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Scale-Free Graph Problem: Barabasi-Alber Model  

Preferential Attachment:!
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I.  Start with a small ring.!
II.  Add each new node with p edges (p=1).!
III.  Edges connect with existing nodes 

preferentially:  !

prob(k) ~ degree(k)!
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g(k) ~ k -β    with    1.5 < β < 4.5. 

Scale-Free Networks and Power-Law Distribution 
Example. Barabasi-Alber 

Preferential Attachment Model!

Scale-Free: the number of outward connections for each node has a power-
law distribution !

Small-World: such graphs tend to have small diameter, independent of size"

Power Law!

freq ~ deg -1.7"

degree (# out-ward links)!
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Broad Question: 
Can we develop scalable eigensolvers for such 
networks graphs? (example: random walk)!

Data (number of edges)!

Fl
op

s 
to

 C
al
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te! Parallel Scalability (Time)!

Targeted computing 
environments!

•  Parallel!
•  Cloud !

Multilevel hierachies have been successfully employed to accelerate many 
similar computationally intensive tasks (linear solves for sparse PDE matrices)!

Algorithmic Scalability!
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Basic Multigrid for Poisson on a Square [1]  

relaxation"

Finest Grid"
interpolation"

The Multigrid"

V-cycle"

First Coarse Grid"

restriction"

Note:"
Fewer degrees of "

freedom"

Consider solving  Ax = b    (Discrete Poisson Eq.)"

"[1] Slide courtesy of Rob Falgout, HYPRE project"

solve"

Two-Grid"

Cycle"fine"

coarse"

time"



7 Hans De Sterck, Dept. of Applied Math! Multilevel Aggregation for Small-World Graphs !
University of Waterloo, Ontario, Canada 

Restriction and Interpolation Goals 

Are multilevel approaches useful for spectral calculations on scale-free graphs?!

Restriction, R, moves information 
from the fine level to the coarse level.!

Interpolation, P, moves information 
from the coarse level to the fine level.!

R" fin
e"

co
ar

se
"

P"fin
e"

co
ar

se
"

These operators should be sparse and accurately represent smooth error.!

Between any two grids we must choose intergrid transfer operators:!
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Main Example: Random-Walk Ranking  

  Example: Random-walk ranking is a simple eigenproblem 
because it only involves calculating a single eigenvector. 

  Define the importance of a node to be the likelihood that a long 
random walk through the graph would visit the node. 

   Task: rank the nodes by their importance. 

  For a network of webpages, this importance is used to sort query 
results in Google’s search engine (PageRank, [2]). 

  For more general networks, this importance can identify which 
nodes are central to the network.  

"[2] Google PageRank, Larry Page and Sergey Brin, 1995"



9 Hans De Sterck, Dept. of Applied Math! Multilevel Aggregation for Small-World Graphs !
University of Waterloo, Ontario, Canada 

Main Example: Random-Walk Ranking 

? ? 
Consider taking long, random walks on a directed graph:"

Goal: Predict the likelihood of a random-walkerʼs presence at each node.  "
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Main Example: Random-Walk Ranking 
Stochastic approach, Markov Chains."

[  1,    0,     0,     0,     0  ]  Probability distribution, initially:"

Distribution for k-length walk:"

Steady-state distribution satisfies:"

Steady-state distribution:"

0!

Column stochastic"
Bi j  is probability of moving from j to i"

0!
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Main Example: Random-Walk Ranking 

Further Assumptions!

I.  Largest eigenvalue of B is 
uniquely 1.!

II.  B has a unique and positive 
eigenvector associated with 
eigenvalue 1.!

•  Graph is irreducible.!
•  Graph is aperiodic.!
Results:!

General Properties of This System!

•  Sparse!
•  Nonsymmetric!
•  Eigenproblem with known 

eigenvalue, 1.!

1TB = 1T!

Ranking: node i is considered more important than node j if xi > xj 
where 
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Classical Iterative Methods and Scalability 

Power method solves this problem, convergence rate is the subdominant eigenvalue, "

If                     , the power method is slowly mixing."
If                       , other related iterative methods have slow convergence rates."

For many classes of network problems, λ2 → 1 as n grows large."

Multilevel methods can be used to overcome these slowness limitations (see our papers on 
Markov chains for lattice problems, queueing problems, etc.)."

Will they work for scale-free graphs?"
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  Use a simple relaxation technique to efficiently resolve 
the local character of the steady-state vector. 
•  Weighted Jacobi (essentially shifted power method) 

  Use a coarse-grid update to accelerate the 
convergence to the global character. 
•  Aggregation 

Pure Aggregation for Markov Chains [3] 

"[3] Takahashi, 1975, Horton et al, 1994, Krieger, 1995  
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Pure Aggregation for Markov Chains 

aggregation matrix"
qiJ = 1 iff node i is in J-th aggregate"

Coarse-level problem:"

Column Stochastic:"

bc,IJ  probability of moving from J to I "

Solve coarse-level problem for xc"
Update:            xk+1 ← P xc "

Interpolation:"
Restriction:"
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Pure Aggregation for Markov Chains 

Coarse-level matrix: 

Coarse-level problem: 
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General Multilevel Aggregation Algorithm 
Relaxation: perform a low number of simple 
iterations so the local character of the 
approximation looks like the steady-state."

Choose an aggregation, use it and the current 
approximation to form restriction and 
interpolation operators. "

Form a coarse-level problem and solve it using 
recursive application of this method. "

Update fine-level approximation by 
interpolating coarse-level approximation."

two-level 
method"
V-cycle 

(µ=1)"
W-cycle 

(µ=2)"
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To Improve Convergence: Smoothed Aggregation 

Coarse-level matrix: 

Coarse-level problem: 

Improves representation of original problem, 
but increases number of coarse edges. 

Apply simple sparse smoother to the rows of restriction 
and the columns of interpolation: 
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This Talk: Compare Three Aggregation Methods 

1. pure (unsmoothed) neighborhood 
aggregation 

2.  smoothed neighborhood aggregation 

3. new leaf-based aggregation (pure) with 
special interpolation formula (our 2011 paper in 
Computing and Informatics) 
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1. Neighborhood-Based Aggregation 
Group nodes to ensure each 
group contains a proper 
neighborhood."

Originally designed for operator 
smoothing on mesh-like graphs."

Issues with scale-free graphs:"
•  Accuracy (large aggregates)"
•  Complexity (high-degree 
vertices are grouped)"
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2. Smoothed Neighborhood Aggregation 

Improves representation of original problem, 
but increases number of coarse edges. 
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3. Leaf-Based Aggregation (for Tree-Like Structure) 
Peripheral structure often highly Tree-
like (trees hang from generating nodes)"

Leaves depend on one node."

Aggregate each leaf with its 
parent.   For parents with no 
leaf as children, group alone."

Coarsened graph is again 
highly tree-like."

Apply technique recursively."
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i-th eq’n: 

Leaf-Based Aggregation for Highly Tree-like Graphs 

Rest of Graph 

j

i k

Group the leaves with their parents and set the values of interpolation 
based on the entries of A. 

Leaves: vertices of degree 1. 

Interpolation Formula:  
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Example: Barabasi-Alber Model (p=1, p=2) 

Preferential Attachment:!
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I.  Start with a small ring.!
III.  Add each new node with p edges.!
IV.   Edges connect with existing nodes 

preferentially:  !

prob(k) ~ degree(k)!

node!

de
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!
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Numerical Results: Neighborhood Aggregation 

!Smoothed Aggregation cannot produce 
a hierarchy with bounded complexity.!

!Pure Aggregation does produce a 
hierarchy with bounded complexity and 
retains power-law distribution.!

Pure Aggregation"
Fine" Coarse"

Smoothed Aggregation"
Fine" Coarse"
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Numerical Results: Neighborhood Aggregation 

nodes"
Interpolation type" New connections 

per new node"

Operator Complexity:         Cop  =   !
Total Nonzeros in Operator Hierarchy!

  Nonzeros in Original Problem Matrix!
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Numerical Results 

  Operator Complexity of multilevel hierarchies: 
    Cop = (total nonzeros)/(nonzeros on fine-grid) 

  Number of iterations to converge: 
   ||Bxk - xk||1  <  10-6 || Bx0 – x0 ||1 !

Algorithmically scalable means Cop and k are bounded, independent 
of the problem size, n."

The number Cop is an indicator of the cost of a single multilevel cycle.  "
The number kCop is an indicator of the cost to calculate x.  "



31 Hans De Sterck, Dept. of Applied Math! Multilevel Aggregation for Small-World Graphs !
University of Waterloo, Ontario, Canada 

  Large, growing iteration counts (not scalable).!

  Pure Aggregation outperforms smooth aggregation, due to operator complexities.!

  W-cycles are slightly better than V-cycles. !

  Algorithmic Scalability is not achieved."

Ranking Problem, Neighborhood Aggregation 
  Smoothed Aggregation V-cycles!   Pure Aggregation V-cycles!

  Pure Aggregation W-cycles!
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Pure, Leaf-Based Aggregation !
-preserves power-laws on all levels. "

Ranking Problem, Leaf-Based Aggregation 
  Pure Aggregation V-cycles!Histograms for levels 1, 3, 5, and 7"

-achieves algorithmic scalability.!



34 Hans De Sterck, Dept. of Applied Math! Multilevel Aggregation for Small-World Graphs !
University of Waterloo, Ontario, Canada 

Ranking Problem, Leaf-Based Aggregation 
  Pure Aggregation V-cycles!Histograms for levels 1, 3, 5, and 7"

  Neighborhood Aggregation W-cycles!
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Conclusions and Further Work 

  Successful multilevel approaches for mesh-like graphs 
fail for small-world / scale-free graphs:  

  Neighborhood-Based Aggregation 
  Smoothed Neighborhood-Based Aggregation 

  Using pure, leaf-based aggregation yields scalable 
ranking calculations for the model problem (p=1) (can 
also be used for solving other eigenproblems) 

  Ongoing work on dedicated coarsening mechanisms for 
non-tree-like scale-free graphs 

(also: related multigrid method described on poster: ) 
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Hans De Sterck 

Department of Applied Mathematics 

University of Waterloo, Canada 

•  goal: for                                     , compute a few of the largest or smallest singular values and 
associated singular vectors: 

•  approach: bootstrap algebraic multigrid in two multilevel phases 
•   also works for eigenpairs of SPD matrices (graph Laplacians...) 
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Thank you!   Any Questions? "
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Top-Level Acceleration 

Flexible Krylov Method 

• Combine the last several iterations to 
form a better approximation to the 
steady-state vector. 

•  Very similar to Conjugate Gradient or 
GMRES applied to linear systems. 
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Top-Level Acceleration 

x3 x2 x1 

Choose the best linear combination:"

Probability vector"

Let                          , then the steady-state distribution vector we seek is the unique"
probability vector that minimizes                                       ."

Result"

Collect last m iterations:"
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Top-Level Acceleration 

Minimize                                         within                                                                            ."

Nonlinear Constraint"
(rewritten as linear)"



42 Hans De Sterck, Dept. of Applied Math! Multilevel Aggregation for Small-World Graphs !
University of Waterloo, Ontario, Canada 

Top-Level Acceleration 

Single Equality Constraint"

n  Inequality Constraints"

Efficient explicit solution for recombination of two iterates: "

An Inequality Constraint" Multiple Constraints"

Minimize target functional over a 
line segment "

Constrained minimization problem of size m:"
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Pure Aggregation for Markov Chains 
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Pure Aggregation 
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Numerical Results: Ranking Problem 

nodes"
Cycle type: !

SAM represents soothed aggregation, 
V and W stand for pure aggregation 
V- and W-cycles, respectively."

The “+” represents top-level 
acceleration with window size 3.  "

Number of Levels 
in Hierarchy"

Operator 
Complexity "

Iteration Counts:!

The number of iterations it takes 
to reduce ||Bx - x||1 by six orders 
of magnitude."
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(Insert picture that you ripped 
off from Vanʼs talk here). !

Large Network Graph Properties and Examples 

Class of Networks!

•  Large (billions of nodes)"
•  Unstructured (no regular 

connection pattern)"
•  Scale-Free (power law, ...)"
•  Small-World (small diameter)"
•  Temporal (graphs change rapidly 

in time)"

Examples!

•  World Wide Web [0]"
•  Social Networks"
•  Financial Networks"
•  Model problems!

Network Analysis Calculations!

1.  Rank importance of nodes!
•  sort queries!
•  network design!

2.  Cluster nodes"
•  recommendation"
•  compression"

3.  Calculate commute times"
•  estimate “distance”"

4.  Count triangles"
•  measure “connectivity”"

All have spectral formulas…"

"[0] Picture from Barrett Lyonʼs Opte project, 2003 "
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Top-Level Acceleration 

Flexible Krylov Method 

• Combine the last several iterations to 
form a better approximation to the 
steady-state vector. 

•  Very similar to Conjugate Gradient or 
GMRES applied to linear systems. 


