on Computational 
Fluid Dynamics (ICCFD7), 2012 

Numerical MHD -  hans.desterck@uwaterloo.ca 



53 of 68 

block-based adaptive grid framework 
•  use self-similar, logically Cartesian blocks (e.g., 8x8x8) 
•  use octree data structure with six root blocks 
•  implemented in C++, templated 
•  the same framework is also used/developed in Groth’s group for 

combustion simulations (Groth’s CFFC framework was starting point 
for our work) (Gao and Groth, 2010) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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adaptive grid refinement 
•  adaptive refinement (18 blocks) and coarsening (81 block) 
•  physics-based refinement criteria (e.g., density gradient) 
•  dynamic refinement and coarsening (refinement follows moving 

features) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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adaptive grid refinement 
•  adjacent blocks cannot differ in resolution by more than a factor of 

two 
•  implementation for cubed-sphere greatly facilitated by ‘all blocks are 

treated equally’ (dynamic refinement!) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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high-order challenge 1: non-planar cell surfaces 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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high-order challenge 2: degenerate stencils at 
sector edges and corners (rotation mechanism) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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parallelisation 

•  two (or more) layers of ghost cells 
for each block 

•  MPI message passing 

•  many more blocks than 
processors 

•  self-similar blocks: load-balancing 
by equally distributing blocks over 
CPU cores (Morton ordering can 
be employed) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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validation tests 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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validation tests 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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validation tests 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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large-scale results 
•  ‘magnetically dominated’ MHD bow shock flow (2nd-order) 
•  we only use 5 root blocks 
•  7 refinement levels with 22,693 blocks and 14,523,520 

computational cells  

Numerical MHD -  hans.desterck@uwaterloo.ca 
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large-scale results 

•  MHD solar wind (Groth et al. model) (2nd-order) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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large-scale results 

•  MHD solar wind (Groth et al. model) 

Numerical MHD -  hans.desterck@uwaterloo.ca 



66 of 68 

ongoing and future work 

•  Mars/Moon simulations (need to solve PDE inside the spherical object 
 7 root blocks!) 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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ongoing and future work 
•  our framework is flexible enough to handle multiple spherical objects 

(e.g., Earth and Moon) 

•  we’re also interested in potentially exploring weather/climate-type 
applications using our framework (perhaps fully 3D, non-hydrostatic) 

•  Earth mantle convection is another area of potential interest 

Numerical MHD -  hans.desterck@uwaterloo.ca 
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thank you 
questions? 

Numerical MHD -  hans.desterck@uwaterloo.ca 


