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3D Gnomonic Cubed-Sphere Grids
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Potential Benefits of High-Order AMR Approaches

Linear reconstruction on
uniform mesh

Cubic reconstruction with AMR
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Ideal Magnetohydrodynamics (MHD) Equations

Flow Governed by 3D Compressible MHD Equations
perfectly-conducting single-species fluid, isotropic pressure,
magnetized inviscid compressible perfect gas (i.e. p = ⇢RT )
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Main Challenges to the Numerical Discretization
Maintain physical solution (e.g. positive pressure & density)
Provide both solution accuracy and monotonicity even in the presence
of discontinuous solutions (e.g. shocks, contacts)
Avoid shockwave instabilities (e.g. carbuncle phenomenon)
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Ideal Magnetohydrodynamics (MHD) Equations
Approaches to Deal with the Divergence Constraint Condition, r · ~B=0

Powell Source Term (Powell et. al., 1999)

S = �r · ~B
⇥

0, ~B, ~V , ~V · ~B
⇤T

8-wave MHD system that is symmetric and Galilean invariant
�1,2=vx ± cfx, �3,4=vx ± cAx, �5,6=vx ± csx, �7,8=vx

Numerical error in r · ~B is convected out of the domain by �8=vx

Divergence Correction Technique: Generalized
Lagrange Multiplier (GLM)-MHD (Dedner et al., 2002)
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Solve an extra transport equation for the GLM,  
�8,9=±ch, the largest eigenvalue in the domain
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Discretizations of Spherical Domains
Several Options in the Literature

Latitude-longitude grid constructs

Cubed sphere

Cartesian cut-cell approach

Geodesic grid
(e.g. icosahedron)
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3D Cubed-Sphere Multi-Block Mesh in CFFC
Adequate Data Structured Required to Handle the Complex Block Connectivity

Cross-section of the cubed-sphere grid (left) and illustration of
connectivity among blocks (right)
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Computational Elements (Cells, Control Volumes)
Accurate Geometry Representation Required for High-Order Schemes

Representative hexa for 3D cubed-sphere grids

Examples of 2D quadrilaterals with straight and curved edges
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Parallel Implicit AMR Finite-Volume Framework
Finite-Volume Formulation

General System of Conservation Laws
@U

@t
+ ~r · ~F = S + Q

Semi-Discrete Integral Form for Hexahedral Cell (i,j,k)
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i,j,k =Ri,j,k(U)

Primary Steps to Obtaining Numerical Solution
Solution reconstruction: limited piecewise linear approximation
Spatial residual computation:

Interface flux evaluation: hyperbolic (& elliptic fluxes)
Source term integration

Time Integration: evolve solution forward in time
Multi-stage explicit time marching schemes (e.g., RK2, RK4)
Parallel implicit NKS algorithm (Northrup & Groth, 2009)
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Parallel Implicit AMR Finite-Volume Framework
Linear Least-Squares Reconstruction (Barth, 1993) on Cubed-Sphere Grids

Linear Reconstruction of Primitive Variables
Wi,j,k(~x) = Wi,j,k + �i,j,k ~rW · (~x �~xi,j,k)
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Parallel Implicit AMR Finite-Volume Framework
Inviscid (Hyperbolic) Flux Evaluation

Numerical Flux Evaluation for Calculating Ri,j,k(U)

Solve a Riemann problem at each integration point to provide
upwinding

~
FH= ~FH (UL,UR,~n)=

1
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⇣
~
FH (UR,~n)+~FH (UL,~n)

⌘
� 1

2

��A (UR,UL,~n)
�� (UR�UL)

Riemann Solvers: HLLE, Lax-Friedrichs, Linde’s

Some Riemann solvers use only the fastest and slowest waves

There are six flux evaluation points for a hexahedral cell
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Parallel Implicit AMR Finite-Volume Framework
Parallel Implicit Algorithm

Inexact Newton’s Method
Semi-discrete form of the governing equations for steady flows

R(U) = 0 (1)

Apply Newton’s method to solve Eq. (1) for U

✓
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n+1 = U
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Solve at each Newton step the sparse linear system of Eq. (2)
Jx = b

using a preconditioned iterative linear solver (GMRES) which is
not fully converged
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Parallel Implicit AMR Finite-Volume Framework
Mechanics of Block-Based AMR (Simple 2D Example)

Berger (1984); Berger & Colella (1989); Quirk (1991); De Zeeuw &
Powell (1993); Quirk & Hanebutte (1993); Berger & Saltzman (1994);
Groth et al. (1999, 2000); Keppens et al. (2011)

AMR algorithm for multi-block body-fitted mesh: Sachdev et al. (2005);
Northrup & Groth (2005); Gao & Groth (2008, 2010);
Ivan & Groth (2007, 2011)

Prof. Hans De Sterck University of Waterloo SSCG 3D Parallel High-Order AMR Simulation Framework 18



Parallel Implicit AMR Finite-Volume Framework
3D Block-Based AMR (Berger, 1984; Gao & Groth, 2010)

Mesh refinement by division and
coarsening of self-similar structured
blocks (hexahedral cells)

Solution transfer among blocks via
overlapping ghost cells

Hierarchical octree data structure
provides block connectivity

Permits local refinement of mesh

Physics-based refinement criteria
(e.g. ✏1 / |~r⇢|, ✏2 / |~r·~V |, ✏3 / |~r⌦~V |)
Permits parallel implementation via
domain decomposition

Highly efficient load balancing is
obtained by equally distributing the
solution blocks among CPUs
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Parallel Implicit AMR Finite-Volume Framework
3D AMR on Cubed-Sphere Grid

CFFC Implementation
Truly 3D AMR (also used as block-multiplication procedure)

Body-fitted mesh by constraining the points on the boundary spheres
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Parallel Implicit AMR Finite-Volume Framework
Transparent Reconstruction for Blocks of Different Resolution

Linear Reconstruction of Primitive Variables
Wi,j,k(~x) = Wi,j,k + �i,j,k ~rW · (~x �~xi,j,k)
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Transparent Implementation At Block Boundaries

Goals: Have Transparency At Block Boundaries For
high-order accurate fluxes
adaptivity
implicit time integration
parallelisation
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Transparent Implementation At Block Boundaries

Technical Details
unstructured root block connectivity
consistently keep track of (i, j, k) orientation ordering
k-exact least-squares with variable stencil size
collapsed ghost cells at degenerated corners
limit mesh resolution change to factor 2
parallel domain decomposition with self-similar soln. blocks
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Extension to High-Order Accuracy

Overview Idea of the High-Order MHD Algorithm
Apply a high-order CENO approach (Ivan & Groth, 2007)
(initially proposed for 2D inviscid and viscous flows, but not for MHD)
Use CENO + GLM-MHD (Dedner et al., 2002) to satisfy r · ~B = 0

Central Essentially Non-Oscillatory (CENO) Idea
ENO Property: Spurious oscillations proportional to the size of the
jump at points of discontinuity are NOT allowed (i.e. no Gibbs-like
phenomenon ) but they may exist on the order of truncation error.
Combine an unlimited k-exact reconstruction with a monotonicity
preserving limited linear (k=1) scheme
Use a single (central) stencil for reconstruction

Hybrid method: use a smoothness indicator to switch between
reconstruction procedures

Note: ENO scheme on a fixed central stencil have been explored in 1D
by Harten & Chakravarthy, 1991
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CENO High-Order Finite-Volume Formulation
2D Algorithm on Quadrilateral Elements

General System of Conservation Laws
@U

@t
+ ~r · ~F = S + Q

Semi-Discrete Integral Form for Quadrilateral Element
dUi,j

dt
= � 1

Ai,j

I

⌦

~
F ·~n d`+

1
Ai,j

ZZ

A

(S + Q) da = Ri,j(U)

Primary Steps to Obtaining Numerical Solution
Solution reconstruction: high-order piecewise polynomials
High-order spatial residual computation:

Interface flux evaluation: hyperbolic & elliptic fluxes
Source term integration

Time Integration: evolve solution forward in time
Multi-stage explicit time marching schemes (e.g., RK2, RK4)
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CENO High-Order Finite-Volume Formulation
High-Order Spatial Discretization Procedure

Requires More Accurate Evaluation of Ri,j(U)

More accurate calculation of flux and source term integrals

1
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⌦

~
F ·~n d` =

1
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NfX

l=1

NGX

m=1

⇣
!~F ·~n �`

⌘

i,j,l,m

Solution ) Use more Gauss quadrature points (NG � 2)

More accurate numerical flux at each integration point
Upwinding hyperbolic flux by solving a Riemann problem

~
FH = ~FH (UL,UR,~n)

Solution ) Evaluate U more accurately at faces of
computational cells (i.e., high-order solution reconstruction)
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Central ENO (CENO) Reconstruction in 3D

Piecewise polynomial approximation for solution:

Wk
i,j,(~r) =

kX

p1=0

kX

p2=0

kX

p3=0
(p1+p2+p3k)

(x � x̄i,j,)
p1 (y � ȳi,j,)

p2 (z � z̄i,j,)
p3 Dk

p1p2p3

Use a trilinear interpolation to represent skewed hexas accurately
Compute all volume and face integrals based on the trilinear mapping
Use a supporting stencil to determine Dp1p2p3 (e.g., maximum 125 cells
for cubic and quartic polynomials)
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Numerical Results in 2D
Supersonic Flow Past Cylinder at M1=2.1 Final mesh: 2,150 10⇥10 blocks

Predicted pressure distribution obtained using the 4th-order CENO scheme
on final refined AMR mesh and regions of limited and unlimited reconstruction
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Numerical Results in 2D
Superfast Rotating Outflow from the Cylinder
Ri =1, Ro =6, Inflow: ⇢=1, p=1, Vr =3, V✓=1, Br =1

Predicted density distribution obtained using the 4th-order CENO scheme
with GLM-MHD on a 80⇥80 mesh (left).
Error norms in the predicted solution entropy (right).
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Numerical Results in 2D
MHD Shu-Osher’s Shock Tube at 45� Relative to Grid
Interaction of sinusoidal density variation with moving shockwave

Comparison of predicted density distributions obtained using the 4th-order
CENO and the 2nd-order schemes in combination with GLM-MHD.
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Numerical Results in 3D
Transonic Wind on AMR Mesh Ri =1, Ro =10, GM⇤=14, Inflow: ⇢=5, p=23

Predicted Mach number distribution obtained on the adapted cubed-sphere
mesh (left). Comparison of flow properties in the X-axis direction relative to a
highly-accurate 1D “exact solution” (right).
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Numerical Results in 3D
Time-Invariant Solar Wind Ri =1, Ro =100, �=5/3, ns = 1.4⇥108cm�3, Ts = 2.0⇥106K

Solar wind conditions based on the model of Groth et al., 2000
Magnetic field strength: 8.4 G at the poles and 2.2 G at the equator.
Differential heating in closed and open field line regions
The actual simulation had the magnetic and rotational axes aligned.
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Numerical Results in 3D
Time-Invariant Solar Wind Ri =1, Ro =30, �=5/3, ns = 1.4⇥108cm�3, Ts = 2.0⇥106K

Prediction of solar-wind speed and magnitude of ~B obtained on 96 20⇥20⇥20
blocks and 768,000 cells.
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Numerical Results in 3D
Time-Invariant Solar Wind Ri =1, Ro =30, �=5/3, ns = 1.4⇥108cm�3, Ts = 2.0⇥106K

Close-up view of magnetic field lines and multi-block mesh
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Numerical Results in 3D
CFFC Parallel Strong Scaling Performance on SciNet GPC (Nehalem processors)
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Numerical Results in 3D
Reconstruction of f (x, y, z) = (cos(⇡(y + 1))� cos(⇡z))e�⇡(x+1) on Distorted Meshes

Solution reconstruction obtained using the 4th-order CENO scheme on a
mesh with 8 blocks of 4⇥8⇥8 and 2,048 cells (left) and error norms (right).
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Numerical Results in 3D
Magnetohydrostatic Test Case on Cartesian Box (Warburton 1999)
U(x,y,z)=

h
1,~0, (cos(⇡(y+1))�cos(⇡z))f (x), cos(⇡z)f (y)+sin(⇡(y+1))f (x), sin(⇡z)(f (y)�f (x)), 5+0.5(B2

x+B2
y+B2

z)
iT

f (u)=e�⇡(u+1)

Predicted k~Bk field obtained using the 4th-order CENO scheme with
GLM-MHD on a 8⇥16⇥16 mesh (left). Error norms in the predicted Bx (right).
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Concluding Remarks & Future Research

Parallel Solution-Adaptive Simulation Framework
Developed for 3D cubed-sphere grids and space-physics flows
Uses multi-dimensional FVM and gnomonic cubed-sphere grids
Permits local solution-directed mesh refinement
Extended to 4th-order accuracy using CENO + GLM-MHD
Handles and resolves regions of strong discontinuities/shocks
Accuracy assessment based on several test problems
Excellent parallel performance on thousands of CPUs
Applied to realistic solar winds for distances up to 1AU

On-Going Research
Further investigation of the adaptive cubed-sphere algorithm in
conjunction with high-order accuracy (e.g., dynamic AMR)
Application to more complex space-physics problems (e.g., CME
propagation, solar wind-magnetosphere interaction)
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6 Appendix
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Central ENO (CENO) Reconstruction
Compromise Between Accuracy, Efficiency and Robustness

Basic Idea (Ivan & Groth, 2007, 2008, 2009, 2011):
Combine an unlimited k-exact reconstruction with a monotonicity
preserving limited linear (k=1) scheme, both using fixed central stencils

Hybrid method: use a smoothness indicator to switch between the two
reconstruction procedures

Note: Hybrid ENO on fixed stencil explored in 1D by Harten & Chakravarthy, 1991

Advantages of CENO Reconstruction:
Provides ENO-like accuracy in smooth regions & strictly ensures
monotonicity near discontinuities
Always uses the same central stencil, avoids complexities of ENO and
WENO schemes (i.e., multiple and possibly poorly conditioned stencils)
Readily extendable to multiple dimensions & variables, unstructured
mesh
Identifies regions of under-resolved and non-smooth data (may be
useful for mesh adaptation)
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Central ENO (CENO) Reconstruction
Compromise Between Accuracy, Efficiency and Robustness

Basic Idea (Ivan & Groth, 2007, 2008, 2009, 2011):
Combine an unlimited k-exact reconstruction with a monotonicity
preserving limited linear (k=1) scheme, both using fixed central stencils

Hybrid method: use a smoothness indicator to switch between the two
reconstruction procedures

Note: Hybrid ENO on fixed stencil explored in 1D by Harten & Chakravarthy, 1991

Disadvantages of CENO Reconstruction:
Loss of uniform accuracy (not, in the strict sense, an ENO scheme)

Requires two solution reconstructions for non-smooth stencils
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Determination of Smoothness Indicator in 3D

Step 1: Calculate ↵ (exploit the assumption of valid Taylor series
expansion in the neighbourhood)

↵ = 1 �

X

�

X

�

X

⇣

⇣
uk
�,�,⇣(~̄r�,�,⇣)� uk

i,j,(~̄r�,�,⇣)
⌘2

X

�

X

�

X

⇣

⇣
uk
�,�,⇣(~̄r�,�,⇣)� ūi,j,

⌘2

Step 2: Evaluate S (inspired by the definition of multiple-correlation
coefficients, Lawson, 1974)

S =
↵

max ((1 � ↵), ✏)
(SOS � DOF)
(DOF � 1)

SOS : Size of Stencil; DOF : Degrees of Freedom; ✏ = 10�8

Step 3: Compare to a pass/no-pass cutoff value Sc

if S > Sc ) smooth/fully-resolved solution
if S < Sc ) non-smooth/discontinuous solution
1000 . Sc . 5000 (determined from numerical experiments)
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Behaviour of the Smoothness Indicator: f (↵) =
↵

1 � ↵
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Numerical Results
Transonic Wind on Fixed Mesh Ri =1, Ro =10, GM⇤=14, Inflow: ⇢=5, p=23

Predicted Mach number distribution obtained on a uniform mesh with
1,228,800 total cells and 128 cells in the radial direction
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Numerical Results
Transonic Wind on Fixed Mesh Ri =1, Ro =10, GM⇤=14, Inflow: ⇢=5, p=23

Comparison of flow properties along X-axis for M1 (19,200), M2 (153,600)
and M3 (1,228,800) meshes relative to a 1D “exact solution” obtained with

Newton Critical Point (NCP) method (De Sterck et. al. 2009).

Illustration of the basic idea of the
Newton Critical Point (NCP) method
(De Sterck et. al. 2009) for steady
transonic Euler flows

Comparison of flow properties along X-axis
for M1 (19,200), M2 (153,600) and M3.
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Numerical Results
Supersonic Flow Past a Sphere M1 = 2.0, Ri =1, Ro =32, GM⇤=0

Predicted density distribution on the final refined AMR mesh with 10,835
blocks and 8,321,280 computational cells (7 levels of refinement, ⌘=0.993)
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Numerical Results in 3D
Solution to Manufactured Problem Ri =2, Ro =3.5, Mcf >1 everywhere

U(x, y, z) =


r�
5
2 ,

xp
r
,

yp
r
,

zp
r
+ r

5
2 ,

x
r3 ,

y
r3 ,

z
r3 + , r�

5
2

�T

,  = 0.017

Error norms in the predicted solution density (left). Comparison of explicit and
NKS implicit algorithms for the number of equivalent residual evaluations and
the computational time on Intel Xeon E5540 (right).
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Numerical Results in 3D
Magnetically Dominated Bow Shock Ri =1, Ro =8, MAx =1.49, ✓vB =5�

Cubed-sphere grid formed by only five root blocks (left). Predicted acoustic
Mach number distribution in the (x,y) plane after 7 refinement levels and with
22,693 blocks and 14,523,520 computational cells (right).
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