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1. introduction 

•  tensor = N-dimensional array 
•  N=3: 

•  canonical decomposition: decompose tensor in 
sum of R rank-one terms (approximately) 

(from “Tensor Decompositions and Applications”, Kolda and Bader, SIAM Rev., 2009 [1])  



introduction 

(from “Tensor Decompositions and Applications”, Kolda and Bader, SIAM Rev., 2009 [1])  

 (problem is non-convex, multiple (local) minima, solution may not 
exist, ... ; but smooth, and assume there is a local minimum) 

(de Silva and Lim, SIMAX, 2009)  



link with singular value decomposition 

•  SVD of 

•  canonical decomposition of tensor  

(from “Tensor Decompositions and Applications”, Kolda and Bader, SIAM Rev., 2009 [1])  



a difference with the SVD 

 truncated SVD is best rank-R approximation: 

 BUT best rank-R tensor cannot be obtained by 
truncation: different optimization problems for different R! 



2. tensor approximation applications 
(1) “Discussion Tracking in Enron Email Using PARAFAC” by 

Bader, Berry and Browne (2008) (sparse, nonnegative) 



tensor approximation applications 
(2) “All-at-once Optimization for Coupled Matrix and Tensor 

Factorizations” by Acar, Kolda and Dunlavy (2011) 



tensor approximation applications 
(3) chemometrics: analyze 

spectrofluorometer data 
(dense) (Bro et al.,  
 http://www.models.life.ku.dk/nwaydata1) 

•  5 x 201 x 61 tensor: 5 samples (with 
different mixtures of three amino 
acids), 61 excitation wavelengths, 
201 emission wavelengths 

•  goal: recover emission spectra of 
the three amino acids (to determine 
what was in each sample, and in 
which concentration) 

•  also: psychometrics, ...  

(from [1])  



3. alternating least squares (ALS) 

(1)  freeze all ar
(2), ar

(3), compute optimal ar
(1) via a 

least-squares solution (linear, overdetermined) 
(2) freeze ar

(1), ar
(3), compute ar

(2) 

(3) freeze ar
(1), ar

(2), compute ar
(3) 

•  repeat 

(from [1])  



alternating least squares (ALS) 

•  ALS is monotone 

•  ALS is sometimes fast, but can also be 
extremely slow (depending on problem and 
initial condition) 



alternating least squares (ALS) 

    fast case       slow case 

(we used Matlab with Tensor Toolbox (Bader and Kolda) and 
Poblano Toolbox (Dunlavy et al.) for all computations)  



alternating least squares (ALS) 

•  for linear systems               , when a simple iterative method is slow, 
we accelerate it with 
–  GMRES (generalized minimal residual method) 
–  CG (conjugate gradient method), multigrid, etc. 

•  the simple iterative method is called the ‘preconditioner’ 
•  for optimization problems, general approaches to accelerate simple 

iterative methods are uncommon (do not exist?) 
•  let’s try to accelerate ALS for the tensor optimization problem  
•  issues: nonlinear, optimization context 



4. nonlinear GMRES acceleration of ALS 

(Moré-Thuente line search, 
satisfies Wolfe conditions)  



step II: N-GMRES acceleration:                     



history of nonlinear acceleration 
mechanism for nonlinear systems (step II) 

•  Washio and Oosterlee, ETNA, 1997 
•  GMRES, Saad and Schultz, 1986 
(also flexible GMRES, Saad, 1993) 
•  Anderson mixing, 1965; DIIS (direct inversion in the iterative subspace), Pulay, 1980 
•  can be interpreted as a specific Broyden-type multi-secant method for 
                                   (see Fang and Saad, 2009; Walker and Ni, 2011) 

•  BUT: apparently not used systematically yet for optimization (or not common) 
•  this looks like a generally applicable continuous optimization method ... 



5. numerical results for ALS-preconditioned 
N-GMRES applied to tensor problem 

•  dense test problem (from Tomasi and Bro; Acar et al.): 
random rank-R tensor modified to obtain specific column 
collinearity, with added noise  



numerical results: dense test problem 



dense test problem: optimal window size 



dense test problem: comparison 



dense test problem: comparison 



numerical results: sparse test problem 
•  sparse test problem: d-dimensional finite difference 

Laplacian (2 d-way tensor) 



sparse test problem: comparison 



6. why does this work: linear case 

GMRES for linear systems: 
•  stationary iterative method 

 (preconditioning process) 
•  preconditioner 
•  define residual and error: 

•  exact update equation: 
•  approximate update equation:    



comparing N-GMRES to GMRES 

GMRES for linear systems: 
•  stationary iterative method 
•  generates residuals recursively: 

•  define  
(Washio and 
Oosterlee, ETNA, 
1997)  



comparing N-GMRES to GMRES 

GMRES for linear systems: 
•  stationary iterative process 

 generates preconditioned residuals that build 
Krylov space 

•  GMRES: take optimal linear combination of 
residuals in Krylov space to minimize the 
residual 

(Washio and Oosterlee, 
ETNA, 1997)  



comparing N-GMRES to GMRES 

•  GMRES: minimize 
•  seek optimal approximation 

            same as for N-GMRES  



convergence speed of GMRES 

•  GMRES: minimize 
•  polynomial method: convergence determined by 

optimal polynomial (for diagonalizable matrix, 
A=VΛV-1) 



convergence speed of N-GMRES 

•  GMRES (linear case): convergence determined 
by optimal polynomial 

•  convergence speed of N-GMRES for 
optimization: open problem 



7. general N-GMRES optimization method 
general methods for nonlinear optimization (smooth, unconstrained) 

(“Numerical Optimization”, Nocedal and Wright, 2006) 

1.  steepest descent with line search 
2.  Newton with line search 
3.  nonlinear conjugate gradient (N-CG) with line search 
4.  trust-region methods 
5.  quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–

Shanno (BFGS) and limited memory version L-BFGS) 

6.  N-GMRES as a general optimization method? 



general N-GMRES optimization method 
•  first question: what would be a general preconditioner? 

•  idea: general N-GMRES preconditioner  
  = update in direction of steepest descent  
  (or: use N-GMRES to accelerate steepest descent) 



8. steepest-descent preconditioning 

•  option A: steepest descent with line search 
•  option B: steepest descent with predefined small step 
•  claim: steepest descent is the ‘natural’ preconditioner for 

N-GMRES 



steepest-descent preconditioning 
•  claim: steepest descent is the ‘natural’ preconditioner for 

N-GMRES 
•  example: consider simple quadratic optimization problem 

•  we know           so 
        becomes 

•  this gives the same residuals as  
 with     : steepest-descent N-GMRES preconditioner 
corresponds to identity preconditioner for linear GMRES 
            (and: small step is sufficient) 



9. numerical results: steepest-descent 
preconditioning 

•  steepest descent by 
itself is slow 

•  N-GMRES with 
steepest descent 
preconditioning is 
competitive with N-
CG and L-BFGS 

•  option A slower than 
option B (small step) 



numerical results: steepest-descent 
preconditioning 

•  extended Rosenbrock 
function 

•  steepest descent by 
itself is slow 

•  N-GMRES with 
steepest descent 
preconditioning is 
competitive with N-CG 
and L-BFGS 



10. convergence of steepest-descent 
preconditioned N-GMRES optimization 

•  assume line searches give solutions that satisfy 
Wolfe conditions: 

(Nocedal and 
Wright, 2006)  



convergence of steepest-descent 
preconditioned N-GMRES optimization 



convergence of steepest-descent 
preconditioned N-GMRES optimization 

sketch of (simple!) proof 
•    

•  use Zoutendijk’s theorem: 
 with          and thus  

•  all ui are followed by a steepest descent step, so 

•  global convergence to a stationary point for general f(u) 



general N-GMRES optimization method 
general methods for nonlinear optimization (smooth, unconstrained) 

(“Numerical Optimization”, Nocedal and Wright, 2006) 

1.  steepest descent with line search 
2.  Newton with line search 
3.  nonlinear conjugate gradient (N-CG) with line search 
4.  trust-region methods 
5.  quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–

Shanno (BFGS) and limited memory version L-BFGS) 

6.  N-GMRES as a general optimization method 



11. conclusions 

•  we have proposed the N-GMRES optimization 
method: a (new?, uncommon) general, convergent 
method (with steepest-descent preconditioning), appears 
competitive with N-CG, L-BFGS 

•  its real power: N-GMRES optimization 
framework can employ sophisticated nonlinear 
preconditioners (use ALS in tensor case) 



the power of N-GMRES optimization 
(tensor problem) 



the power of N-GMRES optimization 
(tensor problem) 



•  thank you 
•  questions? 

  Hans De Sterck, ‘A Nonlinear GMRES Optimization Algorithm for Canonical 
Tensor Decomposition’, submitted to SIAM J. Sci. Comp., May 2011, arXiv:
1105.5331 

  Hans De Sterck, ‘Steepest Descent Preconditioning for Nonlinear GMRES 
Optimization’, submitted to NLA, July 2011, arXiv:1106.4426 
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12. conclusions 
•  we have proposed the 3-step preconditioned N-GMRES 

optimization algorithm as a general nonlinear 
optimization method (smooth f(u), unconstrained) 
(uncommon approach, new in optimization?)  

•  steepest descent preconditioning is the natural ‘default’ 
preconditioner, it makes N-GMRES competitive with N-
CG and L-BFGS, and we have proved global 
convergence 



conclusions 

•  the real power of the N-GMRES       
optimization framework is that advanced 
nonlinear preconditioners can be used 

•  ALS-preconditioned N-GMRES optimization 
performs very well for tensor optimization 
problem 



N-GMRES optimization algorithm to 
accelerate ALS 



numerical results: steepest-descent 
preconditioning 

•  standard test problems, 10 random initial guesses 
•  N-GMRES with steepest descent preconditioning is 

competitive with N-CG and L-BFGS 
•  N-GMRES preconditioner option A (line search) slower than 

option B (small step) 



comparing N-GMRES to GMRES 
•  non-preconditioned GMRES for linear systems: 

•  apply non-preconditioned GMRES to preconditioned 
linear system       or  

•  preconditioner changes the spectrum of the operator 
such that (non-preconditioned) GMRES applied to the 
preconditioned operator converges better 

•  this alternative viewpoint of preconditioned GMRES 
leads to the same formulas as what we derived in the 
previous slides 



conjugate gradient (CG) 

(Nocedal and Wright, 2006)  



preconditioned conjugate gradient (PCG) 

(Nocedal and Wright, 2006)  
(Nocedal and Wright, 2006)  



nonlinear conjugate gradient (N-CG) 

(Nocedal and Wright, 2006)  



9. numerical results: steepest-descent 
preconditioning 

•  steepest descent by 
itself is slow 

•  N-GMRES with 
steepest descent 
preconditioning is 
competitive with N-
CG and L-BFGS 

•  option A slower than 
option B (small 
step) 



numerical results: steepest-descent 
preconditioning 

•  extended 
Rosenbrock function 

•  steepest descent by 
itself is slow 

•  N-GMRES with 
steepest descent 
preconditioning is 
competitive with N-
CG and L-BFGS 



Applied Mathematics Department, 
University of Waterloo, Canada 

“Scalable Scientific Computing” 
research group 

-2 postdocs 
-5 PhD students 
-Master’s, undergraduate 

research students 

Ads, Mobile, and ChromeOS 



Scalable Scientific Computing group 
•  numerical PDEs 

–  compressible fluid dynamics and 
 MHD, space physics applications, HPC 

–  GPU, finite volume element method, capillarity, ... 
•  numerical linear algebra, iterative methods 

–  AMG for Markov chains 
–  AMG for eigenproblems and SVD  today’s talk 
–  ‘graph applications’, clustering (images), ... 

•  grid/cloud/hadoop/database, spin systems, inverse 
problems, ... 



general N-GMRES optimization method 
general methods for nonlinear optimization (smooth, unconstrained) 

(“Numerical Optimization”, Nocedal and Wright, 2006) 

1.  steepest descent with line search 
2.  Newton with line search 
3.  nonlinear conjugate gradient (N-CG) with line search 
4.  trust-region methods 
5.  quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–

Shanno (BFGS) and limited memory version L-BFGS) 

6.  N-GMRES as a general optimization method 



11. the power of N-GMRES optimization 

•  N-GMRES optimization method is a general, 
convergent method (steepest-descent 
preconditioning) 

•  its real power: N-GMRES optimization 
framework can employ sophisticated nonlinear 
preconditioners 



N-GMRES optimization algorithm to 
accelerate ALS 



differences with SVD 

1.  truncated SVD is best rank-R approximation: 

 BUT best rank-R tensor cannot be obtained by 
truncation: different optimization problems for different R! 



differences with SVD 

2.  SVD factor matrices are orthogonal 

 BUT best rank-R tensor factor matrices are not 
orthogonal 

(from “Tensor Decompositions and Applications”, Kolda and Bader, SIAM Rev., 2009 [1])  



tensor approximation applications 
(3) chemometrics: analyze 

spectrofluorometer data 
(dense) (Bro et al.,  
 http://www.models.life.ku.dk/nwaydata1) 

•  5 x 201 x 61 tensor: 5 samples (with 
different mixtures of three amino 
acids), 61 excitation wavelengths, 
201 emission wavelengths 

•  goal: recover emission spectra of 
the three amino acids (to determine 
what was in each sample, and in 
which concentration)  

(from [1])  



step II: N-GMRES acceleration:                      



dense test problem: comparison 

(gradients, test case and N-CG from “A scalable optimization approach for fitting 
canonical tensor decompositions” by Acar, Dunlavy and Kolda, Chemometrics, 2011) 



dense test problem: comparison 



numerical results: sparse test problem 
•  sparse test problem: d-dimensional finite difference 

Laplacian (2 d-way tensor) 



sparse test problem: comparison 



6. why does this work: GMRES 

•  N-GMRES step II reduces to preconditioned 
GMRES in the linear case 

•  ‘nonlinear Krylov space’ 
•         in step I is a nonlinear preconditioner 

for 
 N-GMRES 
 (ALS) 

(Washio and Oosterlee, 
ETNA, 1997)  



numerical results: steepest-descent 
preconditioning 

•  standard test problems, 10 random initial guesses 
•  N-GMRES with steepest descent preconditioning is 

competitive with N-CG and L-BFGS 
•  N-GMRES preconditioner option A (line search) slower than 

option B (small step) 



12. conclusions 
•  we have proposed the 3-step preconditioned N-GMRES 

optimization algorithm as a general nonlinear 
optimization method (smooth f(u), unconstrained) 
(uncommon approach, new in optimization?)  

•  steepest descent preconditioning is the natural ‘default’ 
preconditioner, it makes N-GMRES competitive with N-
CG and L-BFGS, and we have proved global 
convergence 



conclusions 

•  the real power of the N-GMRES       
optimization framework is that advanced 
nonlinear preconditioners can be used 

•  ALS-preconditioned N-GMRES optimization 
performs very well for tensor optimization 
problem 



differences with SVD 

2.  SVD factor matrices are orthogonal 

 BUT best rank-R tensor factor matrices are not 
orthogonal 

(from “Tensor Decompositions and Applications”, Kolda and Bader, SIAM Rev., 2009 [1])  


