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this mini-course

“Numerical Magnetohydrodynamics with Application to
Space Physics Flows”

 lecture 1: Structure of MHD as a Hyperbolic System
(conservation, waves, shocks; differences with Euler)

* lecture 2: Finite Volume Methods for MHD

(FV methods, divergence constraint, high-order methods,
adaptive cubed-sphere grids)

* Jlecture 3: Numerical Methods for Transonic Solutions

(transitions from supersonic to subsonic flow (e.g., solar wind),
critical points, dynamical systems methods)

(slides: goo.gl/5X5LSm )
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lecture 2: Finite Volume Methods for MHD

2.1 finite volume methods for conservation laws
(bird’s eye view)

2.2 numerical strategies for V- B =0

2.3 high-order FV methods for MHD

2.4 adaptive cubed-sphere grids for space physics flows
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2.1 finite volume methods for conservation

laws
Iinea;_adveotion ou . ou 0
equation — 14— =
Ot ox
n+1- - - - - X - - -
central yntl —yn ul . — . : .
7 ) 1+1 1—1 . ' .
differences At +a I =0 n % * X
' j-1 j j+1
unstable!
, , | n+l-- - - - ) - -~
upwind ul Tt —yn N uy —ui 0 . . |
. i . a p— ' ' '
differences At A7 h X 5 :
-1 j j+1

At< 22 (a>0)
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conservative form

rewrite ultt — N ult —ul 0
] , a _
At Ax
n + J_ n ’.n. *_ - '.n, *_ .
as u;  — U n i+1/2 iZ1/2 _
At Ax
with numerical flux function
1% _ CL”LL?_H + au? 1 |( n n)
it/ = 5 — §|(L Wi — U

conservative form: exact discrete conservation .
gives correct

*n *n
= e lwiz T shock speeds
‘ = = ‘
| [ | | .

| ] R ] X

a Xla - - Xi - - Xlﬁ b
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nonlinear conservation law

ou Of(u
nonlinear flux function f(u): — 4+ f( ) — ()
ot ox
conservative upwind method
ul ™t —ul N ir12 ~Jicipp 0
At Ax

with numerical flux function

f( I,—|—].)+f( )

f'i,fl/‘z — 9 |f1,f1</>|( it1 — Uj)
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nonlinear conservative system

nonlinear system: 8_U n 8F(U) —0
ot Ox
ul ™t —ul N iv12 =~ Filip 0
At Ax
with
n* F(U? ) + F(U?) 1 k n n
i+1/2 = = 9 - §nlaxk<|)‘f‘,+)1/2D(Ui—}—l - Uy)

(flux functions: Lax-Friedrichs,
Roe (based on Jacobian eigenvalues and eigenvectors),
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system in 2D: upwind finite volume method

2D grid with discrete unknowns:

ou -
a7 V-FU) =0

v ]4 FU)-#dA=0
o)

"
Uz/UdV
Q

use integrated form over

finite volume cell:
— 4

an". ok =
8tJ + I/QLJ Z Fk, N Alk = 0

k=1

ﬁi,j — (// U(z,y,t) dz dy ) /% ; order of accuracy higher than 1:

polynomial reconstruction, limiters
(use upwind numerical fluxes F*)
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2.2 numerical strategies for v-B =0

« compressible ideal MHD is a nonlinear hyperbolic
conservation law, so we can use standard finite volume
methods from gas dynamics!

* we need the Jacobian eigenvalues and eigenvectors

(properly handle indeterminacies: Roe and Balsara, 1996)

« V-B =0 isaheadache!
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the v - B =0 constraint in MHD

* on the analytical level:

81_3"_ L= OV -
E_VX(UXB) > o —0

o,

V - ﬁ — () as an initial condition should suffice!

* In numerical methods: S
due to discretization/rounding errors: oV - B
this may (and typically does) lead to ot
severe numerical instabilities!

— €

» consider remedies (similar to incompressible flow, Maxwell, ...)
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2.2.1 projection

* solve a scalar elliptic PDE in every time step to make the
magnetic field divergence-free

énew — §+ V¢
V- Bpw=0=V-B+V-V¢

Ap=—-V-B
« works, but elliptic correction is not natural in hyperbolic

system solver (upstream perturbations, elliptic operator
couples solution variable in entire domain, expensive, ...)
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2.2.2 Powell's 8-wave solver (source term)

_ _ i pU |
0
Bz — - —
p/U p'U’U ‘I’ p + T I - BB
0
— |V =0
ot pv D B 2 - —
-ty P+ P +p)i—(0xB)xB
y— 5 o1 tp)U— (v
B 52 =,
- - vB — By |
B A1 = vz + ¢y, : fast wave, right
[0z p 0 0 0 0 0 0] Ay = vz — Cr, - fast wave, left
0 vg 0 0 0 By/lp B:/p 1/p 2 T ) o
00 wy, 0 0-By/p 0O 0 A3 = Vg + C Ay ¢ Alfvén wave, right
A — 0 0 0 wz 0 0 —=Bg/p 0 Ay = Vg — Cpy - Alfvén wave, left
v o0 0 0 0 0 0 0 A5 = Vg + Cgr - Slow wave, right
0B,—B; 0 0 v, 0 0 N - o
0 Bz 0 —BIO 0 Vg 0 6 — Ux — Csg - SIOW wave, eft
(0 0 0 0 0 0 vg A7 = vy : entropy wave

Ag = 0 : not Galilean invariant!!
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add ‘Powell source term’

0
E?U R OF(U) Sj By
ot oz gy
S=—| " | V-B
Vg
Yy
vz p 0 0 0 O 0 0 ] Vz
0 vz 0 0 0 Bylp Bip 1/p | U- B _
000 v 0 0 —=Bg/p 0 0 * eighth wave advects
Ay = 00 0 wp 0O 0 —Bg/p O divergence error
000 0 0 wz 0 00 « can be derived from
0 By =By 0 0 g 0 0 ‘physical form” of MHD
0 lgz 0 =By 0 0 vz 0 equations without
| 0cp 0 0 0 0 0 vz ] assuming V- B =0
Aj, © = 1..7 remain unchanged e non-conservative source
Ag = vz : Galilean invariant!! term: Toth showed RH
may be violated
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2.2.3 ‘constrained transport’

= divergence-free: V-B=0 (or y{ B - iidS = 0)

- B magnetic field (plasma . .. )
- no magnetic monopoles
- also numerically, avoid magnetic monopoles at the discrete level:
Constrained Transport (CT) approach
= CT was known on structured grids (Evans & Hawley 1988, earlier for EM)

= De Sterck, AIAA CFD paper 2001-2623: how to do constrained transport
on unstructured grids
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CT. general idea

Faraday:%—‘?:VX(Ux B)
B-id L
(2) 9] atnszj[(ﬁxB)-dl

3 ) 9B L
/B-ﬁdS:BnAS = dafn:%(f’xB)-dl/AS

= time evolution of flux through surface

= time evolution of average normal component 3,, of BB

= % B - idS = 0 on discrete level!!

because boundary of boundary vanishes (or contributions cancel)
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CT on structured grids

Al = (7 x B)s — (¥ x B)

ot ot
EZ’AZ EZ’AZ
® \ O
By:

B, ' B,

- -
By and By, reconstruct BB in nodes E, AzG A OF A,
= CT (Evans & Hawley 1988) B..
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CT on unstructured grids

e represent BB by 3,,: normal component on surfaces

e on unstructured grids, B can be reconstructed everywhere in the domain using vector
basis functions (face elements for B)

® update Bn using MU schemes (via MU interpolation of the reconstructed fields)

e this conserves the V - é = () constraint at the discrete level up to machine accuracy
e this is tested for Faraday, Shallow Water MHD (system MUCT scheme)

® easy extensions: 2nd order (blended scheme), MHD, 3D, . ..

= generalization of CT to multi-dimensional methods on unstructured grids
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need vector basis functions

(~ face elements, from EM, e.g. Jin 93; Robinson & Bochev 2001 for MHD)

EZ’AZ

E_A,

(1) reconstruct B in cell from By, as (2) average B,..; to nodal B;

3 in upwind way
Been = z Pj Bn,j
J=1

e.g. ’|: normal component /| ,, constant on edge 1, vanishing on other edges
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magnetic field representation

3
Beeyp = Z Pj Bn,j

P

e.g. P11 normal component P ,, constant on edge 1, vanishing on other edges

(also higher order, quads, . . .: general concept)
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magnetic field representation

3
Been = Z Pj Bn,j
J=1

® 3, jsuchthat V - B = constant = () everywhere inside element

e 3, is continuous at element interfaces, so therealso V - B = ()

—

=> finite-element reconstructed solution satisfies V - B = () everywhere!

in triangle, for lowest order element:

B constant in space, By, continuous

(on quad, or for higher order vector basis function:

B not constant in space, B, continuous)
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interpretation: differential geometry

scalar vector axial vector 3—form
0—form 1-form 2—-form 3—form
0= a wl=A dx +B dy+C dz w2=fdxAdy+g dyAdz+h dzAdx  w3=F dxAdyAdz

® physics = geometry

® numerics = geometry

Y

|
nodal element N~ edge element ~ face element volume element

= in a consistent way!

point line area volume
O—chain 1—chain 2—chain 3—chain

also:

-mimetic schemes
-Raviart-Thomas elements
-compatible discretizations

UNIVERSITY OF

WATERLOO
==

Numerical MHD - hans.dest rfoo.ca 21 of 68




application to ‘shallow water MHD’

(Gilman, ApJ 2000; De Sterck, Phys. Plasmas 2001)

E‘FV(h?}'):O
% 4 (7 V)i —(B-V)B+gVh=0

e from MHD: incompressible, 2D variation, magnetohydrostatic equilibrium
e 4 wave modes: 2 magneto-gravity waves (nonlinear), 2 Alfvén waves (linear)

® one spurious ‘div(B)’-wave (MHD!)
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SMHD Riemann problem

(Steady Riemann problem|

h Bx

e ¥ o o
[ |
o BB 3 .

&
2

a3 e B

=)
Y
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o
R

5 Y o
X o

)
i

&
Lo
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R ol b d
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divergence of magnetic field

15E-15

J-5E-15

V - B for the first or-
der (left) and second order
(right) Lax-Friedrichs sim-
ulation of the steady Rie-
mann problem on a grid of
30 x 30 finite volumes.

V - B for the full sys-
tem N (left) and system N
MUCT (right) simulation of
the steady Riemann prob-
lem on a grid of 31 X 31
nodes.

=>» this works well, but may be cumbersome to implement
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2.2.4 ‘generalized Lagrange multipliers’ (GLM)

* Dedner et al., JCP, 2002
(earlier work on this technique for Maxwell by Munz et al.)

e general approach

6B
ot +V-(9B—B?)+Vy =0,
(‘mixed hyperbolic-parabolic’ variant;
provides advection and diffusion for v - 5)
W 2y B Ch 3V Ch
ot M e 2Y + L3y — c2AY =0

p o
(telegraph equation; same for v. B )
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GLM for MHD

OB

8t+v (7B — BD) + Vy = 0,

oY cs
§+CV B ng

* eigenvalues:
AM = —Ch, Ay =Ux—Cf, A3 =Ux —Ca, A4 =1Ux —Cs, A5=ly,

Ao =Ux +C5, A7 =1Ux+Ca, Ag=1Ux+Cs, A9 =Cp.
° parameter choice: ¢ =max(|zi| +c,)

=C;/ch = 0.18

Cr
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integrating the source term contribution
8¢+C2V B= ﬁl//
ot " c2

1. source term integration:

jt(//ﬂulpdA) = (//ﬂuv.édA) —% <//ﬁu¢dA) dl//tw Ali:i Brum - IAD 1 m = 2¢"’

2. operator splitting: first solve without source term, then

update using  dy; c,,
F 1L

— advantage: no additional time step restriction from source term

— potential disadvantage: operator splitting may decrease order of
accuracy (?)
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WAT E R Loo Numerical MHD - hans.dest floo.ca 27 of 68




operator splitting error for GLM

Journal of Computational Physics 250 (2013) 141-164
High-order central ENO finite-volume scheme for ideal MHD

A. Susanto?, L. Ivan ®*, H. De Sterck?, C.P.T. Groth®

oU U oU s, G,
§+Aca+BC5+CCU=O let [DC_AC&+BC@—},

using Taylor expansion, one can show that the splitting error is given by

1
E=5 At*(D.C. — C.D:)U + O(AL?) (see, e.g., Leveque, 2002)
where U is the exact solution.
we find 0 0
0 0
10 » 0
(DC—CD)U=2 |2 _Shi 0 | _g
cz o c 0
0 0
0 oB, | OBy
L a L Ox i
UNIVERSITY OF
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operator splitting error for GLM

Journal of Computational Physics 250 (2013) 141-164 7/ // N0
S S
High-order central ENO finite-volume scheme for ideal MHD \
A. Susanto?, L. Ivan®*, H. De Sterck?, C.P.T. Groth" 3 //// /
1 * N
E — i AtZ(DCCC _ CCDC)U _|_ O(At3) 0 05 1 15 2 25 3 35 4 45 5 55 6

where U is the exact solution.

we find
"0 F 0 : _ = _
since y(x,y,t)=0and V-B(x,y,t)=0
0 0 . s :
0 0 (and then entire splitting error vanishes)
2
(Dccc_Ccu)c)U:C_g %XE _C_E 0 :0
Gla|l S| o consequences:
ay r
0 0 -operator splitting does not degrade
o] [Z+F accuracy

-no need to discretize y with
high-order accuracy

UNIVERSITY OF
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g—f+v (7B — BD) + Vy =0,
W, 2v.B —C—%z//
ot h c2

fits nicely into hyperbolic code
automatically handles grid resolution changes
can naturally be done with high order accuracy

just one extra equation, but  can be discretized with
low accuracy

operator splitting for source term does not degrade
accuracy Journal of Computational Physics 250 (2013) 141-164

High-order central ENO finite-volume scheme for ideal MHD

UNIVERSITY OF A. Susanto?, L. Ivan ®*, H. De Sterck?, C.P.T. Groth® —
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2.3 high-order FV methods for MHD

Journal of Computational Physics 250 (2013) 141-164
High-order central ENO finite-volume scheme for ideal MHD

A. Susanto?, L. Ivan ®*, H. De Sterck?, C.P.T. Groth®

Overview Idea of the High-Order MHD Algorithm

@ Apply a high-order CENO approach (lvan & Groth, 2007, 2011)
(initially proposed for 2D inviscid and viscous flows, but not for MHD) to

estimate accurately the residual
@ Use CENO + GLM-MHD (Dedner et al., 2002) to satisfy V - B = 0

@ GLM source term can be integrated analytically, but not Powell’s term!
= GLM better suited for high-order accuracy

(CENO = central essentially non-oscillatory)
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High-Order Finite-Volume Formulation

General System of Hyperbolic Conservation Laws

ou
8_+V =S+Q

Semi-Discrete Integral Form for a Hexahedral Element

dU; ik 1 ]{ L 1 /// _
— 0 F -nda+ S+Q)dv=R;;(U
dt Vijjk Jay Vijk g 5+Q) ##(0)

Primary Steps to Obtaining Numerical Solution
@ Solution reconstruction:
@ Approximate solution with high-order piecewise polynomials

@ High-order accurate spatial residual computation:

@ Evaluation of interface hyperbolic flux
@ Accurate source term integration

@ Time Integration (evolve solution forward in time)
@ Multi-stage explicit time marching schemes (e.g., RK2, RK4)
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CENO method

Central Essentially Non-Oscillatory (CENO) Idea

@ ENO Property: Spurious oscillations at points of discontinuity are
NOT allowed (i.e. no Gibbs-like phenomenon ) but they may exist on
the order of truncation error.

@ Combine an unlimited k-exact reconstruction (Barth, 1993) with a
monotonicity preserving limited linear (k=1) scheme

@ Hybrid method: use a solution smoothness indicator to switch between
reconstruction procedures

@ Use a single (central) stencil for reconstruction

L Note: Harten & Chakravarthy (1991) explored ENO on fixed central stencil in 1D )

Tv(un+l) — Tv(un) + O(Axk+1)
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piecewise-polynomial reconstruction

@ Piecewise polynomial approximation for solution:

K K K

U ()= > Y (= Fijw)” (V= Figr ) (2 — Ziyx ) Dpipops
p1=0p=0p3=0
(p1+p2+p3<K)

@ Use a supporting stencil to determine coeffs D,,,,,, (€.9., 20 and 35
unknowns for cubic and quartic reconstructions, respectively)

@ Calculate D,,,,,, by solving a least-squares problem for the
conservation of mean solution, u; ; «, in the supporting stencil

1 L _
(AD —B), 5¢ = // / Ui 1 (F) dv | — iy,6,c = 0.

V%d,c
Vy,8,¢

@ Assess the local solution smoothness by comparing the predictions of
the reconstructions that are part of the supporting stencil

@ Revert reconstructions deemed as non-smooth to limited linear approx.
Note: Each solution variable is individually assessed for smoothness

UNIVERSITY OF

WATERLOO
==

Numerical MHD - hans.dest rfoo.ca 34 of 68




Gauss quadrature

@ More accurate calculation of flux and source term integrals

. 1 Ny Ng
F.itda = (wﬁ-fz’Aa)
Vijk j[av Vijk ;;::1

i,j,k,l,m

Ny
1 1
Vigk /l S+Q)av = Viox VZ:; (w(S + Q))iJ,k,v

@ Use more Gauss quadrature points per face (Ng > 4)
@ Apply Gauss quadrature integration for general sources (V, > 2)
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smoothness indicator to decide on order of
reconstruction

@ Step 1: Calculate o (exploit the assumption of valid Taylor series
expansion in the neighbourhood)

Z Z Z (u§76’4(?{7’6’C) _ u{f],lﬁ(?’)/,(s,g))z
vy & ¢
SN (6 s (Frrsic) — i)
Y f) ¢

@ Step 2: Evaluate S (inspired by the definition of multiple-correlation
coefficients, Lawson, 1974)

a=1-—

e (Nsos — Nbp)

5= max (1 — @),e) (Np—1)

Nisos : Size of Stencil; Np : Degrees of Freedom/Unknowns; € = 107°

a =1,5 large: smooth flow
o« <1, § small: discontinuous or under-resolved flow
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smoothness indicator

’l | | | | | | |
100
if S > S, = smooth/fully-resolved solution
=0 if S < S, = non-smooth/discontinuous solution ]
A, 1000 < S. < 5000 (determined from numerical experiments)
7
3 a0
0 R ——
! l ! l l ! l l | ! ! l ! l I |
-1 08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1

A
a =1,5 large: smooth flow
o« <1, § small: discontinuous or under-resolved flow
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reconstruction stencils for cubic (K=3)
reconstruction

125 Cells 57 Cells

25 Cells
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2D test problems

superfast rotating outflow from cylinder

6 Magnetic Field Lines
10"
10°
_#10®
]
LT
— s E|, 2 "-order k-exact
5 — & — [El,2"-orderk-exact
10 ——ee — |E|_2"-order k-exact
—8— E ,2:’-orderCENO
- — El, 2" -order CENO
—-§g-— |E|.2"-order CENO
s e |E | | 4™-0rder k-exact
10° - @ = |E|, 4 order k-exact
- = E|_4"-order k-exact
—g— E|, 4™-order CENO
- = E!,4 -order CENO
. == |E|_4"-order CENO
10- L ' L l L ' ' L l L ' llllllllllllllllllllll
50 100 150 200 250 300350
N1I2
(a) The L,-, L,-, and L..-norm errors for entropy, which is

constant in the domain.
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GLM handles v . B at grid resolution changes

6 Ll [ L) Ll Ll l L T L) ' T T T l Al Ll T I Ll Ll T l T L) T l T T - T T T I T T T T l T T l TIrrs ' TTT]
| Magnetic Field Lines i ]
5 10 ! _E R'\ ?
5 = ‘~ 3
» '~ |B|, 4”-order CENO .
4 . X S - © = |B|,4™-order CENO ]
. _ SN - &g e |B| 4™
i ] 102 L ) &7 = |B|_4"-order CENO 4
2k - l ]
L B 3 3
™ 10 E r
= _z-‘ :
> 0F 1 2 T )
. _:_‘ 107 F 3
- "I m X ]
[ X ' - -
oL % /// [1]] _
2 w, / s
i 25 Y, 10 _E ?
4 - 10°E E
-6 -l l 1 1 1 l 1 L 1 l 1 1 1 1 1 1 l 1 1 1 l 1 1 1 l 1 l- 107 E 1 - L l - L - L l - L 1 ~ l —_— ' — li
6 4 2 0 2 4 6 100 200 300 400
X N1f2
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MHD version of Shu-Osher

3.5

2.5

1.5

Reference Solution (2nd-order 12,800 Cells)
1 ——— 45 Degree-Rotated 2nd-order 400 Cells
45 Degree-Rotated 4th-order 400 Cells

4 35 -3 25 2 15 1 05 0 05 1 16 2 25 3 35 4

(1,0,0,0,1,1,0,1,0) for x < 4,

=1+0.2sin(5x —35
(3.5,5.8846,1.1198,0,1,3.6359,0,42.0267,0) for x > 4 P (5%),  pr

(p; u.Laul 3 uZ’BJ.’BIIsBZ’p! W) = {
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dynamic adaptive refinement for Orszag-Tang
vortex

. S i /"‘-\_ Y ‘/‘/
3.5| = /> —/ 4 3.5\ )
CANH

3 s ) ; 3

, AN
0.5 ) ‘ 0.5
[ \:\\\ \
% 05 1 15 2 25 3 35 4 45 5 55 6 % 05 1 15 2 25 3 35 4 45 5 55 6
(c) Density solution at ¢ = 2.0. The contour lines are equally (d) Density solution at ¢ = 3.0. The contour lines are equally
spaced in the range (0.62,6.41) (15 contours). spaced in the range (1.16,6.42) (15 contours).
vy = —Sin(y), v, = sin(x), By = —sin(y), B, = sin(2x)
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dynamic adaptive refinement for Orszag-Tang
vortex

5.5

N

SEEE I |

s

4.5

4

35 u
3 R e
25 ot T
pluas: a:
g Bessme ma
1.5 :E. H _"‘.44- IBEEEEE, N,
1 EE asi
0.5 £ 5 1 H T B T L
o el s R =
0 05 1 15 2 25 3 35 4 45 5 55 6

(c) AMR as applied to the Orszag-Tang vortex problem at ¢ =

2.0. At this point, the mesh consists of 8,428 8-by-8 blocks,

or 539,136 cells in total.
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(d) AMR as applied to the Orszag-Tang vortex problem at ¢ =
3.0. At this point, the mesh consists of 13,522 8-by-8 blocks,
or 865,408 cells in total.




2.4 adaptive cubed-sphere grids for space
physics flows

e goal: solve PDE systems on a sphere (2D), or in a 3D domain
between two concentric spheres

* cubed-sphere grids are attractive because
— quasi-uniform (Cartesian panels)
— no strong polar singularity
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cubed-sphere grids

e cubed-sphere grids are rapidly gaining popularity in a wide area of
application fields (weather, climate, oceans, astrophysics, space
physics, Earth mantle, ...)

« Sadourny, 1972; Ronchi et al., 1996; and many more authors since

(image: Akshay Kulkarni (Harvard)) icosahedral grid
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3D cubed-sphere grids

 solve PDEs in domain between two
concentric spheres

* 6 ‘sectors’ of the cubed-sphere grid
(in 2D: panels)

\R= 7
“\ Y
Block 1“-'-‘ Outer Sphere
e

S
» each sector is logically Cartesian

z

» sector boundaries and corners can \Q/
e . X
cause difficulties

UNIVERSITY OF

WATE R Loo Numerical MHD - hans.desterck@uwa st




our goals

« solve nonlinear hyperbolic conservation laws on 3D cubed-sphere
grids, uniform 4th-order accuracy

« block-based adapfive grid refinement framework (logically Cartesian,
self-similar blocks)

» large-scale parallelism: >30,000 adaptive blocks, >6,000 parallel
CPU cores

« challenge: properly treat sector boundaries and corners
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our goals

e our application areas:

— solar wind simulation (from Sun to
Earth, ‘Space Weather’)

— simulation of magnetic environments
of Moon and Mars

=>» projects sponsored by the
Canadian Space Agency

(“Cluster for Lunar and Planetary
Sciences: Advanced Coupled Models, (image: SOHO/EIT consortium)
Scientific Mission Definition, and Data

Interpretation”)
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our approach

1. use a fully multi-dimensional finite-volume
discretization (not dimension-by-dimension)

— least-squares based

— can automatically handle varying stencil size
(at sector corners)

— at sector boundaries, can use cells from
adjacent sectors directly, without need for
special interpolation or reconstruction

— maintains uniform 4th-order accuracy

— discretization handles sector boundaries and ~ s
H ¢ y . . \ \ - ! -

corners in a ‘transparent’ (consistent, uniform) \\\\
way (important for >30,000 adaptive blocks!) SR
~No N T
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our approach

2. use multi-block approach where ‘all blocks are treated equally’

— use sufficiently rich implementation concepts and data structures to
make blocks ‘clever’ enough to handle sector boundaries and
corners automatically/uniformly

— sector boundaries and corners are treated ‘transparently’

— this is a ‘software engineering’ CSE aspect, but it is crucial for
managing code complexity if you want to do >30,000 adaptive
blocks on >6,000 CPU cores
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our approach

use multi-block approach where ‘all blocks are treated equally’

In particular:
— multi-dimensional discretization
— multi-block code with unstructured root block connectivity

— consistently keep track of (i,j,k) orientation and ordering of adjacent
blocks (we use ‘Computational Fluid Dynamics General Notation

System’ (CGNS))

R
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block-based adaptive grid framework

« use self-similar, logically Cartesian blocks (e.g., 8x8x8)

e use octree data structure with six root blocks

 implemented in C++, templated

» the same framework is also used/developed in Groth’s group for

combustion simulations (Groth’s CFFC framework was starting point
for our work) (Gao and Groth, 2010)
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adaptive grid refinement

adaptive refinement (1=»8 blocks) and coarsening (8=21 block)
physics-based refinement criteria (e.g., density gradient)
dynamic refinement and coarsening (refinement follows moving

features)
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adaptive grid refinement

adjacent blocks cannot differ in resolution by more than a factor of

two
implementation for cubed-sphere greatly facilitated by ‘all blocks are

treated equally’ (dynamic refinement!)
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high-order challenge 1: non-planar cell surfaces

dU 1

6 Ng
ijk ~ - o =~ T
B,U + 6 . ﬁ =S+ Q dtj :_ij le 2—1 (WFnum 'n)i’j,k,f,m + (S)ijk + (Q)ijk:R’ijk(U)
@ Piecewise polynomial approximation for solution:

K K K
K — — = —
Ui (@) =3 Y Y (x—Xijw) (0 = Figow ) (2 = Ziiw )™ Dpipaps
P1=0p,=0p3=0
(P1+P2+P3<K)

@ Use a trilinear interpolation to represent skewed hexas accurately

@ Compute geometric properties (e.g., volume, centroid, normals,
geometric moments) using the trilinear mapping

@ Integrate fluxes appropriately (4 points per face for a 4th-order scheme)
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high-order challenge 2: degenerate stencils at
sector edges and corners (rotation mechanism)

125 Cells 57 Cells

33 Cells 25 Cells
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parallelisation

two (or more) layers of ghost cells
for each block

MP| message passing

many more blocks than
processors

self-similar blocks: load-balancing
by equally distributing blocks over
CPU cores (Morton ordering can
be employed)
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Solar Wind Flow; Limited 2nd-order FV Scheme;
6,144 Blocks of 8x8x8 Cells; 2,000 5-stage Explicit Time Steps
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validation tests

|E|1’ |E|z, |E|

Solution reconstruction obtained using the 4th-order CENO scheme on a
mesh with 8 blocks of 4 x8 x8 and 2,048 cells (left) and error norms (right).
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validation tests

Magnetohydrostatic Test Case on Cartesian Box (Warburton 1999)

Ue,)=[ 1,8, (cos(m(3-+1)) —cos(m2) )f (x), cos(m2)f () +sin(m 3+ 1))f (x), sin(m2) (F ) —f (&), 540.5 (B +B2y+B%) |
ORI

Magnetic Intensity Vector and Magnitude f ‘ ’ o ' ‘ ’ ]

— - — L,-norm4"-order Error
LY ~——#—— L,-norm 4™-order Error
N —..-@-— L_-norm 4"-order Error
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validation tests

Solution to Manufactured Problem Ri=2, R,=3.5, M;s >0 everywhere
U _| 3 X y 4 —I—KJ‘% L i_|_,{, r‘% ' — 0.017
(x,y,z)— ’ \/;a \/;a \/; ) 7‘3, r3a 3 ) , KR =VU.

T T

Convergence study for manufactured solution test case.
The error norms are determined based on flow density.
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large-scale results

« ‘magnetically dominated’ MHD bow shock flow (2"d-order)
* we only use 5 root blocks

7 refinement levels with 22,693 blocks and 14,523,520
computational cells

Back Panels
Quter Sphere Tilted at

15 deg. Relative
to YZ Plane
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large-scale results

« MHD solar wind (Groth et al. model) (2"d-order)
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large-scale results

« MHD solar wind (Groth et al. model)
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ongoing and future work

« Mars/Moon simulations (need to solve PDE inside the spherical object
=>» 7 root blocks!)
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ongoing and future work

our framework is flexible enough to handle multiple spherical objects
(e.g., Earth and Moon)

T—F—F—7

z
|

2
N Y\Jj/x

« we're also interested in potentially exploring weather/climate-type

applications using our framework (perhaps fully 3D, non-hydrostatic)
Earth mantle convection is another area of potential interest
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thank you
guestions?
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