High-Order Finite Volume Element Methods for Elliptic PDEs with Singularities, and Applications to Capillarity

Yasunori Aoki
University of Waterloo
(now at Uppsala University)

Hans De Sterck
University of Waterloo

Laplace-Young Equation

$$
\begin{array}{cl}
\nabla \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=u & \text { in } \Omega \\
\nu \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=\cos \gamma & \text { on } \partial \Omega
\end{array}
$$

Liquid Surface at a corner

Liquid Surface at a corner

Liquid Surface at a corner

Liquid Surface at a corner

Liquid Surface at a corner

Liquid Surface at a corner

In a domain with a sharp corner, the solution becomes unbounded. (Concus and Finn)

Overview

1. high-order finite volume element method (FVEM) for linear elliptic PDEs with singularities
2. FVEM for nonlinear capillary surfaces
3. high-order finite volume element method (FVEM) for linear elliptic PDEs with singularities

$$
\begin{aligned}
& \Delta u=f(x, y) \quad \text { in } \Omega \\
& u=g(x, y) \quad \text { on } \partial \Omega
\end{aligned}
$$

FVEM idea

use FE trial functions integrated over FV control volumes (e.g., Bank and Rose 1987)

high-order FVEM: use high-order FE nodal trial functions... but which control volumes??

Fig. 3. Placement of nodes in an element triangle $(p=3)$.

high-order FVEM (Vogel, Xu and Wittum, 2010)

Step 1

Step 2

Step 5

Step 4
construct control volumes in a systematic way

FVEM formulation

$$
\begin{aligned}
& \Delta u=f(x, y) \quad \text { in } \Omega, \\
& u=g(x, y) \quad \text { on } \partial \Omega,
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\Omega_{\alpha}} \Delta u \mathrm{~d} A=\int_{\Omega_{\alpha}} f \mathrm{~d} A \\
& \int_{\partial \Omega_{\alpha}} v \cdot \nabla u \mathrm{~d} s=\int_{\Omega_{\alpha}} f \mathrm{~d} A
\end{aligned}
$$

$$
\sum_{i=1}^{N_{\text {node }}} c_{j} \int_{\partial \Omega_{i}} v \cdot \nabla \phi_{j} \mathrm{~d} s=\int_{\Omega_{i}} f \mathrm{~d} A \quad \forall i \in \mathcal{N}_{\text {int }}
$$

$$
u^{h}\left(x_{i}, y_{i}\right)=\sum_{j=1}^{N_{\text {node }}} c_{j} \phi_{j}\left(x_{i}, y_{i}\right)=c_{i}=g\left(x_{i}, y_{i}\right) \quad \forall i \in \mathcal{N}_{\text {bound }}
$$

sufficiently smooth solution $\left(\mathrm{H}_{1}\right)$

we can use standard FE trial space

$$
S_{p}^{h}:=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N_{\text {node }}}\right\}
$$

model problem I: (smooth)

$$
\begin{aligned}
& f(x, y)=20 x^{3} y^{4}+12 x^{5} y^{2} \quad \text { in } \Omega, \\
& g(x, y)=x^{5} y^{4} \quad \text { on } \partial \Omega,
\end{aligned}
$$

where domain Ω is a unit square domain. The exact solution is

$$
u(x, y)=x^{5} y^{4} \quad \text { in } \Omega .
$$

model problem I - standard trial space

Fig. 6. H^{1} error convergence for the Poisson problem with 9th order polynomial exact solution (Model Problem 1).
(note: no general convergence theory)

model problem I - standard trial space

Fig. 7. L_{2} error convergence for the Poisson problem with 9th order polynomial exact solution (Model Problem 1).

$$
\begin{aligned}
& \left\|u-u^{h}\right\|_{H^{1}}=O\left(h^{p}\right) \\
& \left\|u-u^{h}\right\|_{L_{2}}= \begin{cases}O\left(h^{p+1}\right) & \text { for } p=1,3,5,7,8 \\
O\left(h^{p}\right) & \text { for } p=2,4,6,\end{cases}
\end{aligned}
$$

suboptimal convergence in L_{2} for even p (also on irregular grids) (compare DG)

model problem II - singular solution

Consider Poisson problem (1)-(2) with the following right hand side and boundary data:

$$
\begin{align*}
f(x, y)= & 20 x^{3} y^{4}+12 x^{5} y^{2} \quad \text { in } \Omega \tag{9}\\
g(x, y)= & x^{5} y^{4}+2 r^{\frac{2}{3}} \sin \left(\frac{2}{3} \theta\right)+7 r^{\frac{4}{3}} \sin \left(\frac{4}{3} \theta\right)+r^{2}\{\ln r \sin (2 \theta)+\theta \cos (2 \theta)\} \\
& +8 r^{\frac{8}{3}} \sin \left(\frac{8}{3} \theta\right)+2 r^{\frac{10}{3}} \sin \left(\frac{10}{3} \theta\right)+8 r^{4}\{\ln r \sin (4 \theta)+\theta \cos (4 \theta)\} \text { on } \partial \Omega \tag{10}
\end{align*}
$$

where domain Ω is as illustrated in Fig. 2, and r and θ are polar coordinates centred at the origin. The exact solution is

$$
\begin{align*}
u(x, y)= & x^{5} y^{4}+2 r^{\frac{2}{3}} \sin \left(\frac{2}{3} \theta\right)+7 r^{\frac{4}{3}} \sin \left(\frac{4}{3} \theta\right)+r^{2}\{\ln r \sin (2 \theta)+\theta \cos (2 \theta)\} \\
& +8 r^{\frac{8}{3}} \sin \left(\frac{8}{3} \theta\right)+2 r^{\frac{10}{3}} \sin \left(\frac{10}{3} \theta\right)+8 r^{4}\{\ln r \sin (4 \theta)+\theta \cos (4 \theta)\} \text { in } \Omega \tag{11}
\end{align*}
$$

Note that the r-directional derivative of $u(x, y)$ blows up at the origin, but $g(x, y)$ is analytic on $\partial \Omega$ since $g(x, 0)=0$ and $g(0, y)=\left(-3 / 2 y^{2}+12 y^{4}\right) \pi$.

model problem II - standard trial space

Fig. 8. L_{2} error convergence for the Poisson problem with 9th order polynomial exact solution on a randomly perturbed grid (Model Problem 1).

Fig. 9. H^{1} error convergence for derivative blow-up singular solution (Model Problem 2).

model problem II - augmented trial space

$\hat{S}_{p}^{h}:=\operatorname{span}\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N_{\text {node }}}, \psi_{1,1}, \psi_{1,2}, \ldots, \psi_{1, N_{s}}\right\}$

$$
u \approx \hat{u}^{h}:=\sum_{i=1}^{N_{\text {node }}} c_{i} \phi_{i}+\sum_{i=1}^{N_{s}} k_{i} \psi_{1, i}
$$

$$
\begin{aligned}
& \psi_{1,1}=r^{\frac{2}{3}} \sin \left(\frac{2}{3} \theta\right) \\
& \psi_{1,2}=r^{\frac{4}{3}} \sin \left(\frac{4}{3} \theta\right) \\
& \psi_{1,3}=r^{2}\{\ln r \sin (2 \theta)+\theta \cos (2 \theta)\}
\end{aligned}
$$

$$
\sum_{j=1}^{N_{\text {node }}} c_{j} \int_{\partial \Omega_{i}} v \cdot \nabla \phi_{j} \mathrm{~d} s+\sum_{j=1}^{N_{s}} k_{j} \int_{\partial \Omega_{i}} v \cdot \nabla \psi_{1, j} \mathrm{~d} s=\int_{\Omega_{i}} f \mathrm{~d} A \quad \forall i \in \mathcal{N}_{\text {int }}
$$

note: $\int_{\Omega_{i}} \Delta \psi_{1, j} \mathrm{~d} A=\int_{\partial \Omega_{i}} \nu \cdot \nabla \psi_{1, j} \mathrm{~d} s=0 \quad \forall i \in \mathcal{N}_{\text {int }} \quad$ since $\quad \Delta \psi_{1, j}=0$

$$
\sum_{j=1}^{N_{\text {node }}} c_{j} \int_{\partial \Omega_{i}} \nu \cdot \nabla \phi_{j} \mathrm{~d} s=\int_{\Omega_{i}} f \mathrm{~d} A \quad \forall i \in \mathcal{N}_{\text {int }}
$$

model problem II - augmented trial space

$$
\begin{aligned}
& \sum_{j=1}^{N_{\text {node }}} c_{j} \int_{\partial \Omega_{i}} \nu \cdot \nabla \phi_{j} \mathrm{~d} s=\int_{\Omega_{i}} f \mathrm{~d} A \quad \forall i \in \mathcal{N}_{\text {int }} \\
& c_{i}+\sum_{j=1}^{N_{s}} k_{j} \psi_{1, j}\left(x_{i}, y_{i}\right)=g\left(x_{i}, y_{i}\right) \quad \forall i \in \mathcal{N}_{\text {bound }}
\end{aligned}
$$

N_{s} extra control volumes are needed; chosen near the singularity

model problem II - augmented trial space

Fig. 10. H^{1} error convergence for derivative blow-up singular solution with augmented trial function space (Model Problem 2).

2. FVEM for nonlinear capillary surfaces

Cusp

$$
\Omega=\left\{(x, y): 0<x, f_{2}(x)<y<f_{1}(x)\right\}
$$

Asymptotic Laplace-Young Equation

$\nabla \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=u$

$$
\begin{array}{cl}
\nabla \cdot \frac{\nabla v}{|\nabla v|^{2}}=v & \text { in } \Omega \\
\nu \cdot \frac{\nabla v}{|\nabla v|^{2}}=\cos \gamma & \text { on } \partial \Omega
\end{array}
$$

$$
v(r, \theta)=\frac{\cos \theta-\sqrt{k^{2}-\sin ^{2} \theta}}{k r}
$$

(Concus and Finn, Miersemann, and King et al.)

$$
u(r, \theta)=v(r, \theta)+O\left(r^{3}\right) \quad \text { as } r \rightarrow 0
$$

(Miersemann)

Asymptotic Laplace-Young Equation

$$
\begin{array}{cl}
\nabla \cdot \frac{\nabla v}{|\nabla v|^{2}}=v & \text { in } \Omega \\
\nu \cdot \frac{\nabla v}{|\nabla v|^{2}}=\cos \gamma & \text { on } \partial \Omega
\end{array}
$$

$$
\begin{aligned}
& v(p, q)=A p^{2}-2 \sqrt{1-A^{2}\left(q-q_{0}\right)^{2}} p-A\left(q-q_{0}\right)^{2}+A q_{0}^{2} \\
& u(p, q)=v(p, q)+O\left(p^{-5}\right) \quad \text { as } p \rightarrow \infty
\end{aligned}
$$

(Aoki M.Math thesis)

Asymptotic Analysis

(general cases)

$$
\begin{aligned}
& \nu \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=\cos \gamma \quad \text { on } \partial \Omega \\
& \gamma_{1}+\gamma_{2} \neq \pi \\
& u(x, y)=\frac{\cos \gamma_{1}+\cos \gamma_{2}}{f_{1}(x)-f_{2}(x)}+O\left(\frac{f_{1}^{\prime}(x)-f_{2}^{\prime}(x)}{f_{1}(x)-f_{2}(x)}\right) \quad \text { as } x \rightarrow 0^{+} \\
& \text {* some restrictions on } f_{1} \text { and } f_{2} \text { apply } \\
& \text { (Aoki and Siegel) }
\end{aligned}
$$

$$
\nabla \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=u \quad \text { in } \Omega
$$

Asymptotic Analysis

```
(summary)
```

Corner:

$$
u(r, \theta) \approx \frac{\cos \theta-\sqrt{k^{2}-\sin ^{2} \theta}}{k r}
$$

Cusp:

$$
u(x, y) \approx \frac{\cos \gamma_{1}+\cos \gamma_{2}}{f_{1}(x)-f_{2}(x)}
$$

Approximation only accurate near the singularity!

Finite Element Approximation

Basis Functions $(p=1)$

Standard Trial Function Expansion

$$
u \approx u^{h}:=\sum_{i=1}^{N_{\mathrm{node}}} c_{i} \phi_{i}
$$

Asymptotic Analysis

$$
u=\frac{O(1)}{f_{1}(x)-f_{2}(x)}
$$

(1) Change of Variable

Bounded function

$$
u=\frac{v}{f_{1}(x)-f_{2}(x)}
$$

Unbounded function

(2) Change of Coordinates

Finite Volume Element method

Finite Element Expansion

Finite Volume Method Control Volumes

$$
\begin{aligned}
& \int_{\partial \Omega_{j} \backslash \partial \Omega} \nu \cdot \frac{\sum_{i=1}^{N_{\text {node }}} c_{i} \nabla\left(\frac{\phi_{i}}{f_{1}(x)-f_{2}(x)}\right)}{\sqrt{1+\left|\sum_{i=1}^{N_{\text {node }}} c_{i} \nabla\left(\frac{\phi_{i}}{f_{1}(x)-f_{2}(x)}\right)\right|^{2}}} d s+\int_{\partial \Omega_{j} \cap \partial \Omega} \cos \gamma d s \\
& =\int_{\Omega_{j}} \sum_{i=1}^{N_{\text {node }}} c_{i}\left(\frac{\phi_{i}}{f_{1}(x)-f_{2}(x)}\right) d A \\
& \quad \text { for } j=1,2, \ldots, N_{\text {node }}
\end{aligned}
$$

Convergence Study

(Asymptotic Laplace-Young Equation in a Corner domain)

+ Regular Trial Function + Regular Coordinate
- Asymptotic Anslysis inspired Trial Function + Regular Coordinate
- Regular Trial Function + Curvilinear Coordinate
* Asymptotic Anslysis inspired Trial Function + Curvilinear Coordinate

Convergence Study

(Asymptotic Laplace-Young Equation in a Corner domain)

	Without Change of Variable	With Change of Variable
Regular Coordinates	Linear	Linear
Curvilinear Coordinates	Linear	Quadratic

Convergence Study
 (Asymptotic Laplace-Young Equation in a Circular Cusp domain)

+ FEM with change of coordinates and without change of variable
마
FVEM with change of coordinates and without change of variable

4 \qquad

- FEM with change of coordinates and with change of variable
* FVEM with change of coordinates and with change of variable

Numerical Experiment

(Laplace Young Equation in a Corner domain)

$$
\begin{aligned}
& \nabla \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=u \quad \text { in } \Omega \\
& \nu \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=\cos \gamma \quad \text { on } \partial \Omega
\end{aligned}
$$

Numerical Experiment

(Finite Volume Element approximation with change of variable and with change of coordinates)

Numerical Experiment

(Laplace Young Equation in a Corner domain)

$$
\begin{aligned}
& \nabla \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=u \quad \text { in } \Omega \\
& \nu \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=\cos \gamma \quad \text { on } \partial \Omega
\end{aligned}
$$

Numerical Experiment

(Finite Volume Element approximation with change of variable and with change of coordinates)
_ Leading order term of the asymptotic solution

* Numerical solution

Numerical Experiment

(Laplace-Young Equation in a Cusp Domain)

$$
\begin{aligned}
& \nabla \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=u \quad \text { in } \Omega \\
& \nu \cdot \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=\cos \gamma \quad \text { on } \partial \Omega
\end{aligned}
$$

Numerical Experiment

(Finite Volume Element approximation with change of variable and with change of coordinates)

Asymptotic Analysis

Change of Variable + Curvilinear Coordinate System

Finite Volume Element method or
Finite Element method

Numerical Approximation valid for the entire domain

