# Extending GMRES to Nonlinear Optimization: Application to Tensor Approximation

UNIVERSITY OF WATERLOO

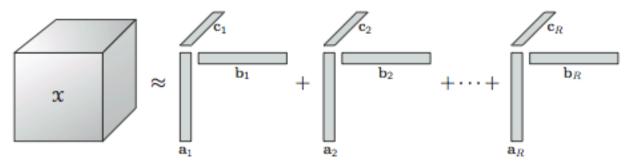
uwaterloo.ca

Hans De Sterck
Department of Applied Mathematics
University of Waterloo

University of Ontario Institute of Technology 27 September 2011

#### 1. introduction

- tensor = N-dimensional array
- N=3:

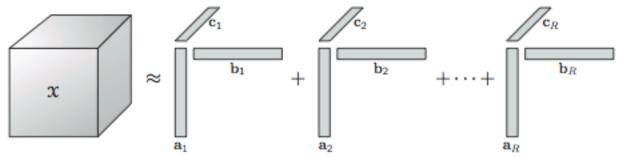


(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

 canonical decomposition: decompose tensor in sum of R rank-one terms (approximately)



#### introduction



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

#### OPTIMIZATION PROBLEM

given tensor  $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$ , find rank-R canonical tensor  $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$  that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$

FIRST-ORDER OPTIMALITY EQUATIONS

$$\nabla f(\mathcal{A}_R) = \mathbf{g}(\mathcal{A}_R) = 0.$$

(problem is non-convex, multiple (local) minima, solution may not exist, ...; but smooth, and assume there is a local minimum)

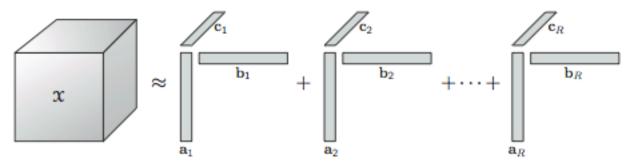
WATERLOO

(de Silva and Lim, SIMAX, 2009)

#### link with singular value decomposition

• SVD of  $A \in I\!\!R^{m imes n}$   $m \geq n$   $A = U \, \Sigma \, V^t = \sigma_1 \, u_1 \, v_1^T + \ldots + \sigma_n \, u_n \, v_n^T$ 

canonical decomposition of tensor



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])



#### a difference with the SVD

truncated SVD is best rank-R approximation:

$$A = \sigma_1 u_1 v_1^T + \ldots + \sigma_R u_R v_R^T + \sigma_{R+1} u_{R+1} v_{R+1}^T + \ldots + \sigma_n u_n v_n^T$$

$$\underset{B \text{ with rank } < R}{\operatorname{arg \, min}} \|A - B\|_F = \sigma_1 \, u_1 \, v_1^T + \ldots + \sigma_R \, u_R \, v_R^T$$

BUT best rank-*R* tensor cannot be obtained by truncation: different optimization problems for different *R*!

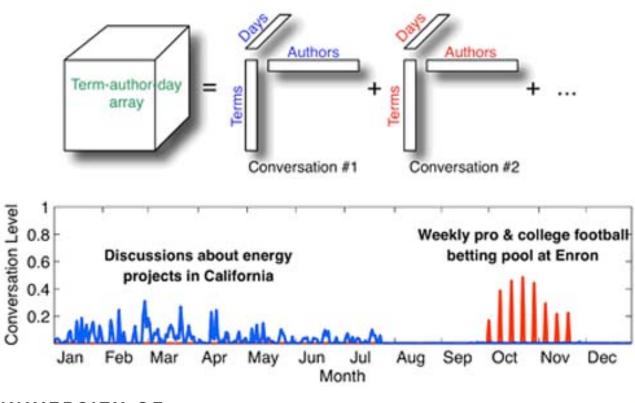
given tensor  $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$ , find rank-R canonical tensor  $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$  that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$



#### 2. tensor approximation applications

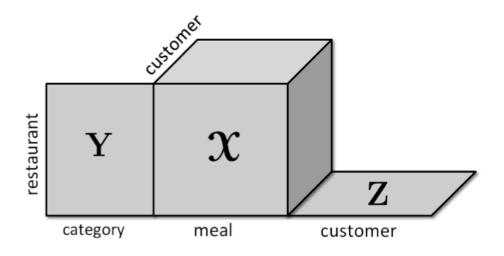
(1) "Discussion Tracking in Enron Email Using PARAFAC" by Bader, Berry and Browne (2008) (sparse, nonnegative)

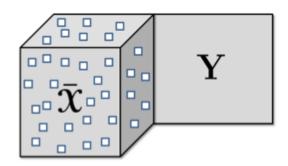




#### tensor approximation applications

(2) "All-at-once Optimization for Coupled Matrix and Tensor Factorizations" by Acar, Kolda and Dunlavy (2011)





$$\left\| \mathbf{\mathcal{W}} * \left( \mathbf{\mathcal{X}} - \left[ \mathbf{A}^{(1)}, \dots, \mathbf{A}^{(N)} \right] \right) \right\|^{2} + \frac{1}{2} \left\| \mathbf{Y} - \mathbf{A}^{(n)} \mathbf{V}^{\mathsf{T}} \right\|^{2}$$

$$f(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{V}) = \| \mathbf{X} - [\![ \mathbf{A}, \mathbf{B}, \mathbf{C} ]\!] \|^2 + \| \mathbf{Y} - \mathbf{A} \mathbf{V}^\mathsf{T} \|^2$$

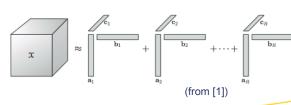


#### tensor approximation applications

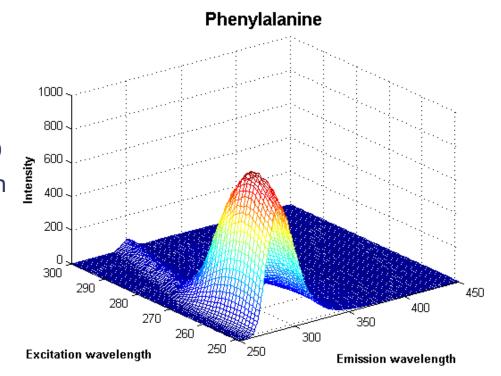
(3) chemometrics: analyze spectrofluorometer data (dense) (Bro et al.,

http://www.models.life.ku.dk/nwaydata1)

- 5 x 201 x 61 tensor: 5 samples (with different mixtures of three amino acids), 61 excitation wavelengths, 201 emission wavelengths
- goal: recover emission spectra of the three amino acids (to determine what was in each sample, and in which concentration)
- also: psychometrics, ...



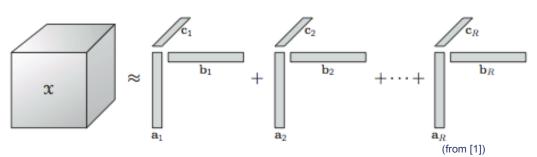
UNIVERSITY OF WATERLOO



### 3. alternating least squares (ALS)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R a_r^{(1)} \circ a_r^{(2)} \circ a_r^{(3)} 
ight\|_F^2$$

- (1) freeze all  $a_r^{(2)}$ ,  $a_r^{(3)}$ , compute optimal  $a_r^{(1)}$  via a least-squares solution (linear, overdetermined)
- (2) freeze  $a_r^{(1)}$ ,  $a_r^{(3)}$ , compute  $a_r^{(2)}$
- (3) freeze  $a_r^{(1)}$ ,  $a_r^{(2)}$ , compute  $a_r^{(3)}$
- repeat



### alternating least squares (ALS)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R \, a_r^{(1)} \circ rac{a_r^{(2)} \circ a_r^{(3)}}{r} 
ight\|_F^2$$

- ALS is monotone
- ALS is sometimes fast, but can also be extremely slow (depending on problem and initial condition)

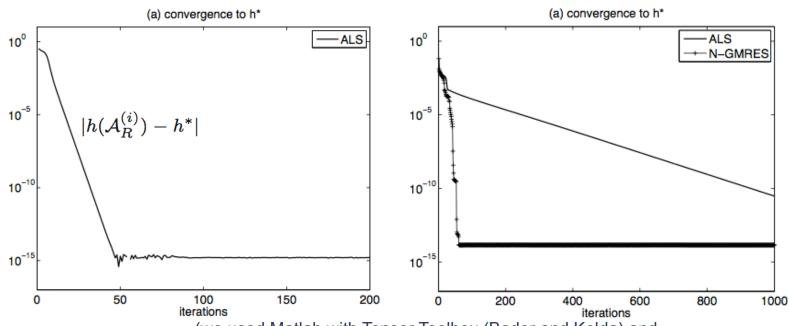


### alternating least squares (ALS)

$$f(\mathcal{A}_R) = \frac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R a_r^{(1)} \circ \frac{a_r^{(2)} \circ a_r^{(3)}}{a_r^{(2)} \circ a_r^{(3)}} \right\|_F^2 \qquad h(\mathcal{A}_R^{(i)}) = \frac{\|\mathcal{T} - \mathcal{A}_R^{(i)}\|_F}{\|\mathcal{T}\|_F}$$

#### fast case

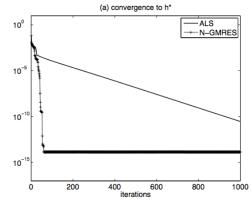
#### slow case



(we used Matlab with Tensor Toolbox (Bader and Kolda) and Poblano Toolbox (Dunlavy et al.) for all computations)

### alternating least squares (ALS)

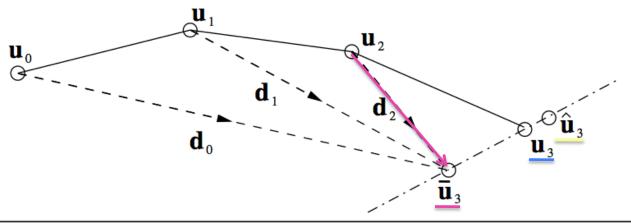
$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R \, a_r^{(1)} \circ rac{a_r^{(2)} \circ a_r^{(3)}}{r} 
ight\|_F^2$$



- for linear systems  $\mathbf{A} \mathbf{u} = \mathbf{b}$ , when a simple iterative method is slow, we accelerate it with
  - GMRES (generalized minimal residual method)
  - CG (conjugate gradient method), multigrid, etc.
- the simple iterative method is called the 'preconditioner'
- for optimization problems, general approaches to accelerate simple iterative methods are uncommon (do not exist?)
- let's try to accelerate ALS for the tensor optimization problem
- issues: nonlinear, optimization context



#### 4. nonlinear GMRES acceleration of ALS

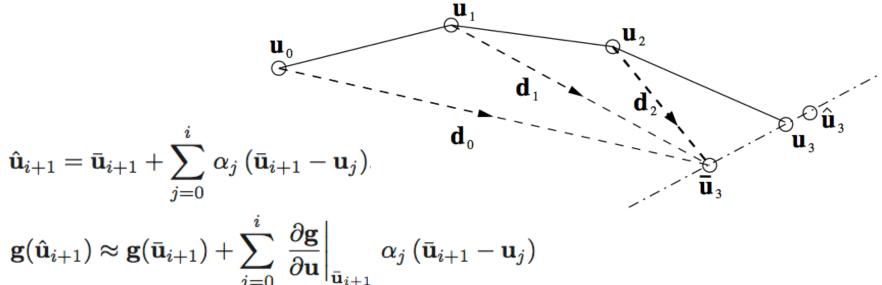


**Algorithm 1:** N-GMRES optimization algorithm (window size w)

```
Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.
```

```
 \begin{array}{l} \textbf{repeat} \\ \textbf{STEP I: } \textit{(generate preliminary iterate by one-step update process } \textit{M}(.)) \\ & \bar{\mathbf{u}}_{i+1} = \textit{M}(\mathbf{u}_i) \\ \textbf{STEP II: } \textit{(generate accelerated iterate by nonlinear GMRES step)} \\ & \hat{\mathbf{u}}_{i+1} = \text{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) \\ \textbf{STEP III: } \textit{(generate new iterate by line search process)} & \textit{(Moré-Thuente line search, } \\ & \mathbf{u}_{i+1} = \text{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) & \text{satisfies Wolfe conditions)} \\ & i = i+1 \\ \textbf{until } \textit{convergence criterion satisfied} \\ \end{array}
```

#### step II: N-GMRES acceleration: $\nabla f(A_R) = \mathbf{g}(A_R) = 0$



$$egin{aligned} \mathbf{g}(\mathbf{u}_{i+1}) &pprox \mathbf{g}(\mathbf{u}_{i+1}) + \sum_{j=0}^{i} \left. \overline{\partial \mathbf{u}} \right|_{ar{\mathbf{u}}_{i+1}} lpha_{j} \left( \mathbf{u}_{i+1} - \mathbf{u}_{j} 
ight) \\ &pprox \mathbf{g}(ar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \left. lpha_{j} \left( \mathbf{g}(ar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_{j}) 
ight) \end{aligned}$$

find coefficients  $(\alpha_0, \ldots, \alpha_i)$  that minimize

$$\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j (\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j))\|_2.$$

### history of nonlinear acceleration mechanism for nonlinear systems (step II)

```
Step I: (generate preliminary iterate by one-step update process M(.))
       \bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
Step II: (generate accelerated iterate by nonlinear GMRES step)
       \hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
Step III: (generate new iterate by line search process)
       \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

$$\nabla f(\mathbf{u}) = \mathbf{g}(\mathbf{u}) = 0$$

$$\hat{\mathbf{u}}_{i+1} = \bar{\mathbf{u}}_{i+1} + \sum_{j=0}^{i} \alpha_j (\bar{\mathbf{u}}_{i+1} - \mathbf{u}_j)$$
find coefficients  $(\alpha_0, \dots, \alpha_i)$  that minimize

- Washio and Oosterlee, ETNA, 1997
- GMRES, Saad and Schultz, 1986 (also flexible GMRES, Saad, 1993)

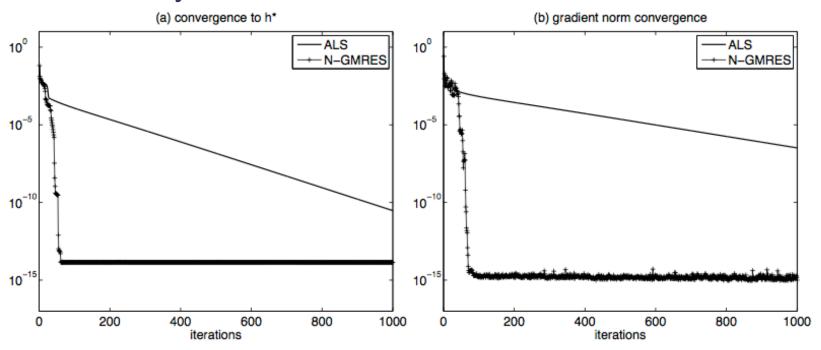
$$\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j \left(\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j)\right)\|_2.$$

- Anderson mixing, 1965; DIIS (direct inversion in the iterative subspace), Pulay, 1980
- can be interpreted as a specific Broyden-type multi-secant method for  $\nabla f(\mathbf{u}) = \mathbf{g}(\mathbf{u}) = 0$  (see Fang and Saad, 2009; Walker and Ni, 2011)
- BUT: apparently not used systematically yet for optimization (or not common)
- this looks like a generally applicable continuous optimization method ...

UNIVERSITY OF

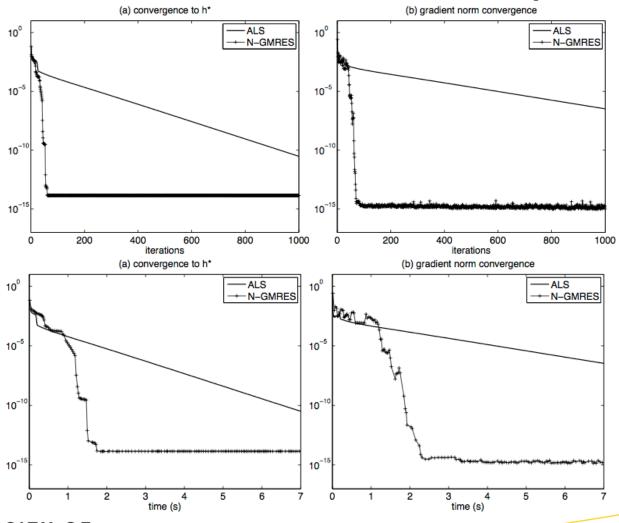
## 5. numerical results for ALS-preconditioned N-GMRES applied to tensor problem

 dense test problem (from Tomasi and Bro; Acar et al.): random rank-R tensor modified to obtain specific column collinearity, with added noise





### numerical results: dense test problem



#### dense test problem: optimal window size





#### dense test problem: comparison

| $h^*$ accuracy $10^{-3}$ |                                              | ALS |       | N-GMRES |      | N-CG  |      |
|--------------------------|----------------------------------------------|-----|-------|---------|------|-------|------|
| problem parameters       |                                              | it  | time  | it      | time | it    | time |
| 1                        | $s = 20, c = 0.5, R = 3, l_1 = 1, l_2 = 1$   | 18  | 0.083 | 16      | 0.21 | 34    | 0.17 |
| 2                        | $s = 20, c = 0.5, R = 5, l_1 = 10, l_2 = 5$  | 9   | 0.083 | 8       | 0.17 | 64    | 0.51 |
| 3                        | $s = 20, c = 0.9, R = 3, l_1 = 0, l_2 = 0$   | 186 | 0.8   | 153     | 1.7  | 137   | 0.57 |
| 4                        | $s = 20, c = 0.9, R = 5, l_1 = 1, l_2 = 1$   | 19  | 0.15  | 13      | 0.34 | 195   | 1.4  |
| 5                        | $s = 50, c = 0.5, R = 3, l_1 = 1, l_2 = 1$   | 11  | 0.089 | 8       | 0.21 | 38    | 0.46 |
| 6                        | $s = 50, c = 0.5, R = 5, l_1 = 10, l_2 = 5$  | 10  | 0.15  | 9       | 0.3  | 50    | 0.97 |
| 7                        | $s = 50, c = 0.9, R = 3, l_1 = 0, l_2 = 0$   | 314 | 2.2   | 56      | 1.6  | 200   | 1.8  |
| 8                        | $s=50, c=0.9, R=5, l_1=1, l_2=1$             | 15  | 0.2   | 10      | 0.43 | >1821 | >32  |
| 9                        | $s=100,c=0.5,R=3,l_1=1,l_2=1$                | 9   | 0.31  | 9       | 1.1  | 71    | 5.7  |
| 10                       | $s = 100, c = 0.5, R = 5, l_1 = 10, l_2 = 5$ | 15  | 0.68  | 13      | 2.2  | 66    | 7.5  |
| 11                       | $s = 100, c = 0.9, R = 3, l_1 = 0, l_2 = 0$  | 178 | 5.9   | 30      | 3.9  | 340   | 23   |
| 12                       | $s=100,c=0.9,R=5,l_1=1,l_2=1$                | 12  | 0.52  | 9       | 1.7  | 260   | 24   |

Table 3.1



#### dense test problem: comparison

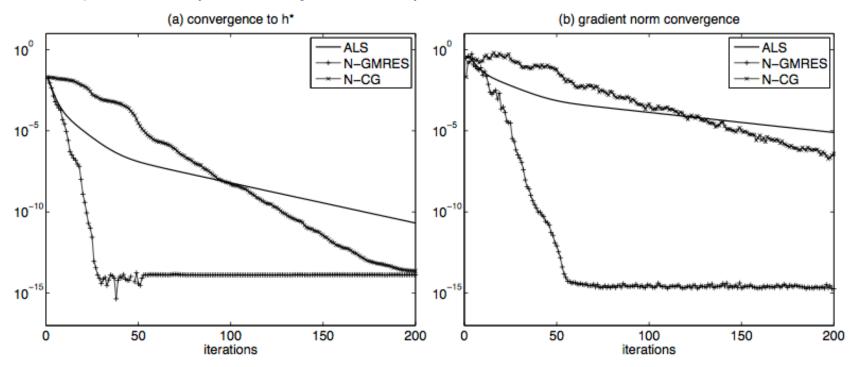
| $h^*$ accuracy $10^{-10}$ |                                                       | ALS   |      | N-GMRES |      | N-CG  |      |
|---------------------------|-------------------------------------------------------|-------|------|---------|------|-------|------|
| problem parameters        |                                                       | it    | time | it      | time | it    | time |
| 1                         | $s=20, c=0.5, R=3, l_1=1, l_2=1$                      | 37    | 0.16 | 22      | 0.3  | 52    | 0.24 |
| 2                         | $s=20,c=0.5,R=5,l_1=10,l_2=5$                         | 37    | 0.28 | 17      | 0.39 | 97    | 0.7  |
| 3                         | $s = 20, \frac{c = 0.9}{l}, R = 3, l_1 = 0, l_2 = 0$  | >1600 | >6.9 | 189     | 2.4  | >400  | >6.1 |
| 4                         | $s = 20, \frac{c = 0.9}{l}, R = 5, l_1 = 1, l_2 = 1$  | >1200 | >8.6 | 139     | 4.5  | 1100  | 6.8  |
| 5                         | $s = 50, c = 0.5, R = 3, l_1 = 1, l_2 = 1$            | 32    | 0.23 | 16      | 0.42 | 67    | 0.69 |
| 6                         | $s = 50, c = 0.5, R = 5, l_1 = 10, l_2 = 5$           | 36    | 0.44 | 17      | 0.67 | 89    | 1.6  |
| 7                         | $s = 50, \frac{c = 0.9}{l}, R = 3, l_1 = 0, l_2 = 0$  | >1200 | >8.5 | 104     | 3.5  | >553  | >7.6 |
| 8                         | $s = 50, \frac{c = 0.9}{l}, R = 5, l_1 = 1, l_2 = 1$  | 1252  | 14   | 171     | 10   | >1821 | >32  |
| 9                         | $s = 100, c = 0.5, R = 3, l_1 = 1, l_2 = 1$           | 31    | 1    | 16      | 2    | 136   | 9.6  |
| 10                        | $s = 100, c = 0.5, R = 5, l_1 = 10, l_2 = 5$          | 42    | 1.8  | 22      | 4.1  | 178   | 16   |
| 11                        | $s = 100, \frac{c = 0.9}{l}, R = 3, l_1 = 0, l_2 = 0$ | >800  | >27  | 99      | 17   | >748  | >60  |
| 12                        | $s = 100, \frac{c = 0.9}{l}, R = 5, l_1 = 1, l_2 = 1$ | 1218  | 51   | 112     | 26   | 880   | 72   |

Table 3.3



#### numerical results: sparse test problem

 sparse test problem: d-dimensional finite difference Laplacian (2 d-way tensor)





### sparse test problem: comparison

| $h^*$ accuracy $10^{-10}$ |                      | ALS  |      | N-GI | MRES | N-CG |      |
|---------------------------|----------------------|------|------|------|------|------|------|
| problem parameters        |                      | it   | time | it   | time | it   | time |
| 1                         | N = 4, s = 8, R = 6  | >400 | >9.6 | 55   | 3.1  | 380  | 3.7  |
| 2                         | N = 4, s = 8, R = 6  | 242  | 5.8  | 26   | 1.5  | 327  | 3.5  |
| 3                         | N = 4, s = 16, R = 3 | >800 | >12  | 119  | 3.8  | 419  | 3.5  |
| 4                         | N = 4, s = 16, R = 3 | 724  | 11   | 84   | 2.7  | 375  | 3.2  |
| 5                         | N = 6, s = 4, R = 2  | 52   | 0.94 | 19   | 0.65 | 153  | 1.6  |
| 6                         | N = 6, s = 4, R = 2  | 51   | 0.95 | 18   | 0.67 | 386  | 3.3  |
| 7                         | N = 6, s = 8, R = 5  | 613  | 24   | 81   | 18   | 213  | 40   |
| 8                         | N = 6, s = 8, R = 5  | 127  | 5.1  | 31   | 6.8  | 262  | 46   |
| 9                         | N = 8, s = 4, R = 2  | 70   | 2    | 21   | 1.5  | 111  | 5.2  |
| 10                        | N = 8, s = 4, R = 2  | 72   | 2.1  | 24   | 1.8  | >280 | >19  |

Table 4.3



#### 6. why does this work: linear case

GMRES for linear systems:  $\mathbf{A}\mathbf{u} = \mathbf{b}$ 

- stationary iterative method  $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$  (preconditioning process)
- preconditioner  $\mathbf{M}^{-1} \approx \mathbf{A}^{-1}$
- define residual and error:

$$\mathbf{r}_i = \mathbf{b} - \mathbf{A} \, \mathbf{u}_i \qquad \mathbf{e}_i = \mathbf{u} - \mathbf{u}_i \qquad \mathbf{A} \, \mathbf{e}_i = \mathbf{r}_i$$

- exact update equation:  $\mathbf{u} = \mathbf{u}_i + \mathbf{e}_i = \mathbf{u}_i + \mathbf{A}^{-1} \mathbf{r}_i$
- approximate update equation:  $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$



#### comparing N-GMRES to GMRES

#### GMRES for linear systems: $\mathbf{A}\mathbf{u} = \mathbf{b}$

- stationary iterative method  $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$
- generates residuals recursively:  $\mathbf{r}_i = \mathbf{b} \mathbf{A} \mathbf{u}_i$

$$= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1}) \, \mathbf{r}_{i-1}$$

• define Krylov space  $K_{i+1}(\mathbf{A}\mathbf{M}^{-1},\mathbf{r}_0)$ 

$$= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1})^i \, \mathbf{r}_0.$$

$$V_{1,i+1} = span\{\mathbf{r}_0, \dots, \mathbf{r}_i\},$$

$$V_{2,i+1} = span\{\mathbf{r}_0, \mathbf{A}\mathbf{M}^{-1}\mathbf{r}_0, (\mathbf{A}\mathbf{M}^{-1})^2\mathbf{r}_0\}, \dots, (\mathbf{A}\mathbf{M}^{-1})^i\mathbf{r}_0\}$$

$$= K_{i+1}(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0),$$

$$V_{2,i+1} = span\{\mathbf{M}(\mathbf{u}_i - \mathbf{u}_i), \mathbf{M}(\mathbf{u}_0 - \mathbf{u}_i), \mathbf{M}(\mathbf{u}_0 - \mathbf{u}_i)\}$$

$$(Washio and Oosterlee, ETNA, 1997)$$

$$V_{3,i+1} = span\{\mathbf{M}(\mathbf{u}_1 - \mathbf{u}_0), \mathbf{M}(\mathbf{u}_2 - \mathbf{u}_1), \dots, \mathbf{M}(\mathbf{u}_{i+1} - \mathbf{u}_i)\},$$

$$V_{4,i+1} = span\{\mathbf{M}\left(\mathbf{u}_{i+1} - \mathbf{u}_{0}\right), \mathbf{M}\left(\mathbf{u}_{i+1} - \mathbf{u}_{1}\right), \ldots, \mathbf{M}\left(\mathbf{u}_{i+1} - \mathbf{u}_{i}\right)\}$$

Lemma 2.1. 
$$V_{1,i+1} = V_{2,i+1} = V_{3,i+1} = V_{4,i+1}$$

UNIVERSITY OF

#### comparing N-GMRES to GMRES

#### GMRES for linear systems: $\mathbf{A}\mathbf{u} = \mathbf{b}$

(Washio and Oosterlee, ETNA, 1997)

• stationary iterative process  $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$ generates preconditioned residuals that build Krylov space

```
egin{aligned} V_{1,i+1} &= span\{\mathbf{r}_0,\dots,\mathbf{r}_i\}, \ V_{2,i+1} &= span\{\mathbf{r}_0,\mathbf{A}\mathbf{M}^{-1}\,\mathbf{r}_0,(\mathbf{A}\mathbf{M}^{-1})^2\,\mathbf{r}_0\},\dots,(\mathbf{A}\mathbf{M}^{-1})^i\,\mathbf{r}_0\} \ &= K_{i+1}(\mathbf{A}\mathbf{M}^{-1},\mathbf{r}_0), \end{aligned}
```

• GMRES: take optimal linear combination of residuals in Krylov space to minimize the residual  $\|\hat{\mathbf{r}}_{i+1}\|_2$ 



#### comparing N-GMRES to GMRES

$$egin{aligned} \mathbf{A} \ \mathbf{u} &= \mathbf{b}, & V_{1,i+1} &= span\{\mathbf{r}_0, \dots, \mathbf{r}_i\}, \ \mathbf{u}_{i+1} &= \mathbf{u}_i + \mathbf{M}^{-1} \ \mathbf{r}_i & V_{2,i+1} &= span\{\mathbf{r}_0, \mathbf{A}\mathbf{M}^{-1} \ \mathbf{r}_0, (\mathbf{A}\mathbf{M}^{-1})^2 \ \mathbf{r}_0\}, \dots, (\mathbf{A}\mathbf{M}^{-1})^i \ \mathbf{r}_0\} \ &= K_{i+1}(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0), & V_{3,i+1} &= span\{\mathbf{M} \ (\mathbf{u}_1 - \mathbf{u}_0), \mathbf{M} \ (\mathbf{u}_2 - \mathbf{u}_1), \dots, \mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_i)\}, & V_{4,i+1} &= span\{\mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_0), \mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_1), \dots, \mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_i)\} \end{aligned}$$

- GMRES: minimize || î<sub>i+1</sub> ||<sub>2</sub>
- seek optimal approximation  $\mathbf{M}(\hat{\mathbf{u}}_{i+1} \mathbf{u}_i) = \sum_{j=0}^{i} \beta_j \mathbf{M}(\mathbf{u}_{i+1} \mathbf{u}_j)$

$$egin{aligned} \hat{\mathbf{u}}_{i+1} &= \mathbf{u}_i + \sum_{j=0}^i eta_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j 
ight) & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \left( \mathbf{u}_{i+1} - \mathbf{u}_i 
ight) + \sum_{j=0}^i eta_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j 
ight) & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \left( \mathbf{u}_{i+1} - \mathbf{u}_i 
ight) + \sum_{j=0}^i eta_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j 
ight) & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \left( \mathbf{u}_{i+1} - \mathbf{u}_i 
ight) + \sum_{j=0}^i eta_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j 
ight) & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \left( \mathbf{u}_{i+1} - \mathbf{u}_i 
ight) + \sum_{j=0}^i eta_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j 
ight) & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \left( \mathbf{u}_{i+1} - \mathbf{u}_i 
ight) + \sum_{j=0}^i eta_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j 
ight) & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_1 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 & \mathbf{u}_2 \\ &= \mathbf{u}_{i+1} - \mathbf{u}_i & \mathbf{u}_0 & \mathbf{u}_1 & \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_3$$

$$\hat{\mathbf{u}}_{i+1} = \mathbf{u}_{i+1} + \sum_{j=0} \alpha_j \left( \mathbf{u}_{i+1} - \mathbf{u}_j \right)$$
 same as for N-GMRES

#### convergence speed of GMRES

$$egin{aligned} \mathbf{A} \, \mathbf{u} &= \mathbf{b}, \ \mathbf{u}_{i+1} &= \mathbf{u}_i + \mathbf{M}^{-1} \, \mathbf{r}_i \ \mathbf{r}_i &= \mathbf{b} - \mathbf{A} \, \mathbf{u}_i \ &= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1}) \, \mathbf{r}_{i-1} \ &= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1})^i \, \mathbf{r}_0. \end{aligned} egin{aligned} V_{1,i+1} &= span \{ \mathbf{r}_0, \mathbf{A} \mathbf{M}^{-1} \, \mathbf{r}_0, (\mathbf{A} \mathbf{M}^{-1})^2 \, \mathbf{r}_0 \}, \dots, (\mathbf{A} \mathbf{M}^{-1})^i \, \mathbf{r}_0 \} \ &= K_{i+1} (\mathbf{A} \mathbf{M}^{-1}, \mathbf{r}_0), \ &= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1})^i \, \mathbf{r}_0. \end{aligned} egin{aligned} V_{3,i+1} &= span \{ \mathbf{M} \, (\mathbf{u}_1 - \mathbf{u}_0), \mathbf{M} \, (\mathbf{u}_2 - \mathbf{u}_1), \dots, \mathbf{M} \, (\mathbf{u}_{i+1} - \mathbf{u}_i) \}, \ &= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1})^i \, \mathbf{r}_0. \end{aligned} V_{4,i+1} &= span \{ \mathbf{M} \, (\mathbf{u}_{i+1} - \mathbf{u}_0), \mathbf{M} \, (\mathbf{u}_{i+1} - \mathbf{u}_1), \dots, \mathbf{M} \, (\mathbf{u}_{i+1} - \mathbf{u}_i) \} \end{aligned}$$

- GMRES: minimize  $\|\hat{\mathbf{r}}_{i+1}\|_2$
- polynomial method: convergence determined by optimal polynomial (for diagonalizable matrix, A=V\Lambda V^{-1})

$$||r_n|| \le \inf_{p \in P_n} ||p_n(A)|| \le \kappa_2(V) \inf_{p \in P_n} \max_{\lambda \in \sigma(A)} |p(\lambda)|$$



#### convergence speed of N-GMRES

```
Step I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
Step II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
Step III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

find coefficients 
$$(\alpha_0, \dots, \alpha_i)$$
 that minimize  $\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^i \alpha_j (\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j))\|_2$ .

- GMRES (linear case): convergence determined by optimal polynomial
- convergence speed of N-GMRES for optimization: open problem



#### 7. general N-GMRES optimization method

general methods for nonlinear optimization (smooth, unconstrained) ("Numerical Optimization", Nocedal and Wright, 2006)

- 1. steepest descent with line search
- Newton with line search
- 3. nonlinear conjugate gradient (N-CG) with line search
- 4. trust-region methods
- 5. quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited memory version L-BFGS)
- 6. N-GMRES as a general optimization method?



#### general N-GMRES optimization method

first question: what would be a general preconditioner?

OPTIMIZATION PROBLEM find  $\mathbf{u}^*$  that minimizes  $f(\mathbf{u})$  FIRST-ORDER OPTIMALITY EQUATIONS  $\nabla f(\mathbf{u}) = \mathbf{g}(\mathbf{u}) = 0$ 

• idea: general N-GMRES preconditioner  $\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)$ = update in direction of steepest descent (or: use N-GMRES to accelerate steepest descent)



#### 8. steepest-descent preconditioning

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

STEEPEST DESCENT PRECONDITIONING PROCESS:

$$\bar{\mathbf{u}}_{i+1} = \mathbf{u}_i - \beta \frac{\nabla f(\mathbf{u}_i)}{\|\nabla f(\mathbf{u}_i)\|} \quad \text{with}$$
 option A: 
$$\beta = \beta_{sdls},$$
 option B: 
$$\beta = \beta_{sd} = \min(\delta, \|\nabla f(\mathbf{u}_i)\|)$$

- option A: steepest descent with line search
- option B: steepest descent with predefined small step
- claim: steepest descent is the 'natural' preconditioner for N-GMRES

#### steepest-descent preconditioning

- claim: steepest descent is the 'natural' preconditioner for N-GMRES
- example: consider simple quadratic optimization problem

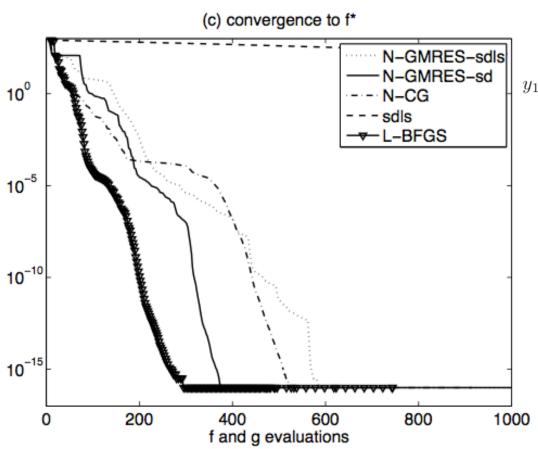
$$f(\mathbf{u}) = \frac{1}{2} \mathbf{u}^T A \mathbf{u} - \mathbf{b}^T \mathbf{u}$$
 where  $A$  is SPD

- we know  $\nabla f(\mathbf{u}_i) = A\mathbf{u}_i b = -\mathbf{r}_i$  so  $\bar{\mathbf{u}}_{i+1} = \mathbf{u}_i \beta \frac{\nabla f(\mathbf{u}_i)}{\|\nabla f(\mathbf{u}_i)\|}$  becomes  $\bar{\mathbf{u}}_{i+1} = \mathbf{u}_i + \beta \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|}$
- this gives the same residuals as  $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$  with  $\mathbf{M} = \mathbf{I}$ : steepest-descent N-GMRES preconditioner corresponds to identity preconditioner for linear GMRES

WATERLOO

(and: small step is sufficient)

# 9. numerical results: steepest-descent preconditioning

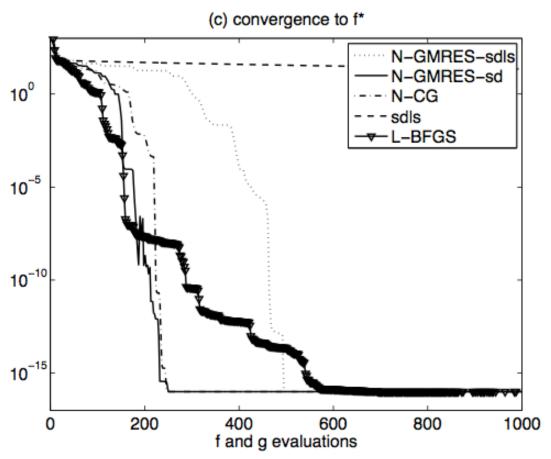


$$f(\mathbf{u}) = \frac{1}{2} \mathbf{y} (\mathbf{u} - \mathbf{u}^*)^T D \mathbf{y} (\mathbf{u} - \mathbf{u}^*) + 1,$$
with  $D = \text{diag}(1, 2, \dots, n)$  and  $\mathbf{y}(\mathbf{x})$  given by  $y_1(\mathbf{x}) = x_1$  and  $y_i(\mathbf{x}) = x_i - 10 x_1^2$   $(i = 2, \dots, n)$ .

- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- option A slower than option B (small step)

UNIVERSITY OF WATERLOO

# numerical results: steepest-descent preconditioning



$$f(\mathbf{u}) = \frac{1}{2} \sum_{j=1}^{n} t_{j}^{2}(\mathbf{u}), \text{ with } n \text{ even and}$$

$$t_{j} = 10 (u_{j+1} - u_{j}^{2}) \quad (j \text{ odd}),$$

$$t_{j} = 1 - u_{j-1} \quad (j \text{ even}).$$

- extended Rosenbrock function
- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS

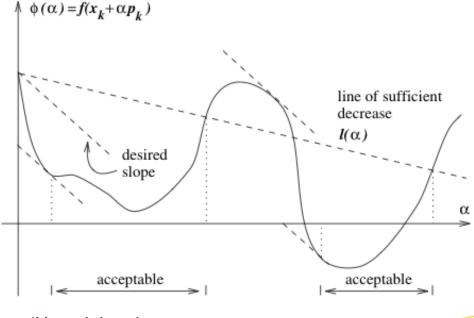
# 10. convergence of steepest-descent preconditioned N-GMRES optimization

 assume line searches give solutions that satisfy Wolfe conditions:

SUFFICIENT DECREASE CONDITION:

$$f(\mathbf{u}_i + \beta_i \mathbf{p}_i) \le f(\mathbf{u}_i) + c_1 \beta_i \nabla f(\mathbf{u}_i)^T \mathbf{p}_i,$$
  
CURVATURE CONDITION:

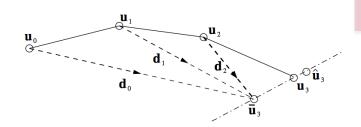
$$\nabla f(\mathbf{u}_i + \beta_i \mathbf{p}_i)^T \mathbf{p}_i \ge c_2 \, \nabla f(\mathbf{u}_i)^T \mathbf{p}_i,$$



(Nocedal and Wright, 2006)

## convergence of steepest-descent preconditioned N-GMRES optimization

THEOREM 2.1 (Global convergence of N-GMRES optimization algorithm with steepest descent line search preconditioning). Consider N-GMRES Optimization Algorithm 1 with steepest descent line search preconditioning (2.1) for Optimization Problem I, and assume that all line search solutions satisfy the Wolfe conditions, (2.11) and (2.12). Assume that objective function f is bounded below in  $\mathbb{R}^n$  and that f is continuously differentiable in an open set  $\mathcal{N}$  containing the level set  $\mathcal{L} = \{\mathbf{u} : f(\mathbf{u}) \leq f(\mathbf{u}_0)\}$ , where  $\mathbf{u}_0$  is the starting point of the iteration. Assume also that the gradient  $\nabla f$  is Lipschitz continuous on  $\mathcal{N}$ , that is, there exists a constant L such that  $\|\nabla f(\mathbf{u}) - \nabla f(\hat{\mathbf{u}})\| \leq L\|\mathbf{u} - \hat{\mathbf{u}}\|$  for all  $\mathbf{u}, \hat{\mathbf{u}} \in \mathcal{N}$ . Then the sequence of N-GMRES iterates  $\{\mathbf{u}_0, \mathbf{u}_1, \ldots\}$  is convergent to a fixed point of Optimization Problem I in the sense that



$$\lim_{i \to \infty} \|\nabla f(\mathbf{u}_i)\| = 0. \tag{2.13}$$

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

## convergence of steepest-descent preconditioned N-GMRES optimization

#### sketch of (simple!) proof

- Consider the sequence  $\{\mathbf{v}_0, \mathbf{v}_1, \ldots\}$  formed by the iterates  $\mathbf{u}_0, \, \bar{\mathbf{u}}_1, \, \mathbf{u}_1, \, \bar{\mathbf{u}}_2, \, \mathbf{u}_2, \, \ldots$
- use Zoutendijk's theorem:  $\sum_{i=0}^{\infty} \cos^2 \theta_i \|\nabla f(\mathbf{v}_i)\|^2 < \infty$  with  $\cos \theta_i = \frac{-\nabla f(\mathbf{v}_i)^T \mathbf{p}_i}{\|\nabla f(\mathbf{v}_i)\| \|\mathbf{p}_i\|} \text{ and thus } \lim_{i \to \infty} \cos^2 \theta_i \|\nabla f(\mathbf{v}_i)\|^2 = 0$
- all  $u_i$  are followed by a steepest descent step, so  $\lim_{i\to\infty}\|\nabla f(\mathbf{u}_i)\|=0.$
- global convergence to a stationary point for general f(u)



#### general N-GMRES optimization method

general methods for nonlinear optimization (smooth, unconstrained) ("Numerical Optimization", Nocedal and Wright, 2006)

- steepest descent with line search
- Newton with line search
- 3. nonlinear conjugate gradient (N-CG) with line search
- 4. trust-region methods
- 5. quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited memory version L-BFGS)
- 6. N-GMRES as a general optimization method



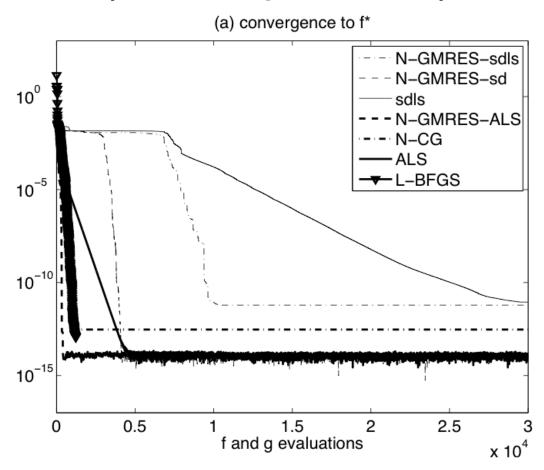
#### 11. conclusions

- we have proposed the N-GMRES optimization method: a (new?, uncommon) general, convergent method (with steepest-descent preconditioning), appears competitive with N-CG, L-BFGS
- its real power: N-GMRES optimization framework can employ sophisticated nonlinear preconditioners (use ALS in tensor case)

```
Step I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
Step II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
Step III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

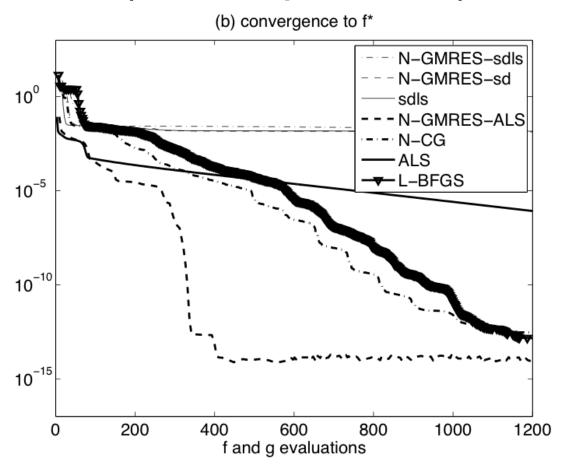
WATERLOC

## the power of N-GMRES optimization (tensor problem)





## the power of N-GMRES optimization (tensor problem)





- thank you
- questions?

- Hans De Sterck, 'A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition', submitted to SIAM J. Sci. Comp., May 2011, arXiv: 1105.5331
- Hans De Sterck, 'Steepest Descent Preconditioning for Nonlinear GMRES Optimization', submitted to NLA, July 2011, arXiv:1106.4426



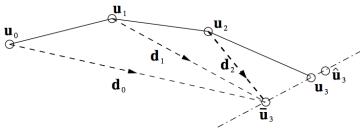
#### **BACKUP SLIDES**



#### 12. conclusions

- we have proposed the 3-step preconditioned N-GMRES optimization algorithm as a general nonlinear optimization method (smooth f(u), unconstrained) (uncommon approach, new in optimization?)
- steepest descent preconditioning is the natural 'default' preconditioner, it makes N-GMRES competitive with N-CG and L-BFGS, and we have proved global

convergence



```
Algorithm 1: N-GMRES optimization algorithm (window size w)

Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.

i = w - 1

repeat

STEP I: (generate\ preliminary\ iterate\ by\ one\text{-}step\ update\ process}\ M(.))

\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)

STEP II: (generate\ accelerated\ iterate\ by\ nonlinear\ GMRES\ step)

\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})

STEP III: (generate\ new\ iterate\ by\ line\ search\ process)

\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))

i = i+1

until convergence\ criterion\ satisfied
```

#### conclusions

(b) convergence to f'

10

N-GMRES-AL

- the real power of the N-GMRES
   optimization framework is that advanced
   nonlinear preconditioners can be used
- ALS-preconditioned N-GMRES optimization performs very well for tensor optimization
   problem

  Algorithm 1: N-GMRES optimization algorithm (window size w)

i = i + 1

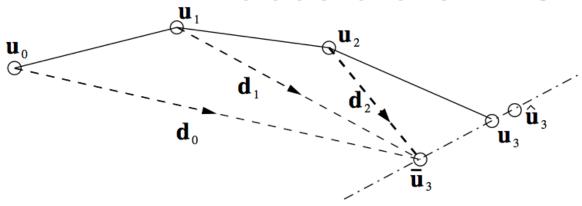
**Input:** w initial iterates  $\mathbf{u}_0, \dots, \mathbf{u}_{w-1}$ .

until convergence criterion satisfied

```
\mathbf{u}_0 \\ \mathbf{u}_1 \\ \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{i} = w-1 \\ \text{repeat} \\ \text{STEP II: (generate preliminary iterate by one-step update process } M(.)) \\ \mathbf{u}_{i+1} = M(\mathbf{u}_i) \\ \text{STEP II: (generate accelerated iterate by nonlinear } GMRES \text{ step}) \\ \mathbf{u}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) \\ \text{STEP III: (generate new iterate by line search process)} \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{
```

UNIVERSITY OF WATERLOO

### N-GMRES optimization algorithm to accelerate ALS



**Algorithm 1:** N-GMRES optimization algorithm (window size w)

```
Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.
```

```
repeat STEP I: (generate preliminary iterate by one-step update process M(.)) \bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i) STEP II: (generate accelerated iterate by nonlinear GMRES step) \hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) STEP III: (generate new iterate by line search process) \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) i = i+1 until convergence criterion satisfied
```

## numerical results: steepest-descent preconditioning

| problem    | N-GMRES-sdls | N-GMRES-sd |        | N-CG | L-BFGS |     |
|------------|--------------|------------|--------|------|--------|-----|
| D $n=500$  | 525          |            | 172    |      | 222    | 166 |
| D $n=1000$ | 445          |            | 211    |      | 223    | 170 |
| E n=100    | 294          |            | 259    |      | 243    | 358 |
| E n=200    | 317          |            | 243    |      | 240    | 394 |
| F n=200    | 140          |            | 102(1) |      | 102    | 92  |
| F n=500    | 206(1)       |            | 175(1) |      | 135    | 118 |
| G n=100    | 1008(2)      |            | 152    |      | 181    | 358 |
| G $n=200$  | 629(1)       |            | 181    |      | 137    | 240 |

Table 3.2

- standard test problems, 10 random initial guesses
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- N-GMRES preconditioner option A (line search) slower than option B (small step)

UNIVERSITY OF WATERLOO

#### comparing N-GMRES to GMRES

non-preconditioned GMRES for linear systems:

$$\mathbf{M} = \mathbf{I}$$
  $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$  Krylov space  $K_{i+1}(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0)$ 

- apply non-preconditioned GMRES to preconditioned linear system  $\mathbf{A}\mathbf{M}^{-1}(\mathbf{M}\mathbf{u}) = \mathbf{b}$  or  $(\mathbf{A}\mathbf{M}^{-1})\mathbf{y} = \mathbf{b}$
- preconditioner changes the spectrum of the operator such that (non-preconditioned) GMRES applied to the preconditioned operator converges better
- this alternative viewpoint of preconditioned GMRES leads to the same formulas as what we derived in the previous slides



#### conjugate gradient (CG)

#### Algorithm 5.2 (CG).

Given 
$$x_0$$
;  
Set  $r_0 \leftarrow Ax_0 - b$ ,  $p_0 \leftarrow -r_0$ ,  $k \leftarrow 0$ ;  
while  $r_k \neq 0$ 

$$\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k;$$

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k};$$

$$p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k;$$

$$k \leftarrow k + 1;$$

end (while)

(Nocedal and Wright, 2006)



### preconditioned conjugate gradient (PCG)

#### Algorithm 5.3 (Preconditioned CG).

Given  $x_0$ , preconditioner M; Set  $r_0 \leftarrow Ax_0 - b$ ; Solve  $My_0 = r_0$  for  $y_0$ ; Set  $p_0 = -y_0$ ,  $k \leftarrow 0$ ; while  $r_k \neq 0$ 

$$\alpha_k \leftarrow \frac{r_k^T y_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k;$$
Solve  $M y_{k+1} = r_{k+1};$ 

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^T y_{k+1}}{r_k^T y_k};$$

$$p_{k+1} \leftarrow -y_{k+1} + \beta_{k+1} p_k;$$

$$k \leftarrow k + 1;$$

end (while)

(Nocedal and Wright, 2006)

#### nonlinear conjugate gradient (N-CG)

#### Algorithm 5.4 (FR).

Given  $x_0$ ;

Evaluate  $f_0 = f(x_0)$ ,  $\nabla f_0 = \nabla f(x_0)$ ;

Set  $p_0 \leftarrow -\nabla f_0, k \leftarrow 0$ ;

while  $\nabla f_k \neq 0$ 

Compute  $\alpha_k$  and set  $x_{k+1} = x_k + \alpha_k p_k$ ;

Evaluate  $\nabla f_{k+1}$ ;

$$\beta_{k+1}^{\text{FR}} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k}; \tag{5.41a}$$

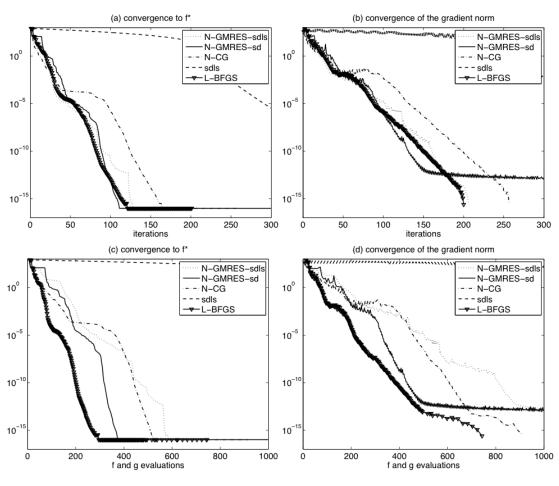
$$p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{\text{FR}} p_k;$$
 (5.41b)

$$k \leftarrow k + 1; \tag{5.41c}$$

end (while)

(Nocedal and Wright, 2006)

# 9. numerical results: steepest-descent preconditioning



$$f(\mathbf{u}) = \frac{1}{2} \mathbf{y} (\mathbf{u} - \mathbf{u}^*)^T D \mathbf{y} (\mathbf{u} - \mathbf{u}^*) + 1,$$
with  $D = \text{diag}(1, 2, \dots, n)$  and  $\mathbf{y}(\mathbf{x})$  given by  $y_1(\mathbf{x}) = x_1$  and  $y_i(\mathbf{x}) = x_i - 10 x_1^2 \ (i = 2, \dots, n).$ 

- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- option A slower than option B (small step)

# numerical results: steepest-descent preconditioning



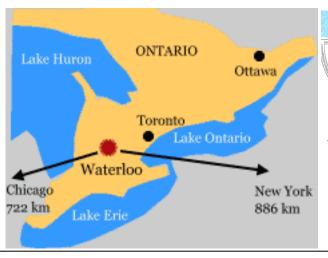
$$f(\mathbf{u}) = \frac{1}{2} \sum_{j=1}^{n} t_{j}^{2}(\mathbf{u}), \text{ with } n \text{ even and}$$

$$t_{j} = 10 (u_{j+1} - u_{j}^{2}) \qquad (j \text{ odd}),$$

$$t_{j} = 1 - u_{j-1} \qquad (j \text{ even}).$$

- extended
   Rosenbrock function
- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS

### Applied Mathematics Department, University of Waterloo, Canada









- "Scalable Scientific Computing" research group
- -2 postdocs
- -5 PhD students
- -Master's, undergraduate research students



#### Scalable Scientific Computing group

- numerical PDEs
  - compressible fluid dynamics and
     MHD, space physics applications, HPC
  - GPU, finite volume element method, capillarity, ...
- numerical linear algebra, iterative methods
  - AMG for Markov chains
  - AMG for eigenproblems and SVD → today's talk
  - 'graph applications', clustering (images), ...
- grid/cloud/hadoop/database, spin systems, inverse problems, ...



#### general N-GMRES optimization method

general methods for nonlinear optimization (smooth, unconstrained) ("Numerical Optimization", Nocedal and Wright, 2006)

- steepest descent with line search
- Newton with line search
- 3. nonlinear conjugate gradient (N-CG) with line search
- 4. trust-region methods
- 5. quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited memory version L-BFGS)
- 6. N-GMRES as a general optimization method



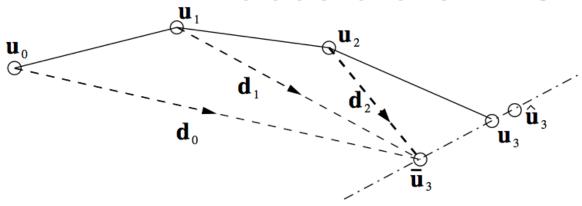
#### 11. the power of N-GMRES optimization

- N-GMRES optimization method is a general, convergent method (steepest-descent preconditioning)
- its real power: N-GMRES optimization framework can employ sophisticated nonlinear preconditioners

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```



### N-GMRES optimization algorithm to accelerate ALS



**Algorithm 1:** N-GMRES optimization algorithm (window size w)

```
Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.
```

```
repeat STEP I: (generate preliminary iterate by one-step update process M(.)) \bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i) STEP II: (generate accelerated iterate by nonlinear GMRES step) \hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) STEP III: (generate new iterate by line search process) \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) i = i+1 until convergence criterion satisfied
```

#### differences with SVD

#### 1. truncated SVD is best rank-R approximation:

$$A = \sigma_1 u_1 v_1^T + \ldots + \sigma_R u_R v_R^T + \sigma_{R+1} u_{R+1} v_{R+1}^T + \ldots + \sigma_n u_n v_n^T$$

$$\underset{B \text{ with rank } < R}{\operatorname{arg \, min}} \|A - B\|_F = \sigma_1 \, u_1 \, v_1^T + \ldots + \sigma_R \, u_R \, v_R^T$$

BUT best rank-*R* tensor cannot be obtained by truncation: different optimization problems for different *R*!

given tensor  $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$ , find rank-R canonical tensor  $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$  that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$



#### differences with SVD

#### 2. SVD factor matrices are orthogonal

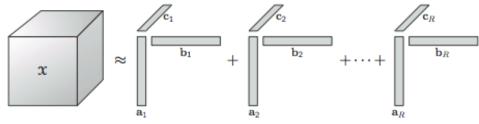
$$A = U \Sigma V^t$$
  $U^t U = I_m$   $V^t V = I_n$ 

$$\sigma_1 u_1 v_1^T + \ldots + \sigma_R u_R v_R^T = \underset{B \text{ with rank } \leq R}{\arg \min} ||A - B||_F$$

### BUT best rank-R tensor factor matrices are not orthogonal

given tensor  $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$ , find rank-R canonical tensor  $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$  that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$



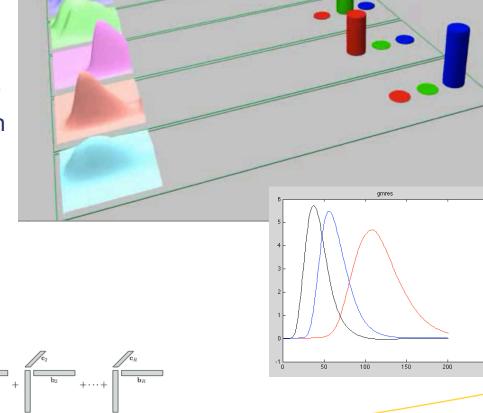
(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

#### tensor approximation applications

(3) chemometrics: analyze spectrofluorometer data (dense) (Bro et al.,

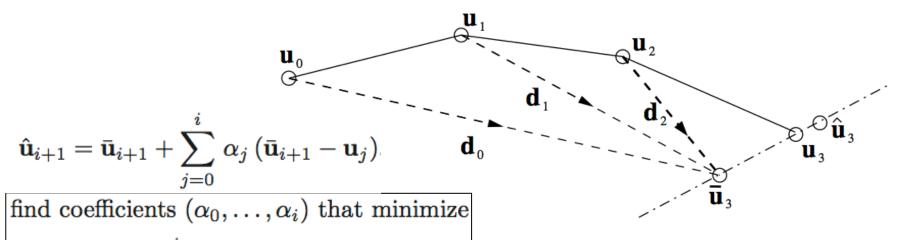
http://www.models.life.ku.dk/nwaydata1)

- 5 x 201 x 61 tensor: 5 samples (with different mixtures of three amino acids), 61 excitation wavelengths, 201 emission wavelengths
- goal: recover emission spectra of the three amino acids (to determine what was in each sample, and in which concentration)





#### step II: N-GMRES acceleration: $\nabla f(A_R) = \mathbf{g}(A_R) = 0$



$$\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j \left(\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j)\right)\|_2.$$

$$egin{aligned} oldsymbol{lpha} &= (lpha_0, \dots, lpha_i)^T, \ \mathbf{p}_j &= \mathbf{g}(ar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j), \ \mathbf{P} &= \left[\mathbf{p}_0 \middle| \dots \middle| \mathbf{p}_j 
ight], \end{aligned}$$

minimize 
$$\|\mathbf{P}\,\boldsymbol{\alpha} + \mathbf{g}(\bar{\mathbf{u}}_{i+1})\|_2$$

$$\mathbf{P}^T\,\mathbf{P}\,oldsymbol{lpha} = -\mathbf{P}^T\,\mathbf{g}(ar{\mathbf{u}}_{i+1})$$

#### dense test problem: comparison

| $h^*$ accuracy $10^{-3}$ |                                              | ALS |       | N-GMRES |      | N-CG  |      |
|--------------------------|----------------------------------------------|-----|-------|---------|------|-------|------|
| problem parameters       |                                              | it  | time  | it      | time | it    | time |
| 1                        | $s = 20, c = 0.5, R = 3, l_1 = 1, l_2 = 1$   | 18  | 0.083 | 16      | 0.21 | 34    | 0.17 |
| 2                        | $s = 20, c = 0.5, R = 5, l_1 = 10, l_2 = 5$  | 9   | 0.083 | 8       | 0.17 | 64    | 0.51 |
| 3                        | $s = 20, c = 0.9, R = 3, l_1 = 0, l_2 = 0$   | 186 | 0.8   | 153     | 1.7  | 137   | 0.57 |
| 4                        | $s = 20, c = 0.9, R = 5, l_1 = 1, l_2 = 1$   | 19  | 0.15  | 13      | 0.34 | 195   | 1.4  |
| 5                        | $s = 50, c = 0.5, R = 3, l_1 = 1, l_2 = 1$   | 11  | 0.089 | 8       | 0.21 | 38    | 0.46 |
| 6                        | $s = 50, c = 0.5, R = 5, l_1 = 10, l_2 = 5$  | 10  | 0.15  | 9       | 0.3  | 50    | 0.97 |
| 7                        | $s = 50, c = 0.9, R = 3, l_1 = 0, l_2 = 0$   | 314 | 2.2   | 56      | 1.6  | 200   | 1.8  |
| 8                        | $s = 50, c = 0.9, R = 5, l_1 = 1, l_2 = 1$   | 15  | 0.2   | 10      | 0.43 | >1821 | >32  |
| 9                        | $s = 100, c = 0.5, R = 3, l_1 = 1, l_2 = 1$  | 9   | 0.31  | 9       | 1.1  | 71    | 5.7  |
| 10                       | $s = 100, c = 0.5, R = 5, l_1 = 10, l_2 = 5$ | 15  | 0.68  | 13      | 2.2  | 66    | 7.5  |
| 11                       | $s = 100, c = 0.9, R = 3, l_1 = 0, l_2 = 0$  | 178 | 5.9   | 30      | 3.9  | 340   | 23   |
| 12                       | $s = 100, c = 0.9, R = 5, l_1 = 1, l_2 = 1$  | 12  | 0.52  | 9       | 1.7  | 260   | 24   |

Table 3.1

(gradients, test case and N-CG from "A scalable optimization approach for fitting canonical tensor decompositions" by Acar, Dunlavy and Kolda, Chemometrics, 2011)



#### dense test problem: comparison

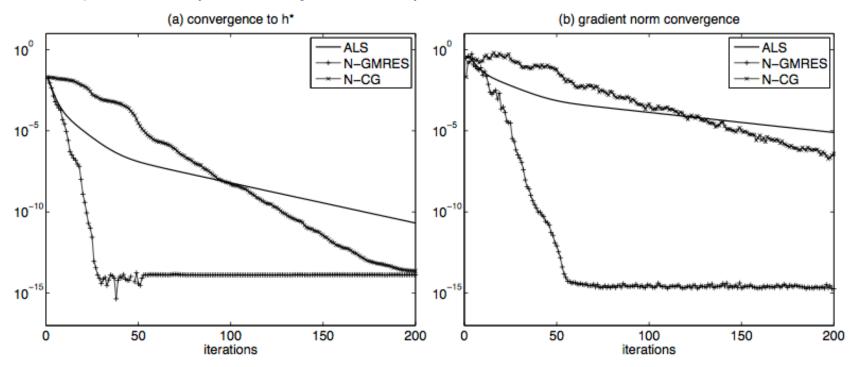
| $h^*$ accuracy $10^{-10}$ |                                              | ALS   |      | N-GMRES |      | N-CG  |      |
|---------------------------|----------------------------------------------|-------|------|---------|------|-------|------|
| problem parameters        |                                              | it    | time | it      | time | it    | time |
| 1                         | $s=20, c=0.5, R=3, l_1=1, l_2=1$             | 37    | 0.16 | 22      | 0.3  | 52    | 0.24 |
| 2                         | $s=20,c=0.5,R=5,l_1=10,l_2=5$                | 37    | 0.28 | 17      | 0.39 | 97    | 0.7  |
| 3                         | $s = 20, c = 0.9, R = 3, l_1 = 0, l_2 = 0$   | >1600 | >6.9 | 189     | 2.4  | >400  | >6.1 |
| 4                         | $s=20,c=0.9,R=5,l_1=1,l_2=1$                 | >1200 | >8.6 | 139     | 4.5  | 1100  | 6.8  |
| 5                         | $s = 50, c = 0.5, R = 3, l_1 = 1, l_2 = 1$   | 32    | 0.23 | 16      | 0.42 | 67    | 0.69 |
| 6                         | $s = 50, c = 0.5, R = 5, l_1 = 10, l_2 = 5$  | 36    | 0.44 | 17      | 0.67 | 89    | 1.6  |
| 7                         | $s = 50, c = 0.9, R = 3, l_1 = 0, l_2 = 0$   | >1200 | >8.5 | 104     | 3.5  | >553  | >7.6 |
| 8                         | $s = 50, c = 0.9, R = 5, l_1 = 1, l_2 = 1$   | 1252  | 14   | 171     | 10   | >1821 | >32  |
| 9                         | $s = 100, c = 0.5, R = 3, l_1 = 1, l_2 = 1$  | 31    | 1    | 16      | 2    | 136   | 9.6  |
| 10                        | $s = 100, c = 0.5, R = 5, l_1 = 10, l_2 = 5$ | 42    | 1.8  | 22      | 4.1  | 178   | 16   |
| 11                        | $s = 100, c = 0.9, R = 3, l_1 = 0, l_2 = 0$  | >800  | >27  | 99      | 17   | >748  | >60  |
| 12                        | $s=100,c=0.9,R=5,l_1=1,l_2=1$                | 1218  | 51   | 112     | 26   | 880   | 72   |

Table 3.3



#### numerical results: sparse test problem

 sparse test problem: d-dimensional finite difference Laplacian (2 d-way tensor)





### sparse test problem: comparison

| $h^*$ accuracy $10^{-10}$ |                      | ALS  |      | N-GI | MRES | N-CG |      |
|---------------------------|----------------------|------|------|------|------|------|------|
| problem parameters        |                      | it   | time | it   | time | it   | time |
| 1                         | N = 4, s = 8, R = 6  | >400 | >9.6 | 55   | 3.1  | 380  | 3.7  |
| 2                         | N = 4, s = 8, R = 6  | 242  | 5.8  | 26   | 1.5  | 327  | 3.5  |
| 3                         | N = 4, s = 16, R = 3 | >800 | >12  | 119  | 3.8  | 419  | 3.5  |
| 4                         | N = 4, s = 16, R = 3 | 724  | 11   | 84   | 2.7  | 375  | 3.2  |
| 5                         | N = 6, s = 4, R = 2  | 52   | 0.94 | 19   | 0.65 | 153  | 1.6  |
| 6                         | N = 6, s = 4, R = 2  | 51   | 0.95 | 18   | 0.67 | 386  | 3.3  |
| 7                         | N = 6, s = 8, R = 5  | 613  | 24   | 81   | 18   | 213  | 40   |
| 8                         | N = 6, s = 8, R = 5  | 127  | 5.1  | 31   | 6.8  | 262  | 46   |
| 9                         | N = 8, s = 4, R = 2  | 70   | 2    | 21   | 1.5  | 111  | 5.2  |
| 10                        | N = 8, s = 4, R = 2  | 72   | 2.1  | 24   | 1.8  | >280 | >19  |

Table 4.3



#### 6. why does this work: GMRES

$$egin{aligned} \mathbf{A} \ \mathbf{u} &= \mathbf{b}, \ \mathbf{u}_{i+1} &= \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i \end{aligned} egin{aligned} V_{1,i+1} &= span \{\mathbf{r}_0, \ldots \} \ V_{2,i+1} &= span \{\mathbf{r}_0, \mathbf{A} \} \ &= K_{i+1} (\mathbf{A} \mathbf{M}^{-1}) \end{aligned}$$

$$egin{aligned} V_{1,i+1} &= span\{\mathbf{r}_0,\dots,\mathbf{r}_i\}, & & \mathsf{ETNA},\ \mathsf{1997}) \ V_{2,i+1} &= span\{\mathbf{r}_0,\mathbf{A}\mathbf{M}^{-1}\,\mathbf{r}_0,(\mathbf{A}\mathbf{M}^{-1})^2\,\mathbf{r}_0\},\dots,(\mathbf{A}\mathbf{M}^{-1})^i\,\mathbf{r}_0\} \ &= K_{i+1}(\mathbf{A}\mathbf{M}^{-1},\mathbf{r}_0), \ V_{3,i+1} &= span\{\mathbf{M}\,(\mathbf{u}_1-\mathbf{u}_0),\mathbf{M}\,(\mathbf{u}_2-\mathbf{u}_1),\dots,\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_i)\}, \ V_{4,i+1} &= span\{\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_0),\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_1),\dots,\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_i)\} \end{aligned}$$

- N-GMRES step II reduces to preconditioned GMRES in the linear case  $\hat{\mathbf{u}}_{i+1} = \bar{\mathbf{u}}_{i+1} + \sum_{i=0}^{i} \alpha_j (\bar{\mathbf{u}}_{i+1} \mathbf{u}_j)$
- 'nonlinear Krylov space'  $span\{(\mathbf{u}_{i+1}-\mathbf{u}_0), (\mathbf{u}_{i+1}-\mathbf{u}_1), \dots, (\mathbf{u}_{i+1}-\mathbf{u}_i)\}$
- $\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)$  in step I is a nonlinear preconditioner

```
for
N-GMRES
(ALS)
```

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

## numerical results: steepest-descent preconditioning

| problem    | N-GMRES-sdls | N-GMRES-sd |        | N-CG | L-BFGS |     |
|------------|--------------|------------|--------|------|--------|-----|
| D $n=500$  | 525          |            | 172    |      | 222    | 166 |
| D $n=1000$ | 445          |            | 211    |      | 223    | 170 |
| E n=100    | 294          |            | 259    |      | 243    | 358 |
| E n=200    | 317          |            | 243    |      | 240    | 394 |
| F n=200    | 140          |            | 102(1) |      | 102    | 92  |
| F n=500    | 206(1)       |            | 175(1) |      | 135    | 118 |
| G n=100    | 1008(2)      |            | 152    |      | 181    | 358 |
| G $n=200$  | 629(1)       |            | 181    |      | 137    | 240 |

Table 3.2

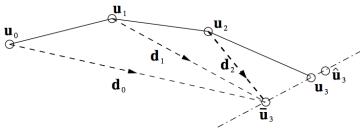
- standard test problems, 10 random initial guesses
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- N-GMRES preconditioner option A (line search) slower than option B (small step)

UNIVERSITY OF WATERLOO

#### 12. conclusions

- we have proposed the 3-step preconditioned N-GMRES optimization algorithm as a general nonlinear optimization method (smooth f(u), unconstrained) (uncommon approach, new in optimization?)
- steepest descent preconditioning is the natural 'default' preconditioner, it makes N-GMRES competitive with N-CG and L-BFGS, and we have proved global

convergence



```
Algorithm 1: N-GMRES optimization algorithm (window size w)

Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.

i = w - 1

repeat

STEP I: (generate\ preliminary\ iterate\ by\ one\text{-}step\ update\ process}\ M(.))

\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)

STEP II: (generate\ accelerated\ iterate\ by\ nonlinear\ GMRES\ step)

\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})

STEP III: (generate\ new\ iterate\ by\ line\ search\ process)

\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))

i = i+1

until convergence\ criterion\ satisfied
```

#### conclusions

(b) convergence to f'

10

N-GMRES-AL

- the real power of the N-GMRES
   optimization framework is that advanced
   nonlinear preconditioners can be used
- ALS-preconditioned N-GMRES optimization performs very well for tensor optimization
   problem

  Algorithm 1: N-GMRES optimization algorithm (window size w)

i = i + 1

**Input:** w initial iterates  $\mathbf{u}_0, \dots, \mathbf{u}_{w-1}$ .

until convergence criterion satisfied

```
\mathbf{u}_0 \\ \mathbf{u}_1 \\ \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{i} = w-1 \\ \text{repeat} \\ \text{STEP II: (generate preliminary iterate by one-step update process } M(.)) \\ \mathbf{u}_{i+1} = M(\mathbf{u}_i) \\ \text{STEP II: (generate accelerated iterate by nonlinear } GMRES \text{ step}) \\ \mathbf{u}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) \\ \text{STEP III: (generate new iterate by line search process)} \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{
```

UNIVERSITY OF WATERLOO

#### differences with SVD

#### 2. SVD factor matrices are orthogonal

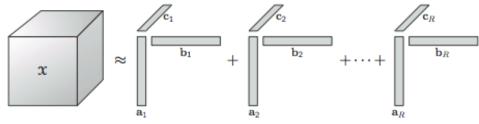
$$A = U \Sigma V^t$$
  $U^t U = I_m$   $V^t V = I_n$ 

$$\sigma_1 u_1 v_1^T + \ldots + \sigma_R u_R v_R^T = \underset{B \text{ with rank } \leq R}{\arg \min} ||A - B||_F$$

### BUT best rank-R tensor factor matrices are not orthogonal

given tensor  $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$ , find rank-R canonical tensor  $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$  that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])