# Adaptive Algebraic Multigrid for Singular Value Decomposition

## WATERLOO

uwaterloo.ca

Hans De Sterck
Department of Applied Mathematics
University of Waterloo

#### goal:

compute a few of the largest or smallest singular values of a rectangular matrix  $A \in I\!\!R^{m \times n}$  and their associated singular vectors



• SVD of  $A \in \mathbb{R}^{m \times n}$ 

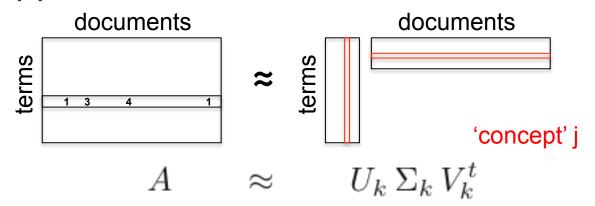
$$A = U \Sigma V^t$$
  $m \ge n$   $U \in IR^{m \times m}$   $U^t U = I_m$   $V \in IR^{n \times n}$   $V^t V = I_n$   $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_l \ge 0$   $l = \min(m, n)$ 

• for definiteness: we seek  $n_b$  dominant singular triplets  $(\sigma_i, u_i, v_i)$ 

$$A v_j = \sigma_j u_j,$$

$$A^t u_j = \sigma_j v_j.$$

- why interest in dominant singular triplets?
  - the k dominant triplets give the best rank-k approximation to A
  - applications: principal component analysis
  - applications: term-document matrices



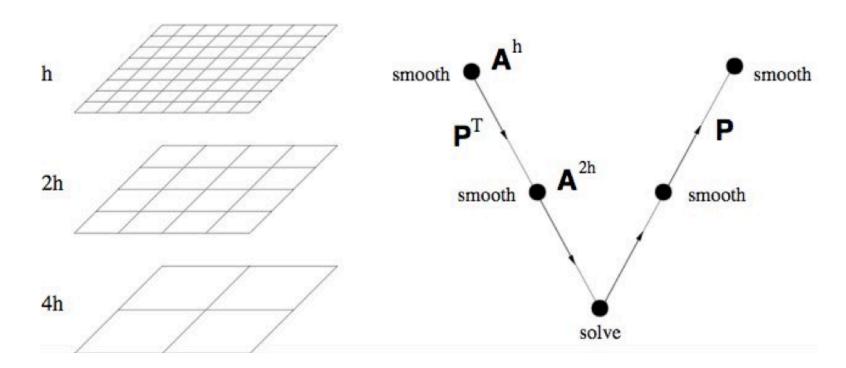
(note: nonnegative factorization is better)



- why consider (algebraic) multigrid (AMG) for dominant singular triplets?
  - for certain types of problems, multigrid may outperform other methods
  - because we can! ;-)
  - we would like to use AMG for accelerating
     "Alternating Least Squares" (=block nonlinear Gauss-Seidel) for Canonical Tensor
     Decomposition, and SVD is the simplest case



algebraic multigrid V-cycle





$$A = U \Sigma V^t$$

special case:

A symmetric positive definite (SPD)

$$A = V \Lambda V^t$$

$$A v_j = \lambda_j v_j$$

• our SVD approach will be applicable to SPD eigenproblem as a special case (or the other way around)  $\left( \begin{bmatrix} 0 & A \\ A^t & 0 \end{bmatrix} - \sigma \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix} = 0$ 

WATERLOO

### 1) AMG for minimal eigenpairs by Borzi and Borzi

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2006; 65:1186–1196
Published online 19 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1478

Algebraic multigrid methods for solving generalized eigenvalue problems

Alfio Borzì<sup>1,‡</sup> and Giuseppe Borzì<sup>2,\*,†</sup>

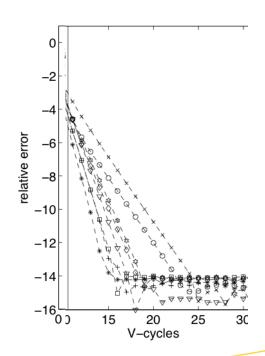
- based on MG eigenvalue algorithm from Brandt, McCormick and Ruge (1983)
- use standard AMG interpolation to build P (for elliptic PDE)
- P contains slow-to-converge near-nullspace components in its range (including 'small' eigenvectors)
- additive correction formula:  $v_j^{(i+1)} = v_j^{(i)} + P e_c$

### AMG for minimal eigenpairs by Borzi and Borzi

– additive correction formula:

$$v_j^{(i+1)} = v_j^{(i)} + P e_c$$

- plus: converges with high accuracy
- minus: not flexible, only works for small eigenvectors for 'standard' elliptic PDEs





### 2) adaptive 'bootstrap' AMG for minimal eigenpairs

-Brandt, Brannick, Kahl and Livshits

SIAM J. Sci. Comput. Vol. 33, No. 2, pp. 612-632 © 2011 Society for Industrial and Applied Mathematics

#### BOOTSTRAP AMG\*

A. BRANDT<sup>†</sup>, J. BRANNICK<sup>‡</sup>, K. KAHL<sup>§</sup>, AND I. LIVSHITS<sup>¶</sup>

-Kushnir, Galun and Brandt

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 32. NO. 8. AUGUST 2010

1277

## Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks

Dan Kushnir, Meirav Galun, and Achi Brandt

WATERLOO

#### adaptive 'bootstrap' AMG for minimal eigenpairs

- build P via bootstrap AMG (BAMG) approach
- P approximately fits <u>all</u> desired eigenvectors in its range ('exact interpolation scheme')
- multiplicative update formula:  $v_j^{(i+1)} = P \, v_{c,j}$

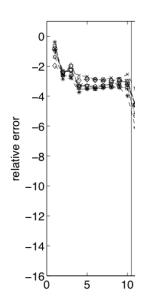


### adaptive 'bootstrap' AMG for minimal eigenpairs

multiplicative update formula:

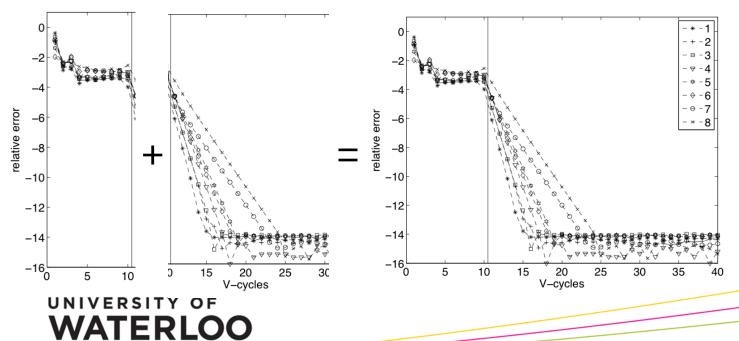
$$v_j^{(i+1)} = P v_{c,j}$$

- plus: flexible, adapts to eigenvectors sought
- minus: accuracy limited by accuracy by which the desired eigenvectors are collectively fitted by P



### our approach

- extend to SVD computation (including dominant triplets)



## 3. multiplicative phase: coarse-level equations

- goals of the multiplicative (setup) phase:
  - find  $n_b$  tentative dominant triplets  $(\sigma_j, u_j, v_j)$
  - determine interpolation operators P and Q that approximately contain the tentative singular vectors in their ranges collectively, on all levels



## multiplicative phase: coarse-level equations

• assume we know triplet  $(\sigma, u, v)$  satisfying

$$A v = \sigma u,$$
  $A \in \mathbb{R}^{m \times n}$   
 $A^t u = \sigma v.$ 

assume P and Q have u and v exactly in their

ranges: 
$$u = P u_c,$$
  $P \in \mathbb{R}^{m \times m_c}$   $Q \in \mathbb{R}^{n \times n_c}$ 

coarse equations:

$$P^{t} A Q v_{c} = \sigma P^{t} B P u_{c},$$
$$Q^{t} A^{t} P u_{c} = \sigma Q^{t} C Q v_{c},$$

$$B = I_m$$
  $C = I_n$ 

## multiplicative phase: coarse-level equations

• assume we know triplet  $(\sigma, u, v)$ 

$$A v = \sigma u,$$
  $u = P u_c,$   $P^t A Q v_c = \sigma P^t B P u_c,$   
 $A^t u = \sigma v.$   $v = Q v_c,$   $Q^t A^t P u_c = \sigma Q^t C Q v_c,$ 

define coarse-level operators and equations

$$A_c = P^t A Q,$$

$$B_c = P^t B P,$$

$$C_c = Q^t C Q,$$

$$A_c v_c = \sigma B_c u_c,$$

$$A_c^t u_c = \sigma C_c v_c.$$

- coarse level will help: solving coarse equations (cheaper) gives exact answer in one step!
- do this approximately, and recursively (V-cycle)



## 4. an 'uncommon' generalized SVD

recall generalized symmetric eigenvalue problem for

$$A, B \in \mathbb{R}^{m \times m} \ (B \text{ SPD})$$
  
 $A v = \lambda B v \qquad A = B V \Lambda V^t \qquad V^t B V = I_m$ 

we have to solve coarse-grid problem

$$A v = \sigma B u, \quad A \in \mathbb{R}^{m \times n}$$
  
 $A^t u = \sigma C v, \quad B \in \mathbb{R}^{m \times m} C \in \mathbb{R}^{n \times n} (B, C \text{ SPD})$ 

we have to generalize the SVD problem

$$A v = \sigma u,$$
  $A = U \Sigma V^t$   
 $A^t u = \sigma v.$ 

WATERLOO

## an 'uncommon' generalized SVD

$$A \in I\!\!R^{m \times n}$$
  $A v = \sigma B u,$   $A^t u = \sigma C v,$  (3.6)

DEFINITION 3.1 (Generalized singular value decomposition). The generalized singular value decomposition of  $A \in \mathbb{R}^{m \times n}$  with respect to  $B \in \mathbb{R}^{m \times m}$  and  $C \in \mathbb{R}^{n \times n}$ , with B and C SPD, is given by

$$A = B U \Sigma V^t C, (3.7)$$

with  $U \in \mathbb{R}^{m \times m}$ ,  $V \in \mathbb{R}^{n \times n}$  and  $\Sigma \in \mathbb{R}^{m \times n}$ . The columns of U are called the left generalized singular vectors, and the columns of V are called the right generalized singular vectors. They satisfy the orthogonality relations  $U^t B U = I_m = U B U^t$  and  $V^t C V = I_n = V C V^t$ . Matrix  $\Sigma$  has the  $l = \min(m, n)$  real nonnegative generalized singular values  $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_l \geq 0$  on its diagonal. Eqs. (3.6) are called the generalized singular value problem for matrix A with respect to matrices B and C.

this appears to be uncommon in the literature



## first way to compute the generalized SVD $A = BU \Sigma V^t C$ ,

Theorem 3.2. Generalized SVD (3.7) has the same existence and uniqueness properties as the standard SVD.

*Proof.* This follows from a simple change of variables: with

$$T = B^{1/2} U,$$
  
 $W = C^{1/2} V,$  (3.8)  
 $D = B^{-1/2} A C^{-1/2},$ 

generalized SVD (3.7) can be rewritten as a standard SVD

$$D = T \Sigma W^t. (3.9)$$



## second way to compute the generalized SVD $A = BU \Sigma V^t C$ ,

Theorem 3.3. Let  $A \in \mathbb{R}^{m \times n}$ ,  $B \in \mathbb{R}^{m \times m}$  and  $C \in \mathbb{R}^{n \times n}$ , with B and C SPD. Let  $l = \min(m, n)$ . Then generalized eigenvalue problem

$$\left( \begin{bmatrix} 0 & A \\ A^t & 0 \end{bmatrix} - \sigma \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix} = 0,$$
(3.13)

has m+n solution triplets  $(\sigma, u, v)$  with linearly independent eigenvectors  $[u^t v^t]^t \neq 0$ . There are l independent solutions with  $\sigma_j \geq 0$  and vectors  $u_j$  and  $v_j$  satisfying orthogonality relations  $u_j^t B u_i = \delta_{i,j}$  and  $v_j^t C v_i = \delta_{i,j}$  (j = 1, ..., l). The triplets  $(\sigma_j, u_j, v_j)$  are the generalized singular triplets of A with respect to B and C. Furthermore, there are l independent solutions  $(-\sigma_j, u_j, -v_j)$ . Finally, there are abs(m-n) = m+n-2l independent solutions with  $\sigma = 0$  and either u = 0 or v = 0.



## third way to compute the generalized SVD $A = BU \Sigma V^t C$ ,

$$(A^t B^{-1} A) v = \sigma^2 C v,$$
  
 $(A C^{-1} A^t) u = \sigma^2 B u.$ 

## 5. multiplicative phase: BAMG V-cycles

- find  $n_{b}$  tentative dominant triplets  $(\sigma_{j},u_{j},v_{j})$
- downwards sweep of first V-cycle: create coarse grids and coarse-level operators P, Q,  $A_c$ ,  $B_c$ ,  $C_c$  for all levels, using relaxation on  $n_t$  initially random test vectors

*n*<sub>t</sub> random test vectors

relax: 
$$A_c v_c = \sigma B_c u_c$$
,  $A_c^t u_c = \sigma C_c v_c$ .

build 
$$A_c$$
,  $B_c$ ,  $C_c$ :  $A_c = P^t A Q$ , 
$$B_c = P^t B P$$
, 
$$C_c = Q^t C Q$$
,

ho relax test vectors, coarsen, build *P, Q, A<sub>c</sub>, B<sub>c</sub>, C<sub>c</sub>* 

inject test vectors

relax test vectors, coarsen, build *P, Q, A<sub>c</sub>, B<sub>c</sub>, C<sub>c</sub>* 

inject test vectors

relax test vectors, coarsen, build P, Q,  $A_c$ ,  $B_c$ ,  $C_c$ 

inject test

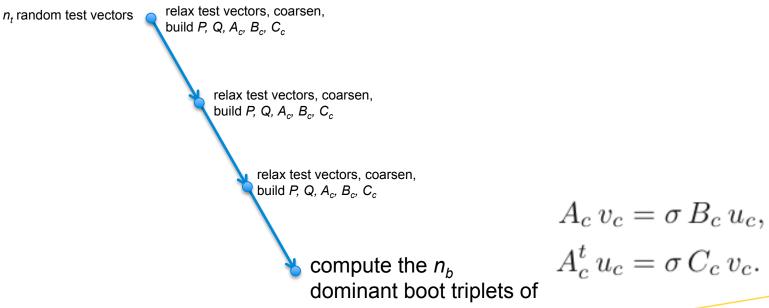
$$A_c v_c = \sigma B_c u_c,$$

$$A_c^t u_c = \sigma C_c v_c.$$

WATERLOO

## multiplicative phase: V-cycles

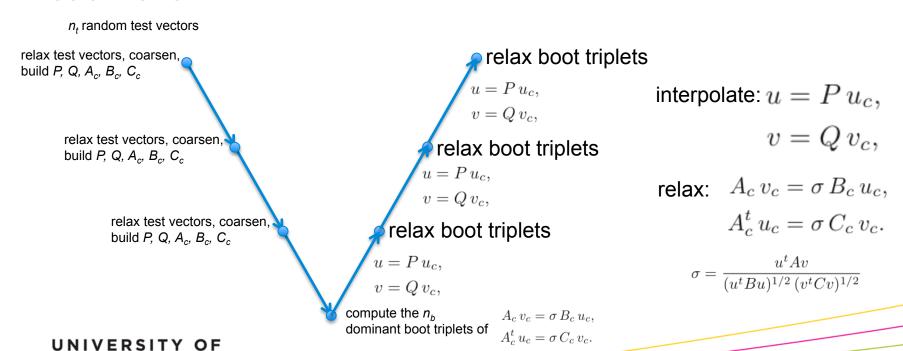
• on the coarsest level: solve the generalized SVD problem, and select the  $n_b$  dominant triplets  $(\sigma_j, u_j, v_j)$  as the first (coarse) approximations of the dominant triplets sought (we call these 'boot triplets')





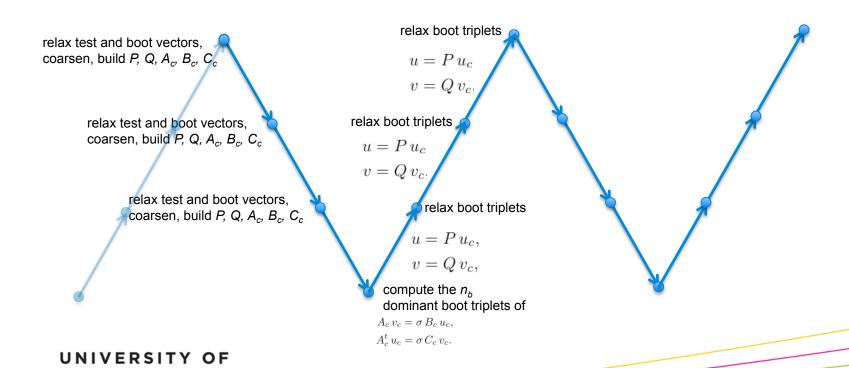
## multiplicative phase: V-cycles

• upward sweep of first V-cycle: interpolate the  $n_b$  boot triplets up to finer levels, and relax (first fix  $\sigma$  and find u or v, then update  $\sigma$  via Rayleigh quotient formula), on each level



## multiplicative phase: V-cycles

repeat V-cycles until convergence stagnates (P and Q represent the boot vectors u and v collectively up to some accuracy)



WATERLOO

### 6. multiplicative phase: relaxation

test vectors: power method on

$$A v = \sigma B u$$

$$A^t u = \sigma C v$$

with inexact inversion of B and C (weighted Jacobi):

$$A^t u_j = C \, \bar{v}_j,$$

$$v_j = \bar{v}_j / (\bar{v}_i^t C \bar{v}_j)^{1/2}$$

$$A v_i = B \bar{u}_i$$

$$u_j = \bar{u}_j / (\bar{u}_j^t B \bar{u}_j)^{1/2}$$

$$\bar{v}_j^{(i+1)} = \bar{v}_j^{(i)} - \omega_J D_C^{-1} \left( C \, \bar{v}_j^{(i)} - A^t \, u_j \right)$$

WATERLOO

### multiplicative phase: relaxation

• boot vectors: block Gauss-Seidel (fix  $\sigma$ ) on

$$A v = \sigma B u + \kappa,$$
  
$$A^t u = \sigma C v + \tau.$$

with inexact inversion of B and C (weighted Jacobi):

$$u_j^{(i+1)} = u_j^{(i)} - \omega_J D_B^{-1} (B u_j^{(i)} - (A v_j - \kappa)/\sigma_j).$$

update σ using Rayleigh quotient formula

$$\sigma = \frac{u^t A v}{(u^t B u)^{1/2} (v^t C v)^{1/2}}$$



## 7. multiplicative phase: building P and Q

- coarsening: use standard (one-pass) AMG coarsening on AA<sup>t</sup> for the u-variables, and on A<sup>t</sup>A for the v-variables (correlations ...)
- in the future: coarsen directly using A
- try 'general' strength of connection formula variable *i* is strongly influenced by variable *j*

$$|n_{i,j}| \ge \theta \sum_{k} |n_{i,k}|$$

 interpolation stencils for F-points are formed by strongly influencing C-points (sparsity of P and Q)



## multiplicative phase: building P and Q

- determine the weights in P and Q via least-squares fitting of the test (and boot) vectors (injected to the C-points)
- (for *P*) for each F-point *i*:

$$u_k^i = \sum_{j \in C_n^i} p_{i,j} u_{k,c}^j \quad (k = 1, \dots, n_f)$$

(one equation per test or booth vector *k*) (over-determined LS system: more test+boot vectors than size of largest stencil)

 larger weight for boot vectors than for test vectors (proportional to σ)

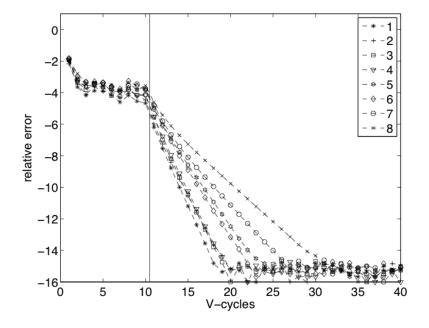


### OK, where are we...

 I have discussed how to do the first phase of the algorithm (multiplicative, find tentative triplets starting from random test vectors, build P and Q, bootstrap AMG)

I will now discuss the second phase (additive V-cycles, use 'frozen'

P and Q)





## 8. additive phase: V-cycles

- for each tentative boot triplet, keep  $\sigma$  fixed, improve u and v in additive-correction V-cycle
- coarse-level equations:

$$\begin{array}{ll}
A \, v_j - \sigma_j \, B \, u_j = \kappa_j, \\
A^t \, u_j - \sigma_j \, C \, v_j = \tau_j,
\end{array} \implies \begin{array}{ll}
A_c \, v_{j,c} - \sigma_j \, B_c \, u_{j,c} = P^t \, r_j, \\
A_c^t \, u_{j,c} - \sigma_j \, C_c \, v_{j,c} = Q^t \, s_j,
\end{array}$$

• correction formula:  $u_j^{(i+1)} = u_j^{(i)} + P u_{j,c},$   $v_j^{(i+1)} = v_j^{(i)} + Q v_j$ 

$$v_j^{(i+1)} = v_j^{(i)} + Q v_{j,c},$$

• P and Q from setup phase can be used: additive errors lie approximately in their ranges



## 9. additive phase: Ritz projection

- on the finest level, all boot triplets (including the σs) are updated after each set of V-cycles
- seek new  $u_j \in \mathcal{U}, v_j \in \mathcal{V}$  s.t

$$\langle u, A v_j - \sigma_j B u_j \rangle_B = 0 \quad \forall u \in \mathcal{U},$$
  
 $\langle v, A^t u_j - \sigma_j C v_j \rangle_C = 0 \quad \forall v \in \mathcal{V}.$ 

leads to very small generalized singular value problem

$$\left\langle y, \hat{U}^t A \hat{V} z_j - \sigma_j \hat{U}^t B \hat{U} y_j \right\rangle = 0 \quad \forall y \in \mathbb{R}^{m_c},$$
$$\left\langle z, \hat{V}^t A^t \hat{U} y_j - \sigma_j \hat{V}^t C \hat{V} z_j \right\rangle = 0 \quad \forall z \in \mathbb{R}^{n_c}.$$



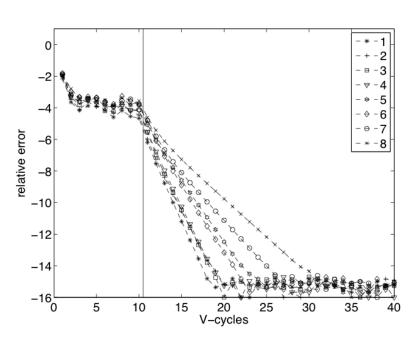
### 10. specializations and extensions

- square matrices (use A or A<sup>t</sup> for coarsening)
- SPD matrices: only need A, B, P
- minimal singular triplets and eigenpairs:
  - algorithm is self-learning (adaptive), so we only need to change the relaxation and the coarsest-level solves of the multiplicative phase
  - use Kaczmarz relaxation  $Av = \sigma B u + \kappa$ , on blocks of  $A^t u = \sigma C v + \tau$ .

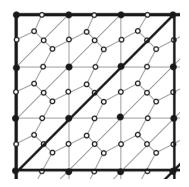


### 11. numerical results

1) high-order finite volume element Laplacian on unit square (square, nonsymmetric, 961x961)



largest singular values



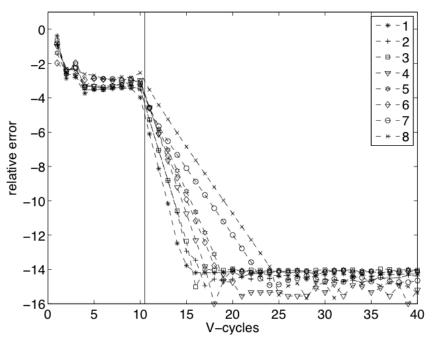
$$error = \frac{|\sigma_{exact} - \sigma_{approx}|}{\sigma_{exact}}$$

UNIVERSITY OF WATERLOC

(5 test vectors, V(4,4), θ=0.05, 4 levels, 45x45 coarsest)

### numerical results

high-order finite volume element Laplacian on unit square (square, nonsymmetric, 961x961)



smallest singular values

WATERLOO

(5 test vectors, V(4,4),  $\theta$ =0.05, 5 levels, 51x51 coarsest)

### numerical results

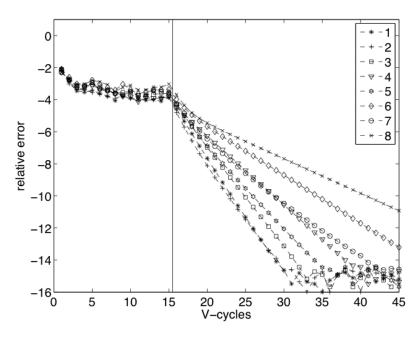
| FVE lge   | FVE sm     | FD lge    | FD sm      | Graph lge | Graph sm   | Term-Doc  |
|-----------|------------|-----------|------------|-----------|------------|-----------|
| 7.9791546 | 0.01924183 | 7.9818877 | 0.01811231 | 13.509036 | 0.01000000 | 84.148337 |
| 7.9491729 | 0.04794913 | 7.9548012 | 0.04519876 | 13.352613 | 0.03456116 | 64.707532 |
| 7.9468326 | 0.04801773 | 7.9548012 | 0.04519876 | 13.350454 | 0.03901593 | 55.976437 |
| 7.9172573 | 0.07655365 | 7.9277148 | 0.07228521 | 12.472837 | 0.07966567 | 50.265499 |
| 7.8965349 | 0.09557904 | 7.9099298 | 0.09007021 | 12.416200 | 0.09490793 | 49.265360 |
| 7.8960066 | 0.09558103 | 7.9099298 | 0.09007021 | 11.874669 | 0.09918138 | 45.242034 |
| 7.8692955 | 0.12359047 | 7.8828433 | 0.11715666 |           |            | 44.400811 |
| 7.8616683 | 0.12415144 | 7.8828433 | 0.11715666 |           |            | 41.772394 |

Table 6.1

Singular values and eigenvalues sought for each problem (high-accuracy approximations).



# 2) finite difference Laplacian on unit square (square, symmetric, 1024x1024)

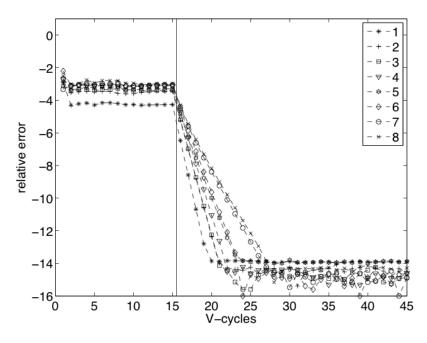


largest eigenvalues

(6 test vectors, V(8,8) test and V(4,4) boot, θ=0.06, 4 levels, 52x52 coarsest)



finite difference Laplacian on unit square (square, symmetric, 1024x1024)

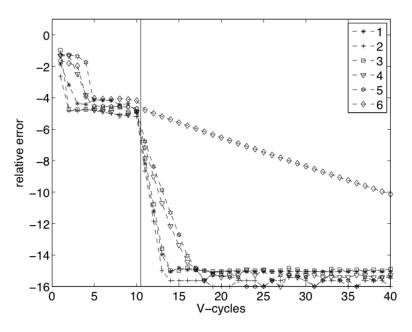


smallest eigenvalues

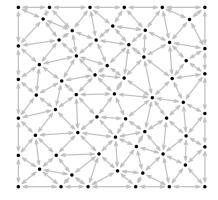


(6 test vectors, V(8,8) test and V(4,4) boot,  $\theta$ =0.06, 5 levels, 64x64 coarsest)

3) graph Laplacian on random triangular graph in unit square (square, symmetric, 1024x1024)



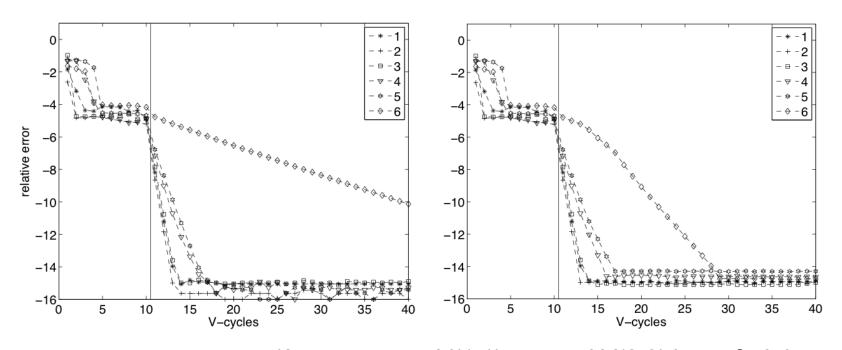
largest eigenvalues



WATERLOO

(6 test vectors, V(1,1) test and V(8,8) boot,  $\theta$ =0.05, 3 levels, 77x77 coarsest)

graph Laplacian on random triangular graph in unit square (square, symmetric, 1024x1024)



(6 test vectors, V(1,1) test and V(8,8) boot,  $\theta$ =0.05, 3 levels, 77x77 coarsest)



graph Laplacian on random triangular graph in unit square (square, symmetric, 1024x1024)

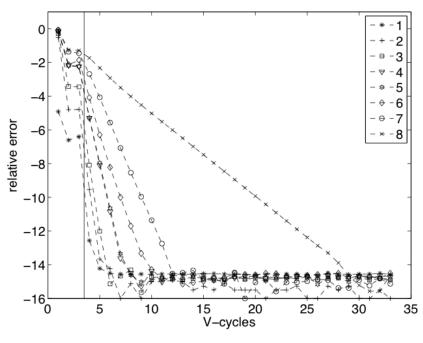


smallest eigenvalues

(6 test vectors, V(1,1) test and V(8,8) boot,  $\theta$ =0.05, 3 levels, 59x59 coarsest)



# 4) Medline tem-document matrix (rectangular, 5735x1033)



largest singular values

(14 test vectors, V(1,1) test and V(4,4) boot,  $\theta$ =0.03, 5 levels, 415x198 coarsest)



#### 12. conclusions

- self-learning, collective AMG algorithm to compute a few dominant or minimal singular triplets (or eigenpairs)
- multiplicative setup phase, additive solve phase
- seems to work pretty well
- there are many parameters, and robustness needs to be improved (how many test vectors, relaxations, 'miss' some eigenvalues, ...)



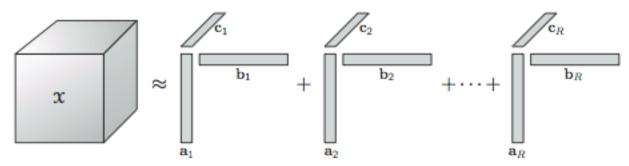
#### conclusions

- improve coarsening (on A, compatible relaxation, general graph coarsening, small-world, others ...)
- improve multiplicative phase ('adaptive' approach instead of bootstrap?)
- improve additive phase robustness (for example, use LOBPCG or RQMG instead of V-cycle+Ritz)
- approach is quite general (self-learning), high accuracy, so seems promising



#### conclusions

we can also do this for tensor decompositions!



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

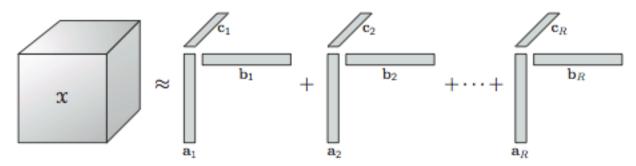
given tensor  $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$ , find rank-R canonical tensor  $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$  that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$



#### conclusions

we can also do this for tensor decompositions!



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

- three interpolation matrices P, Q and R
- multiplicative setup phase (geometric coarsening)
- FAS additive phase
- adaptive multigrid accelerates Alternating Least Squares (Killian Miller's Copper 2012 talk, my talk in Israel)



# thank you

# questions?

Hans De Sterck, 'A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs', SIAM J. Sci. Comput. 34, A2092-A2117, 2012

Hans De Sterck and Killian Miller, 'An adaptive algebraic multigrid algorithm for low-rank canonical tensor decomposition', SIAM J. Sci. Comput. 35, B1–B24, 2013



# 5. multiplicative phase: BAMG V-cycles

- find  $n_b$  tentative dominant triplets  $(\sigma_j, u_j, v_j)$
- start from n<sub>t</sub> random fine-level test vectors
- do relaxation on test vectors using the power method, to obtain first approximations for 'large' singular vectors:
  - start from random v
  - compute new u,  $\sigma$  via  $Av = \sigma u$ ,
  - compute new v,  $\sigma$  via  $A^t u = \sigma v$ .
  - repeat
- determine P and Q to fit the n<sub>t</sub> test vectors u and v collectively

$$u = P u_c,$$

$$v = Q v_c,$$

