High-Order Finite Volume Element Methods for Elliptic PDEs with Singularities, and Applications to Capillarity

Yasunori Aoki

University of Waterloo (now at Uppsala University)

Hans De Sterck

University of Waterloo

Laplace-Young Equation

$$\nabla \cdot \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = u \qquad \text{in } \Omega$$

$$\nu \cdot \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = \cos \gamma \qquad \text{on } \partial \Omega$$

In a domain with a sharp corner, the solution becomes unbounded. (Concus and Finn)

Overview

1. high-order finite volume element method (FVEM) for linear elliptic PDEs with singularities

2. FVEM for nonlinear capillary surfaces

1. high-order finite volume element method (FVEM) for linear elliptic PDEs with singularities

$$\Delta u = f(x, y) \quad \text{in } \Omega,$$

$$u = g(x, y) \quad \text{on } \partial \Omega,$$

FVEM idea

use FE trial functions integrated over FV control volumes (e.g., Bank and Rose 1987)

high-order FVEM: use high-order FE nodal trial functions... but which control volumes??

Fig. 3. Placement of nodes in an element triangle (p = 3).

high-order FVEM (Vogel, Xu and Wittum, 2010)

construct control volumes in a systematic way

sufficiently smooth solution (H_1) we can use standard FE trial space

$$S_p^h \coloneqq span\{\phi_1, \phi_2, \dots, \phi_{N_{node}}\}$$

model problem I:(smooth)

$$f(x, y) = 20 x^3 y^4 + 12 x^5 y^2 \text{ in } \Omega,$$
$$g(x, y) = x^5 y^4 \text{ on } \partial \Omega,$$

where domain Ω is a unit square domain. The exact solution is

$$u(x,y)=x^5y^4\quad\text{in }\Omega.$$

model problem I - standard trial space

Fig. 6. *H*¹ error convergence for the Poisson problem with 9th order polynomial exact solution (Model Problem 1).

(note: no general convergence theory)

model problem I - standard trial space

Fig. 7. L₂ error convergence for the Poisson problem with 9th order polynomial exact solution (Model Problem 1).

 $\|u - u^{h}\|_{H^{1}} = O(h^{p}),$ $\|u - u^{h}\|_{L_{2}} = \begin{cases} O(h^{p+1}) & \text{for } p = 1, 3, 5, 7, 8, \\ O(h^{p}) & \text{for } p = 2, 4, 6, \end{cases}$ suboptimal convergence in L₂ for even p (also on irregular grids) (compare DG)

model problem II - singular solution

Consider Poisson problem (1)-(2) with the following right hand side and boundary data:

$$f(x, y) = 20 x^{3} y^{4} + 12 x^{5} y^{2} \text{ in } \Omega,$$

$$g(x, y) = x^{5} y^{4} + 2 r^{\frac{2}{3}} \sin\left(\frac{2}{3}\theta\right) + 7 r^{\frac{4}{3}} \sin\left(\frac{4}{3}\theta\right) + r^{2} \{\ln r \sin(2\theta) + \theta \cos(2\theta)\}$$

$$+ 8 r^{\frac{8}{3}} \sin\left(\frac{8}{3}\theta\right) + 2 r^{\frac{10}{3}} \sin\left(\frac{10}{3}\theta\right) + 8 r^{4} \{\ln r \sin(4\theta) + \theta \cos(4\theta)\} \text{ on } \partial\Omega,$$
(10)

where domain Ω is as illustrated in Fig. 2, and r and θ are polar coordinates centred at the origin. The exact solution is

$$u(x, y) = x^5 y^4 + 2r^{\frac{2}{3}} \sin\left(\frac{2}{3}\theta\right) + 7r^{\frac{4}{3}} \sin\left(\frac{4}{3}\theta\right) + r^2 \{\ln r \sin(2\theta) + \theta \cos(2\theta)\}$$
$$+ 8r^{\frac{8}{3}} \sin\left(\frac{8}{3}\theta\right) + 2r^{\frac{10}{3}} \sin\left(\frac{10}{3}\theta\right) + 8r^4 \{\ln r \sin(4\theta) + \theta \cos(4\theta)\} \quad \text{in } \Omega.$$
(11)

Note that the *r*-directional derivative of u(x, y) blows up at the origin, but g(x, y) is analytic on $\partial \Omega$ since g(x, 0) = 0 and $g(0, y) = (-3/2y^2 + 12y^4)\pi$.

model problem II - standard trial space

Fig. 8. L₂ error convergence for the Poisson problem with 9th order polynomial exact solution on a randomly perturbed grid (Model Problem 1).

Fig. 9. H¹ error convergence for derivative blow-up singular solution (Model Problem 2).

model problem II - augmented trial space

 $\hat{S}_{p}^{h} := span\{\phi_{1}, \phi_{2}, \dots, \phi_{N_{node}}, \psi_{1,1}, \psi_{1,2}, \dots, \psi_{1,N_{s}}\}$

12 1

$$\sum_{j=1}^{N_{node}} c_j \int_{\partial \Omega_i} \nu \cdot \nabla \phi_j \, \mathrm{d}s + \sum_{j=1}^{N_s} k_j \int_{\partial \Omega_i} \nu \cdot \nabla \psi_{1,j} \, \mathrm{d}s = \int_{\Omega_i} f \, \mathrm{d}A \quad \forall i \in \mathcal{N}_{int}$$

note

te:
$$\int_{\Omega_i} \Delta \psi_{1,j} \, \mathrm{d}A = \int_{\partial \Omega_i} v \cdot \nabla \psi_{1,j} \, \mathrm{d}s = 0 \quad \forall i \in \mathcal{N}_{int}$$
 since $\Delta \psi_{1,j} = 0$

$$\sum_{j=1}^{N_{node}} c_j \int_{\partial \Omega_i} \nu \cdot \nabla \phi_j \, \mathrm{d}s = \int_{\Omega_i} f \, \mathrm{d}A \quad \forall i \in \mathcal{N}_{int}$$

model problem II - augmented trial space

$$\sum_{j=1}^{N_{node}} c_j \int_{\partial \Omega_i} v \cdot \nabla \phi_j \, \mathrm{ds} = \int_{\Omega_i} f \, \mathrm{dA} \quad \forall i \in \mathcal{N}_{int}$$

$$u \approx \hat{u}^h \coloneqq \sum_{i=1}^{N_{node}} c_i \phi_i + \sum_{i=1}^{N_s} k_i \psi_{1,i}$$

$$c_i + \sum_{j=1}^{N_s} k_j \psi_{1,j}(x_i, y_i) = g(x_i, y_i) \quad \forall i \in \mathcal{N}_{bound}$$

N_s extra control volumes are needed; chosen near the singularity

model problem II - augmented trial space

Fig. 10. *H*¹ error convergence for derivative blow-up singular solution with augmented trial function space (Model Problem 2).

2. FVEM for nonlinear capillary surfaces

Asymptotic Laplace-Young Equation

$$\nabla \cdot \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = u \qquad \qquad \nabla \cdot \frac{\nabla v}{|\nabla v|^2} = v \qquad \text{in } \Omega$$
$$\nu \cdot \frac{\nabla v}{|\nabla v|^2} = \cos \gamma \qquad \text{on } \partial \Omega$$

$$v(r,\theta) = \frac{\cos\theta - \sqrt{k^2 - \sin^2\theta}}{kr}$$

(Concus and Finn, Miersemann, and King et al.)

 $u(r,\theta) = v(r,\theta) + O(r^3)$ as $r \to 0$

(Miersemann)

Asymptotic Laplace-Young Equation

$$\nabla \cdot \frac{\nabla v}{|\nabla v|^2} = v \qquad \text{in } \Omega$$

$$\nu \cdot \frac{\nabla v}{|\nabla v|^2} = \cos \gamma \qquad \text{on } \partial \Omega$$

$$v(p,q) = Ap^2 - 2\sqrt{1 - A^2(q - q_0)^2} \ p - A(q - q_0)^2 + Aq_0^2$$

$$u(p,q) = v(p,q) + O(p^{-5})$$
 as $p \to \infty$

(Aoki M.Math thesis)

Asymptotic Analysis (general cases)

 $\gamma_1 + \gamma_2 \neq \pi$

$$\nabla \cdot \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = u \quad \text{in } \Omega$$

$$\nu \cdot \frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} = \cos \gamma \quad \text{on } \partial \Omega$$

after some calculation ...

$$u(x,y) = \frac{\cos \gamma_1 + \cos \gamma_2}{f_1(x) - f_2(x)} + O\left(\frac{f_1'(x) - f_2'(x)}{f_1(x) - f_2(x)}\right) \qquad \text{as } x \to 0^+$$

* some restrictions on f_1 and f_2 apply (Aoki and Siegel)

Asymptotic Analysis (summary)

Corner:
$$u(r,\theta) \approx \frac{\cos \theta - \sqrt{k^2 - \sin^2 \theta}}{kr}$$

Cusp:
$$u(x,y) \approx \frac{\cos \gamma_1 + \cos \gamma_2}{f_1(x) - f_2(x)}$$

Approximation only accurate near the singularity!

Finite Element Approximation

Basis Functions (p=1)

Standard Trial Function Expansion

$$u \approx u^h := \sum_{i=1}^{N_{\text{node}}} c_i \phi_i$$

Asymptotic Analysis

$$u = \frac{O(1)}{f_1(x) - f_2(x)}$$

(1) Change of Variable

Bounded function

$$u = \frac{v}{f_1(x) - f_2(x)}$$

Unbounded function

(2) Change of Coordinates

Finite Volume Element method

Finite Volume Method Control Volumes

$$\int_{\partial\Omega_{j}\setminus\partial\Omega} \nu \cdot \frac{\sum_{i=1}^{N_{\text{node}}} c_{i} \nabla \left(\frac{\phi_{i}}{f_{1}(x) - f_{2}(x)}\right)}{\sqrt{1 + |\sum_{i=1}^{N_{\text{node}}} c_{i} \nabla \left(\frac{\phi_{i}}{f_{1}(x) - f_{2}(x)}\right)|^{2}}} ds + \int_{\partial\Omega_{j}\cap\partial\Omega} \cos\gamma ds$$
$$= \int_{\Omega_{j}} \sum_{i=1}^{N_{\text{node}}} c_{i} \left(\frac{\phi_{i}}{f_{1}(x) - f_{2}(x)}\right) dA \qquad \text{for } j = 1, 2, \dots, N_{\text{node}}$$

Convergence Study

(Asymptotic Laplace-Young Equation in a Corner domain)

- + Regular Trial Function + Regular Coordinate
- Asymptotic Anslysis inspired Trial Function + Regular Coordinate
- Regular Trial Function + Curvilinear Coordinate
- ★ Asymptotic Anslysis inspired Trial Function + Curvilinear Coordinate

Convergence Study

(Asymptotic Laplace-Young Equation in a Corner domain)

	Without Change of Variable	With Change of Variable
Regular Coordinates	Linear	Linear
Curvilinear Coordinates	Linear	Quadratic

Convergence Study (Asymptotic Laplace-Young Equation in a Circular Cusp domain)

FEM with change of coordinates and without change of variable
 FVEM with change of coordinates and without change of variable

• FEM with change of coordinates and with change of variable

 \bigstar FVEM with change of coordinates and with change of variable

Numerical Experiment

(Finite Volume Element approximation with change of variable and with change of coordinates)

Numerical Experiment

(Finite Volume Element approximation with change of variable and with change of coordinates)

Numerical Experiment

(Finite Volume Element approximation with change of variable and with change of coordinates)

Asymptotic Analysis

Change of Variable + Curvilinear Coordinate System

Finite Volume Element method or Finite Element method

Numerical Approximation valid for the entire domain