Extending GMRES to Nonlinear Optimization: Application to Tensor Approximation

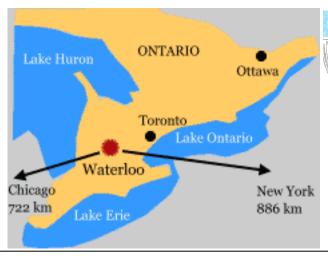
UNIVERSITY OF WATERLOO

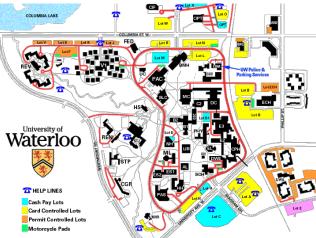
uwaterloo.ca

Hans De Sterck
Department of Applied Mathematics
University of Waterloo

Universitaet Erlangen-Nuernberg, 7 July 2011

Applied Mathematics Department, University of Waterloo, Canada





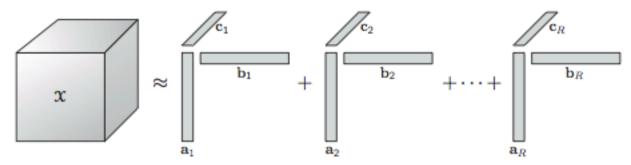
- "Scalable Scientific Computing" research group
- -2 postdocs
- -5 PhD students
- -Master's, undergraduate research students

Scalable Scientific Computing group

- numerical PDEs
 - compressible fluid dynamics and
 MHD, space physics applications, HPC
 - GPU, finite volume element method, capillarity, ...
- numerical linear algebra, iterative methods
 - AMG for Markov chains
 - AMG for eigenproblems and SVD → today's talk
 - 'graph applications', clustering (images), ...
- grid/cloud/hadoop/database, spin systems, inverse problems, ...

1. introduction

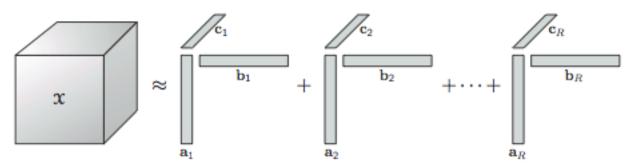
- tensor = N-dimensional array
- N=3:



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

 canonical decomposition: decompose tensor in sum of R rank-one terms (approximately)

introduction



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

OPTIMIZATION PROBLEM

given tensor $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$, find rank-R canonical tensor $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$ that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$

FIRST-ORDER OPTIMALITY EQUATIONS

$$\nabla f(\mathcal{A}_R) = \mathbf{g}(\mathcal{A}_R) = 0.$$

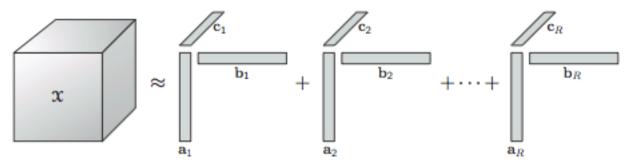
(problem is non-convex, multiple (local) minima, but smooth)

UNIVERSITY OF WATERLOO

link with singular value decomposition

• SVD of $A \in I\!\!R^{m imes n}$ $m \geq n$ $A = U \, \Sigma \, V^t = \sigma_1 \, u_1 \, v_1^T + \ldots + \sigma_n \, u_n \, v_n^T$

canonical decomposition of tensor



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

differences with SVD

1. truncated SVD is best rank-R approximation:

$$A = \sigma_1 u_1 v_1^T + \ldots + \sigma_R u_R v_R^T + \sigma_{R+1} u_{R+1} v_{R+1}^T + \ldots + \sigma_n u_n v_n^T$$

$$\underset{B \text{ with rank } < R}{\operatorname{arg \, min}} \|A - B\|_F = \sigma_1 \, u_1 \, v_1^T + \ldots + \sigma_R \, u_R \, v_R^T$$

BUT best rank-*R* tensor cannot be obtained by truncation: different optimization problems for different *R*!

given tensor $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$, find rank-R canonical tensor $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$ that minimizes

$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$

differences with SVD

2. SVD factor matrices are orthogonal

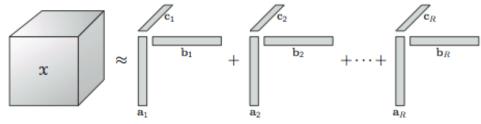
$$A = U \Sigma V^t$$
 $U^t U = I_m$ $V^t V = I_n$

$$\sigma_1 u_1 v_1^T + \ldots + \sigma_R u_R v_R^T = \underset{B \text{ with rank } \leq R}{\arg \min} ||A - B||_F$$

BUT best rank-R tensor factor matrices are not orthogonal

given tensor $\mathcal{T} \in \mathbb{R}^{I_1 \times ... \times I_N}$, find rank-R canonical tensor $\mathcal{A}_R \in \mathbb{R}^{I_1 \times ... \times I_N}$ that minimizes

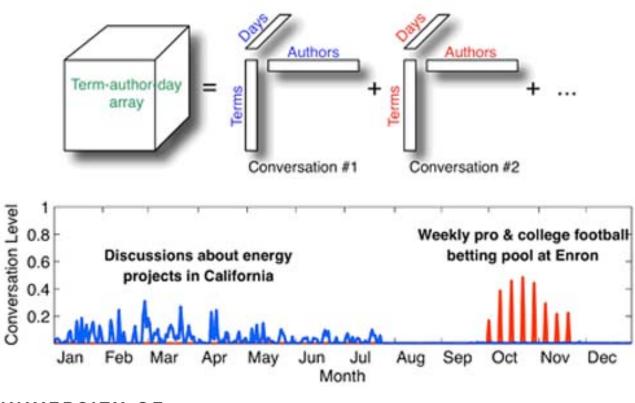
$$f(\mathcal{A}_R) = \frac{1}{2} \|\mathcal{T} - \mathcal{A}_R\|_F^2.$$



(from "Tensor Decompositions and Applications", Kolda and Bader, SIAM Rev., 2009 [1])

2. tensor approximation applications

(1) "Discussion Tracking in Enron Email Using PARAFAC" by Bader, Berry and Browne (2008) (sparse, nonnegative)

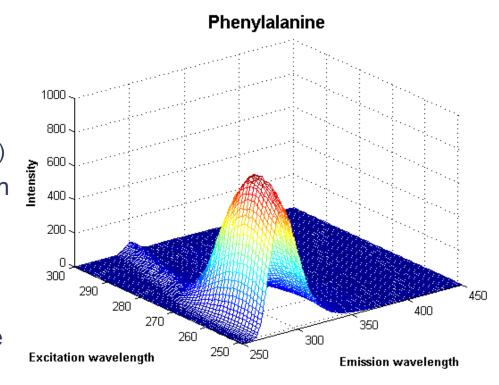


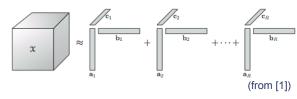
tensor approximation applications

(2) chemometrics: analyze spectrofluorometer data (dense) (Bro et al.,

http://www.models.life.ku.dk/nwaydata1)

- 5 x 201 x 61 tensor: 5 samples (with different mixtures of three amino acids), 61 excitation wavelengths, 201 emission wavelengths
- goal: recover emission spectra of the three amino acids (to determine what was in each sample, and in which concentration)





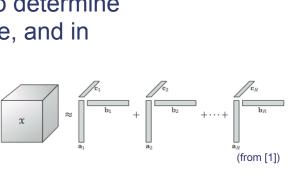
WATERLOC

tensor approximation applications

(2) chemometrics: analyze spectrofluorometer data (dense) (Bro et al.,

http://www.models.life.ku.dk/nwaydata1)

- 5 x 201 x 61 tensor: 5 samples (with different mixtures of three amino acids), 61 excitation wavelengths, 201 emission wavelengths
- goal: recover emission spectra of the three amino acids (to determine what was in each sample, and in which concentration)



3. alternating least squares (ALS)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R a_r^{(1)} \circ a_r^{(2)} \circ a_r^{(3)}
ight\|_F^2$$

- (1) freeze all $a_r^{(2)}$, $a_r^{(3)}$, compute optimal $a_r^{(1)}$ via a least-squares solution (linear, overdetermined)
- (2) freeze $a_r^{(1)}$, $a_r^{(3)}$, compute $a_r^{(2)}$
- (3) freeze $a_r^{(1)}$, $a_r^{(2)}$, compute $a_r^{(3)}$
- repeat



alternating least squares (ALS)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R \, a_r^{(1)} \circ rac{a_r^{(2)} \circ a_r^{(3)}}{r}
ight\|_F^2$$

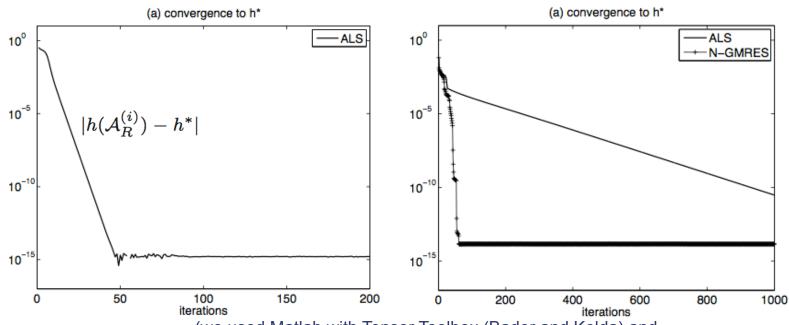
- ALS is a nonlinear block Gauss-Seidel iteration
- ALS is monotone
- ALS is sometimes fast, but can also be extremely slow (depending on problem and initial condition)

alternating least squares (ALS)

$$f(\mathcal{A}_R) = \frac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R a_r^{(1)} \circ \frac{a_r^{(2)} \circ a_r^{(3)}}{a_r^{(2)} \circ a_r^{(3)}} \right\|_F^2 \qquad h(\mathcal{A}_R^{(i)}) = \frac{\|\mathcal{T} - \mathcal{A}_R^{(i)}\|_F}{\|\mathcal{T}\|_F}$$

fast case

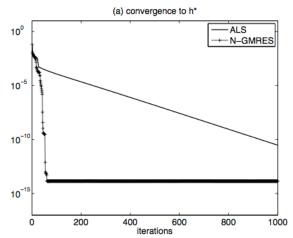
slow case



(we used Matlab with Tensor Toolbox (Bader and Kolda) and Poblano Toolbox (Dunlavy et al.) for all computations)

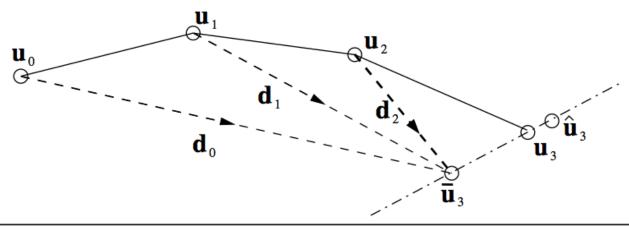
alternating least squares (ALS)

$$f(\mathcal{A}_R) = rac{1}{2} \left\| \mathcal{T} - \sum_{r=1}^R \, a_r^{(1)} \circ rac{a_r^{(2)} \circ a_r^{(3)}}{r}
ight\|_F^2$$



- for linear systems/PDEs, when a simple iterative method is slow, we accelerate it with GMRES, CG, multigrid, ...
- the simple iterative method is called the 'preconditioner'
- for optimization problems, general approaches to accelerate simple iterative methods are uncommon (do not exist?)
- let's try to accelerate ALS for the tensor optimization problem
- issues: nonlinear, optimization context

4. nonlinear GMRES acceleration of ALS

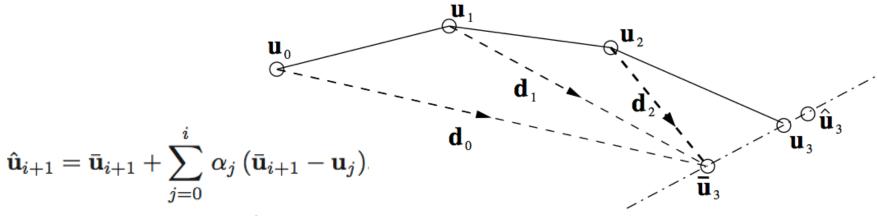


Algorithm 1: N-GMRES optimization algorithm (window size w)

```
Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.
```

```
repeat  \begin{array}{l} \textbf{STEP I: } \textit{(generate preliminary iterate by one-step update process } M(.)) \\ \bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i) \\ \textbf{STEP II: } \textit{(generate accelerated iterate by nonlinear GMRES step)} \\ \hat{\mathbf{u}}_{i+1} = & \text{gmres}(\mathbf{u}_{i-w+1}, \ldots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) \\ \textbf{STEP III: } \textit{(generate new iterate by line search process)} \\ \mathbf{u}_{i+1} = & \text{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ i = i+1 \\ \textbf{until convergence criterion satisfied} \end{array}
```

step II: N-GMRES acceleration: $\nabla f(A_R) = \mathbf{g}(A_R) = 0$



$$\mathbf{g}(\hat{\mathbf{u}}_{i+1}) \approx \mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \left. \frac{\partial \mathbf{g}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{u}}_{i+1}} \alpha_{j} \left(\bar{\mathbf{u}}_{i+1} - \mathbf{u}_{j} \right)$$

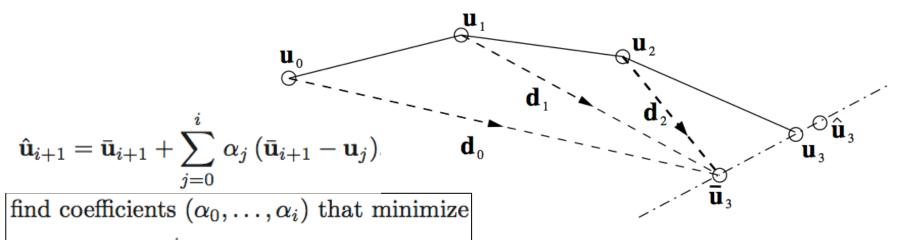
$$\approx \mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j \left(\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j) \right)$$

(nonlinear GMRES acceleration for nonlinear PDE problems: "Krylov subspace acceleration for nonlinear multigrid schemes", Washio and Oosterlee, ETNA, 1997)

find coefficients $(\alpha_0, \ldots, \alpha_i)$ that minimize

$$\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j \left(\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j)\right)\|_2.$$

step II: N-GMRES acceleration: $\nabla f(A_R) = \mathbf{g}(A_R) = 0$



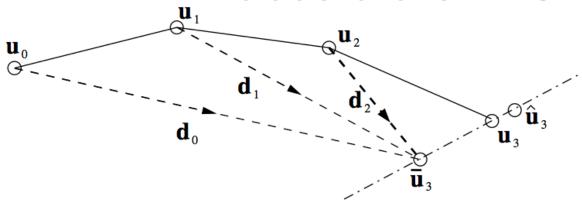
$$\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j \left(\mathbf{g}(\bar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j)\right)\|_2.$$

$$egin{aligned} oldsymbol{lpha} &= (lpha_0, \dots, lpha_i)^T, \ \mathbf{p}_j &= \mathbf{g}(ar{\mathbf{u}}_{i+1}) - \mathbf{g}(\mathbf{u}_j), \ \mathbf{P} &= [\mathbf{p}_0 | \dots | \mathbf{p}_j], \end{aligned}$$

minimize
$$\|\mathbf{P}\,\boldsymbol{\alpha} + \mathbf{g}(\bar{\mathbf{u}}_{i+1})\|_2$$

$$\mathbf{P}^T\,\mathbf{P}\,oldsymbol{lpha} = -\mathbf{P}^T\,\mathbf{g}(ar{\mathbf{u}}_{i+1})$$

N-GMRES optimization algorithm to accelerate ALS



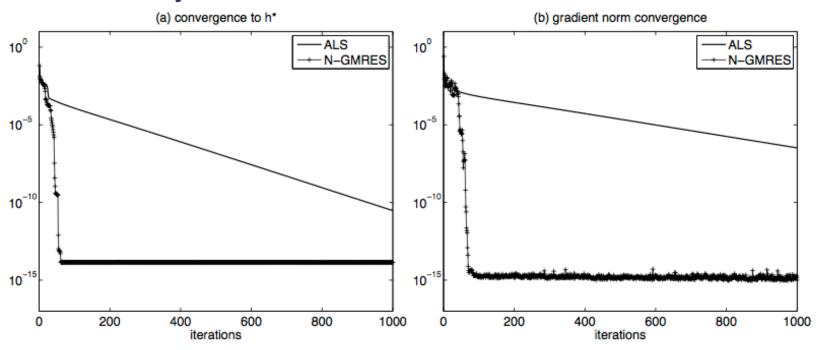
Algorithm 1: N-GMRES optimization algorithm (window size w)

```
Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.
```

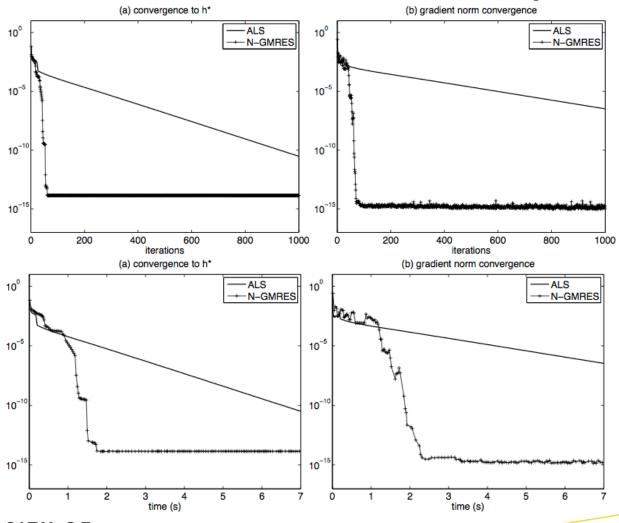
```
repeat STEP I: (generate preliminary iterate by one-step update process M(.)) \bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i) STEP II: (generate accelerated iterate by nonlinear GMRES step) \hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) STEP III: (generate new iterate by line search process) \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) i = i+1 until convergence criterion satisfied
```

5. numerical results for ALS-preconditioned N-GMRES applied to tensor problem

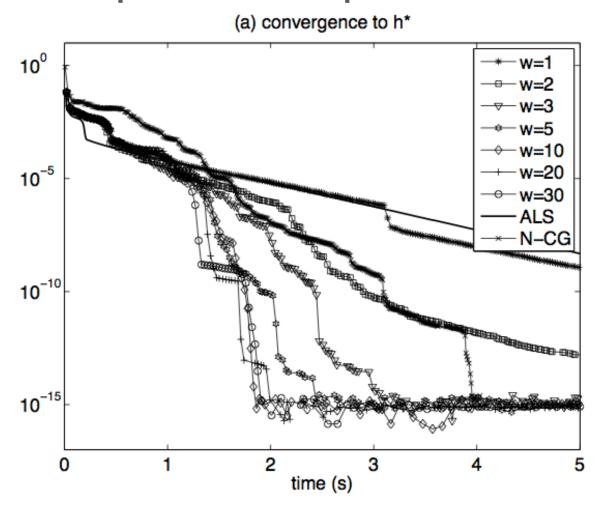
 dense test problem (from Tomasi and Bro; Acar et al.): random rank-R tensor modified to obtain specific column collinearity, with added noise



numerical results: dense test problem



dense test problem: optimal window size



dense test problem: comparison

h^* accuracy 10^{-3}		ALS		N-GMRES		N-CG	
problem parameters		it	time	it	time	it	time
1	$s = 20, c = 0.5, R = 3, l_1 = 1, l_2 = 1$	18	0.083	16	0.21	34	0.17
2	$s = 20, c = 0.5, R = 5, l_1 = 10, l_2 = 5$	9	0.083	8	0.17	64	0.51
3	$s = 20, c = 0.9, R = 3, l_1 = 0, l_2 = 0$	186	0.8	153	1.7	137	0.57
4	$s = 20, c = 0.9, R = 5, l_1 = 1, l_2 = 1$	19	0.15	13	0.34	195	1.4
5	$s = 50, c = 0.5, R = 3, l_1 = 1, l_2 = 1$	11	0.089	8	0.21	38	0.46
6	$s = 50, c = 0.5, R = 5, l_1 = 10, l_2 = 5$	10	0.15	9	0.3	50	0.97
7	$s = 50, c = 0.9, R = 3, l_1 = 0, l_2 = 0$	314	2.2	56	1.6	200	1.8
8	$s=50, c=0.9, R=5, l_1=1, l_2=1$	15	0.2	10	0.43	>1821	>32
9	$s=100,c=0.5,R=3,l_1=1,l_2=1$	9	0.31	9	1.1	71	5.7
10	$s = 100, c = 0.5, R = 5, l_1 = 10, l_2 = 5$	15	0.68	13	2.2	66	7.5
11	$s = 100, c = 0.9, R = 3, l_1 = 0, l_2 = 0$	178	5.9	30	3.9	340	23
12	$s=100,c=0.9,R=5,l_1=1,l_2=1$	12	0.52	9	1.7	260	24

Table 3.1

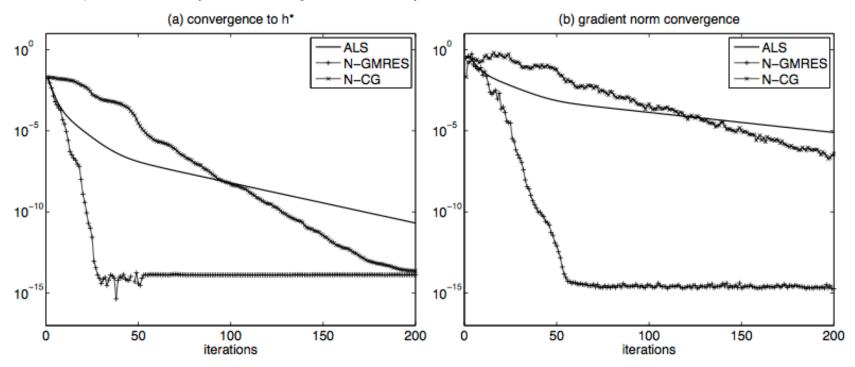
dense test problem: comparison

h^* accuracy 10^{-10}		ALS		N-GMRES		N-CG	
problem parameters		it	time	it	time	it	time
1	$s=20, c=0.5, R=3, l_1=1, l_2=1$	37	0.16	22	0.3	52	0.24
2	$s=20,c=0.5,R=5,l_1=10,l_2=5$	37	0.28	17	0.39	97	0.7
3	$s = 20, c = 0.9, R = 3, l_1 = 0, l_2 = 0$	>1600	>6.9	189	2.4	>400	>6.1
4	$s=20,c=0.9,R=5,l_1=1,l_2=1$	>1200	>8.6	139	4.5	1100	6.8
5	$s = 50, c = 0.5, R = 3, l_1 = 1, l_2 = 1$	32	0.23	16	0.42	67	0.69
6	$s = 50, c = 0.5, R = 5, l_1 = 10, l_2 = 5$	36	0.44	17	0.67	89	1.6
7	$s = 50, c = 0.9, R = 3, l_1 = 0, l_2 = 0$	>1200	>8.5	104	3.5	>553	>7.6
8	$s = 50, c = 0.9, R = 5, l_1 = 1, l_2 = 1$	1252	14	171	10	>1821	>32
9	$s = 100, c = 0.5, R = 3, l_1 = 1, l_2 = 1$	31	1	16	2	136	9.6
10	$s = 100, c = 0.5, R = 5, l_1 = 10, l_2 = 5$	42	1.8	22	4.1	178	16
11	$s = 100, c = 0.9, R = 3, l_1 = 0, l_2 = 0$	>800	>27	99	17	>748	>60
12	$s=100,c=0.9,R=5,l_1=1,l_2=1$	1218	51	112	26	880	72

Table 3.3

numerical results: sparse test problem

 sparse test problem: d-dimensional finite difference Laplacian (2 d-way tensor)



sparse test problem: comparison

h^* accuracy 10^{-10}		ALS		N-GI	MRES	N-CG	
problem parameters		it	time	it	time	it	time
1	N = 4, s = 8, R = 6	>400	>9.6	55	3.1	380	3.7
2	N = 4, s = 8, R = 6	242	5.8	26	1.5	327	3.5
3	N = 4, s = 16, R = 3	>800	>12	119	3.8	419	3.5
4	N = 4, s = 16, R = 3	724	11	84	2.7	375	3.2
5	N = 6, s = 4, R = 2	52	0.94	19	0.65	153	1.6
6	N = 6, s = 4, R = 2	51	0.95	18	0.67	386	3.3
7	N = 6, s = 8, R = 5	613	24	81	18	213	40
8	N = 6, s = 8, R = 5	127	5.1	31	6.8	262	46
9	N = 8, s = 4, R = 2	70	2	21	1.5	111	5.2
10	N = 8, s = 4, R = 2	72	2.1	24	1.8	>280	>19

Table 4.3

GMRES for linear systems: $\mathbf{A}\mathbf{u} = \mathbf{b}$

- stationary iterative method $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$ (preconditioning process)
- preconditioner $\mathbf{M}^{-1} \approx \mathbf{A}^{-1}$
- define residual and error:

$$\mathbf{r}_i = \mathbf{b} - \mathbf{A} \mathbf{u}_i$$
 $\mathbf{e}_i = \mathbf{u} - \mathbf{u}_i$ $\mathbf{A} \mathbf{e}_i = \mathbf{r}_i$

- exact update equation: $\mathbf{u} = \mathbf{u}_i + \mathbf{e}_i = \mathbf{u}_i + \mathbf{A}^{-1} \mathbf{r}_i$
- approximate update equation: $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$

GMRES for linear systems: $\mathbf{A}\mathbf{u} = \mathbf{b}$

- stationary iterative method $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$
- generates residuals recursively: $\mathbf{r}_i = \mathbf{b} \mathbf{A} \mathbf{u}_i$

$$= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1}) \, \mathbf{r}_{i-1}$$

• define Krylov space $K_{i+1}(\mathbf{A}\mathbf{M}^{-1},\mathbf{r}_0)$

$$= (\mathbf{I} - \mathbf{A} \mathbf{M}^{-1})^i \, \mathbf{r}_0.$$

$$egin{aligned} V_{1,i+1} &= span\{\mathbf{r}_0,\dots,\mathbf{r}_i\}, \ V_{2,i+1} &= span\{\mathbf{r}_0,\mathbf{A}\mathbf{M}^{-1}\,\mathbf{r}_0,(\mathbf{A}\mathbf{M}^{-1})^2\,\mathbf{r}_0\},\dots,(\mathbf{A}\mathbf{M}^{-1})^i\,\mathbf{r}_0\} & ext{(Washio and Oosterlee, ETNA,} \ &= K_{i+1}(\mathbf{A}\mathbf{M}^{-1},\mathbf{r}_0), & ext{1997} \ V_{3,i+1} &= span\{\mathbf{M}\,(\mathbf{u}_1-\mathbf{u}_0),\mathbf{M}\,(\mathbf{u}_2-\mathbf{u}_1),\dots,\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_i)\}, \ V_{4,i+1} &= span\{\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_0),\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_1),\dots,\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_i)\} \end{aligned}$$

Lemma 2.1. $V_{1,i+1} = V_{2,i+1} = V_{3,i+1} = V_{4,i+1}$

UNIVERSITY OF

GMRES for linear systems: $\mathbf{A}\mathbf{u} = \mathbf{b}$

(Washio and Oosterlee, ETNA, 1997)

• stationary iterative process $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$ generates preconditioned residuals that build Krylov space

$$egin{aligned} V_{1,i+1} &= span\{\mathbf{r}_0,\dots,\mathbf{r}_i\}, \ V_{2,i+1} &= span\{\mathbf{r}_0,\mathbf{A}\mathbf{M}^{-1}\,\mathbf{r}_0,(\mathbf{A}\mathbf{M}^{-1})^2\,\mathbf{r}_0\},\dots,(\mathbf{A}\mathbf{M}^{-1})^i\,\mathbf{r}_0\} \ &= K_{i+1}(\mathbf{A}\mathbf{M}^{-1},\mathbf{r}_0), \end{aligned}$$

• GMRES: take optimal linear combination of residuals in Krylov space to minimize the residual $\|\hat{\mathbf{r}}_{i+1}\|_2$

$$egin{aligned} \mathbf{A} \ \mathbf{u} &= \mathbf{b} \ \mathbf{u}_{i+1} &= \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i \end{aligned} egin{aligned} V_{1,i+1} &= span \{\mathbf{r}_0, \dots, \mathbf{r}_i\}, \ V_{2,i+1} &= span \{\mathbf{r}_0, \mathbf{A}\mathbf{M}^{-1} \mathbf{r}_0, (\mathbf{A}\mathbf{M}^{-1})^2 \mathbf{r}_0\}, \dots, (\mathbf{A}\mathbf{M}^{-1})^i \mathbf{r}_0\} \ &= K_{i+1} (\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0), \ V_{3,i+1} &= span \{\mathbf{M} \ (\mathbf{u}_1 - \mathbf{u}_0), \mathbf{M} \ (\mathbf{u}_2 - \mathbf{u}_1), \dots, \mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_i)\}, \ V_{4,i+1} &= span \{\mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_0), \mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_1), \dots, \mathbf{M} \ (\mathbf{u}_{i+1} - \mathbf{u}_i)\} \end{aligned}$$

- GMRES: minimize || î_{i+1} ||₂
- seek optimal approximation $\mathbf{M}(\hat{\mathbf{u}}_{i+1} \mathbf{u}_i) = \sum_{j=0}^{i} \beta_j \mathbf{M}(\mathbf{u}_{i+1} \mathbf{u}_j)$

$$\begin{split} \hat{\mathbf{u}}_{i+1} &= \mathbf{u}_i + \sum_{j=0}^i \beta_j \left(\mathbf{u}_{i+1} - \mathbf{u}_j \right) \\ &= \mathbf{u}_{i+1} - \left(\mathbf{u}_{i+1} - \mathbf{u}_i \right) + \sum_{j=0}^i \beta_j \left(\mathbf{u}_{i+1} - \mathbf{u}_j \right) \end{split}$$

 $\hat{\mathbf{u}}_{i+1} = \mathbf{u}_{i+1} + \sum_{j=0}^{\infty} \alpha_j (\mathbf{u}_{i+1} - \mathbf{u}_j)$ same as for N-GMRES!

$$egin{aligned} \mathbf{A} \, \mathbf{u} &= \mathbf{b}, & V_{1,i+1} &= span\{\mathbf{r}_0, \dots, \mathbf{r}_i\}, \ \mathbf{u}_{i+1} &= \mathbf{u}_i + \mathbf{M}^{-1} \, \mathbf{r}_i & V_{2,i+1} &= span\{\mathbf{r}_0, \mathbf{A}\mathbf{M}^{-1} \, \mathbf{r}_0, (\mathbf{A}\mathbf{M}^{-1})^2 \, \mathbf{r}_0\}, \dots, (\mathbf{A}\mathbf{M}^{-1})^i \, \mathbf{r}_0\} \ &= K_{i+1}(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0), & V_{2,i+1} &= span\{\mathbf{M} \, (\mathbf{u}_1 - \mathbf{u}_0), \mathbf{M} \, (\mathbf{u}_2 - \mathbf{u}_1), \dots, \mathbf{M} \, (\mathbf{u}_{i+1} - \mathbf{u}_i)\}, \end{aligned}$$

$$\begin{split} V_{3,i+1} = span\{\mathbf{M}\,(\mathbf{u}_1-\mathbf{u}_0), \mathbf{M}\,(\mathbf{u}_2-\mathbf{u}_1), \dots, \mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_i)\}, \\ V_{4,i+1} = span\{\mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_0), \mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_1), \dots, \mathbf{M}\,(\mathbf{u}_{i+1}-\mathbf{u}_i)\} \end{split}$$
 • N-GMRES step II reduces to preconditioned

- N-GIVIRES step if reduces to preconditioned GMRES in the linear case $\hat{\mathbf{u}}_{i+1} = \bar{\mathbf{u}}_{i+1} + \sum_{j=0}^{i} \alpha_j (\bar{\mathbf{u}}_{i+1} \mathbf{u}_j)$
- 'nonlinear Krylov space' $span\{(\mathbf{u}_{i+1}-\mathbf{u}_0), (\mathbf{u}_{i+1}-\mathbf{u}_1), \dots, (\mathbf{u}_{i+1}-\mathbf{u}_i)\}$
- $\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)$ in step I is a nonlinear preconditioner

```
for
N-GMRES
(ALS)
```

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

7. general N-GMRES optimization method

general methods for nonlinear optimization (smooth, unconstrained) ("Numerical Optimization", Nocedal and Wright, 2006)

- 1. steepest descent with line search
- Newton with line search
- 3. nonlinear conjugate gradient (N-CG) with line search
- 4. trust-region methods
- 5. quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited memory version L-BFGS)
- 6. N-GMRES as a general optimization method?

general N-GMRES optimization method

first question: what would be a general preconditioner?

OPTIMIZATION PROBLEM find \mathbf{u}^* that minimizes $f(\mathbf{u})$ FIRST-ORDER OPTIMALITY EQUATIONS $\nabla f(\mathbf{u}) = \mathbf{g}(\mathbf{u}) = 0$

• idea: general N-GMRES preconditioner $\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)$ = update in direction of steepest descent (or: use N-GMRES to accelerate steepest descent)

8. steepest-descent preconditioning

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

STEEPEST DESCENT PRECONDITIONING PROCESS:

$$\bar{\mathbf{u}}_{i+1} = \mathbf{u}_i - \beta \frac{\nabla f(\mathbf{u}_i)}{\|\nabla f(\mathbf{u}_i)\|} \quad \text{with}$$
 option A:
$$\beta = \beta_{sdls},$$
 option B:
$$\beta = \beta_{sd} = \min(\delta, \|\nabla f(\mathbf{u}_i)\|)$$

- option A: steepest descent with line search
- option B: steepest descent with predefined small step
- claim: steepest descent is the 'natural' preconditioner for N-GMRES

steepest-descent preconditioning

- claim: steepest descent is the 'natural' preconditioner for N-GMRES
- example: consider simple quadratic optimization problem

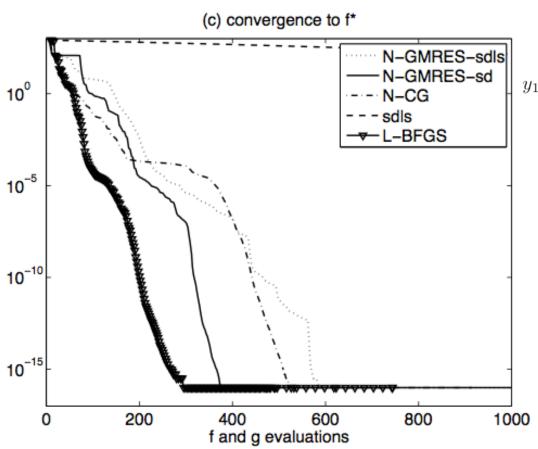
$$f(\mathbf{u}) = \frac{1}{2} \mathbf{u}^T A \mathbf{u} - \mathbf{b}^T \mathbf{u}$$
 where A is SPD

- we know $\nabla f(\mathbf{u}_i) = A\mathbf{u}_i b = -\mathbf{r}_i$ so $\bar{\mathbf{u}}_{i+1} = \mathbf{u}_i \beta \frac{\nabla f(\mathbf{u}_i)}{\|\nabla f(\mathbf{u}_i)\|}$ becomes $\bar{\mathbf{u}}_{i+1} = \mathbf{u}_i + \beta \frac{\mathbf{r}_i}{\|\mathbf{r}_i\|}$
- this gives the same residuals as $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$ with $\mathbf{M} = \mathbf{I}$: steepest-descent N-GMRES preconditioner corresponds to identity preconditioner for linear GMRES

UNIVERSITY OF WATERLOO

(and: small step is sufficient)

9. numerical results: steepest-descent preconditioning

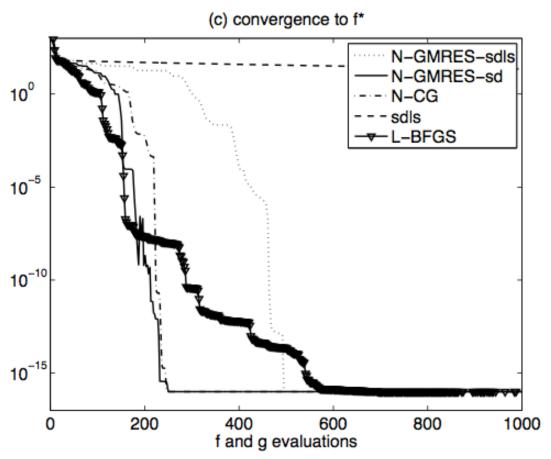


$$f(\mathbf{u}) = \frac{1}{2} \mathbf{y} (\mathbf{u} - \mathbf{u}^*)^T D \mathbf{y} (\mathbf{u} - \mathbf{u}^*) + 1,$$
with $D = \text{diag}(1, 2, \dots, n)$ and $\mathbf{y}(\mathbf{x})$ given by $y_1(\mathbf{x}) = x_1$ and $y_i(\mathbf{x}) = x_i - 10 x_1^2$ $(i = 2, \dots, n)$.

- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- option A slower than option B (small step)

UNIVERSITY OF WATERLOO

numerical results: steepest-descent preconditioning



$$f(\mathbf{u}) = \frac{1}{2} \sum_{j=1}^{n} t_{j}^{2}(\mathbf{u}), \text{ with } n \text{ even and}$$

$$t_{j} = 10 (u_{j+1} - u_{j}^{2}) \quad (j \text{ odd}),$$

$$t_{j} = 1 - u_{j-1} \quad (j \text{ even}).$$

- extended Rosenbrock function
- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS

numerical results: steepest-descent preconditioning

problem	N-GMRES-sdls	N-GMRES-sd		N-CG	L-BFGS	
D $n=500$	525		172		222	166
D $n=1000$	445		211		223	170
E n=100	294		259		243	358
E n=200	317		243		240	394
F n=200	140		102(1)		102	92
F n=500	206(1)		175(1)		135	118
G n=100	1008(2)		152		181	358
G $n=200$	629(1)		181		137	240

Table 3.2

- standard test problems, 10 random initial guesses
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- N-GMRES preconditioner option A (line search) slower than option B (small step)

UNIVERSITY OF WATERLOO

10. convergence of steepest-descent preconditioned N-GMRES optimization

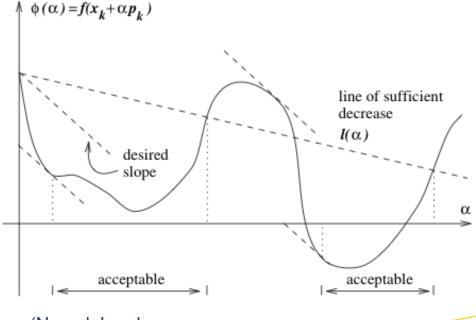
 assume line searches give solutions that satisfy Wolfe conditions:

SUFFICIENT DECREASE CONDITION:

$$f(\mathbf{u}_i + \beta_i \mathbf{p}_i) \le f(\mathbf{u}_i) + c_1 \beta_i \nabla f(\mathbf{u}_i)^T \mathbf{p}_i,$$

CURVATURE CONDITION:

$$\nabla f(\mathbf{u}_i + \beta_i \mathbf{p}_i)^T \mathbf{p}_i \ge c_2 \, \nabla f(\mathbf{u}_i)^T \mathbf{p}_i,$$

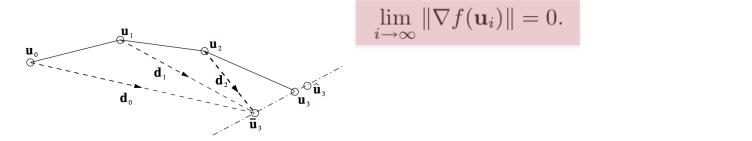


(Nocedal and Wright, 2006)

convergence of steepest-descent preconditioned N-GMRES optimization

THEOREM 2.1 (Global convergence of N-GMRES optimization algorithm with steepest descent line search preconditioning). Consider N-GMRES Optimization Algorithm 1 with steepest descent line search preconditioning (2.1) for Optimization Problem I, and assume that all line search solutions satisfy the Wolfe conditions, (2.11) and (2.12). Assume that objective function f is bounded below in \mathbb{R}^n and that f is continuously differentiable in an open set \mathcal{N} containing the level set $\mathcal{L} = \{\mathbf{u} : f(\mathbf{u}) \leq f(\mathbf{u}_0)\}$, where \mathbf{u}_0 is the starting point of the iteration. Assume also that the gradient ∇f is Lipschitz continuous on \mathcal{N} , that is, there exists a constant L such that $\|\nabla f(\mathbf{u}) - \nabla f(\hat{\mathbf{u}})\| \leq L\|\mathbf{u} - \hat{\mathbf{u}}\|$ for all $\mathbf{u}, \hat{\mathbf{u}} \in \mathcal{N}$. Then the sequence of N-GMRES iterates $\{\mathbf{u}_0, \mathbf{u}_1, \ldots\}$ is convergent to a fixed point of Optimization Problem I in the sense that

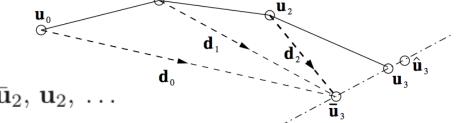
(2.13)



convergence of steepest-descent preconditioned N-GMRES optimization

sketch of (simple!) proof

• Consider the sequence $\{\mathbf{v}_0, \mathbf{v}_1, \ldots\}$ formed by the iterates $\mathbf{u}_0, \, \bar{\mathbf{u}}_1, \, \mathbf{u}_1, \, \bar{\mathbf{u}}_2, \, \mathbf{u}_2, \, \ldots$



- use Zoutendijk's theorem: $\sum_{i=0}^{\infty} \cos^2 \theta_i \|\nabla f(\mathbf{v}_i)\|^2 < \infty$ with $\cos \theta_i = \frac{-\nabla f(\mathbf{v}_i)^T \mathbf{p}_i}{\|\nabla f(\mathbf{v}_i)\| \|\mathbf{p}_i\|} \text{ and thus } \lim_{i \to \infty} \cos^2 \theta_i \|\nabla f(\mathbf{v}_i)\|^2 = 0$
- all u_i are followed by a steepest descent step, so

$$\lim_{i \to \infty} \|\nabla f(\mathbf{u}_i)\| = 0.$$

global convergence to a stationary point for general f(u)

history of nonlinear acceleration mechanism for nonlinear systems (step II)

```
Step I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
Step II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
Step III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```

 $\nabla f(\mathbf{u}) = \mathbf{g}(\mathbf{u}) = 0$ $\hat{\mathbf{u}}_{i+1} = \bar{\mathbf{u}}_{i+1} + \sum_{j=0}^{i} \alpha_j (\bar{\mathbf{u}}_{i+1} - \mathbf{u}_j)$ find coefficients $(\alpha_0, \dots, \alpha_i)$ that minimize

- Washio and Oosterlee, ETNA, 1997
- GMRES, Saad and Schultz, 1986
- flexible GMRES, Saad, 1993

- $\|\mathbf{g}(\bar{\mathbf{u}}_{i+1}) + \sum_{j=0}^{i} \alpha_j \left(\mathbf{g}(\bar{\mathbf{u}}_{i+1}) \mathbf{g}(\mathbf{u}_j)\right)\|_2.$
- reduced rank extrapolation, e.g. Smith et al., 1987
- Anderson mixing, 1965 (see Fang and Saad, 2009)
- BUT: apparently not used yet for optimization (or at least not common)
- N-GMRES optimization with steepest-descent preconditioning may be the first general optimization method that employs this approach (with a convergence proof for general f(u))

general N-GMRES optimization method

general methods for nonlinear optimization (smooth, unconstrained) ("Numerical Optimization", Nocedal and Wright, 2006)

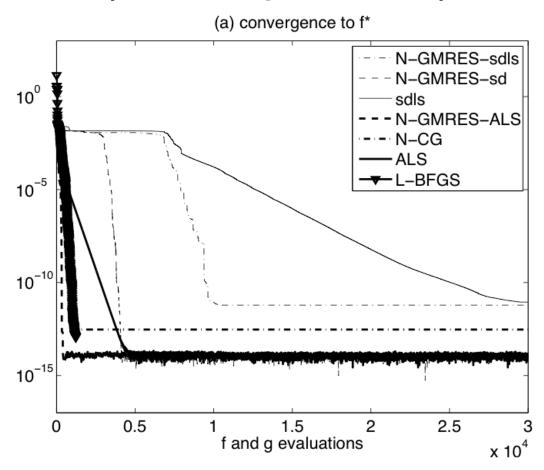
- steepest descent with line search
- Newton with line search
- 3. nonlinear conjugate gradient (N-CG) with line search
- 4. trust-region methods
- 5. quasi-Newton methods (includes Broyden–Fletcher–Goldfarb–Shanno (BFGS) and limited memory version L-BFGS)
- 6. N-GMRES as a general optimization method

11. the power of N-GMRES optimization

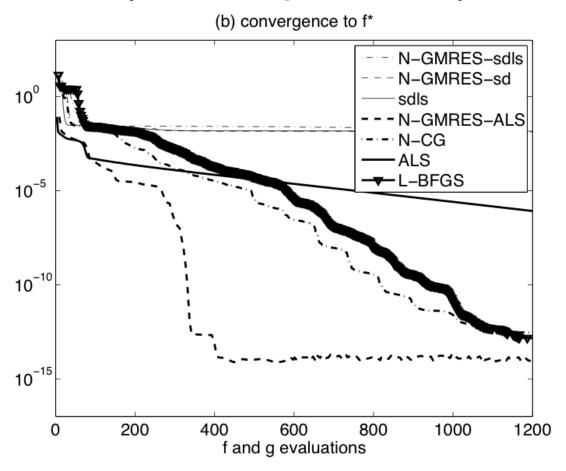
- N-GMRES optimization method is a general, convergent method (steepest-descent preconditioning)
- its real power: N-GMRES optimization framework can employ sophisticated nonlinear preconditioners

```
STEP I: (generate preliminary iterate by one-step update process M(.))
\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)
STEP II: (generate accelerated iterate by nonlinear GMRES step)
\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})
STEP III: (generate new iterate by line search process)
\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))
```


the power of N-GMRES optimization (tensor problem)



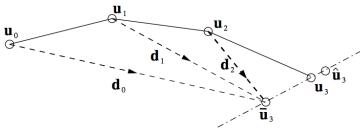
the power of N-GMRES optimization (tensor problem)



12. conclusions

- we have proposed the 3-step preconditioned N-GMRES optimization algorithm as a general nonlinear optimization method (smooth f(u), unconstrained) (uncommon approach, new in optimization?)
- steepest descent preconditioning is the natural 'default' preconditioner, it makes N-GMRES competitive with N-CG and L-BFGS, and we have proved global

convergence



```
Algorithm 1: N-GMRES optimization algorithm (window size w)

Input: w initial iterates \mathbf{u}_0, \dots, \mathbf{u}_{w-1}.

i = w - 1

repeat

STEP I: (generate\ preliminary\ iterate\ by\ one\text{-}step\ update\ process}\ M(.))

\bar{\mathbf{u}}_{i+1} = M(\mathbf{u}_i)

STEP II: (generate\ accelerated\ iterate\ by\ nonlinear\ GMRES\ step)

\hat{\mathbf{u}}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1})

STEP III: (generate\ new\ iterate\ by\ line\ search\ process)

\mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}))

i = i+1

until convergence\ criterion\ satisfied
```

conclusions

(b) convergence to f'

10

N-GMRES-AL

- the real power of the N-GMRES
 optimization framework is that advanced
 nonlinear preconditioners can be used
- ALS-preconditioned N-GMRES optimization performs very well for tensor optimization
 problem

 Algorithm 1: N-GMRES optimization algorithm (window size w)

i = i + 1

Input: w initial iterates $\mathbf{u}_0, \dots, \mathbf{u}_{w-1}$.

until convergence criterion satisfied

```
\mathbf{u}_0 \\ \mathbf{u}_1 \\ \mathbf{d}_1 \\ \mathbf{d}_2 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{u}_3 \\ \mathbf{i} = w-1 \\ \text{repeat} \\ \text{STEP II: (generate preliminary iterate by one-step update process } M(.)) \\ \mathbf{u}_{i+1} = M(\mathbf{u}_i) \\ \text{STEP II: (generate accelerated iterate by nonlinear } GMRES \text{ step}) \\ \mathbf{u}_{i+1} = \operatorname{gmres}(\mathbf{u}_{i-w+1}, \dots, \mathbf{u}_i; \bar{\mathbf{u}}_{i+1}) \\ \text{STEP III: (generate new iterate by line search process)} \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} + \beta(\hat{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1})) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{\mathbf{u}}_{i+1} - \bar{\mathbf{u}}_{i+1}) \\ \mathbf{u}_{i+1} = \operatorname{linesearch}(\bar{
```

UNIVERSITY OF WATERLOO

- thank you
- questions?

- Hans De Sterck, 'A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition', submitted to SIAM J. Sci. Comp., May 2011, arXiv: 1105.5331
- Hans De Sterck, 'Steepest Descent Preconditioning for Nonlinear GMRES Optimization', submitted to SIAM J. Opt., June 2011, arXiv:1106.4426

comparing N-GMRES to GMRES

non-preconditioned GMRES for linear systems:

$$\mathbf{M} = \mathbf{I}$$
 $\mathbf{u}_{i+1} = \mathbf{u}_i + \mathbf{M}^{-1} \mathbf{r}_i$ Krylov space $K_{i+1}(\mathbf{A}\mathbf{M}^{-1}, \mathbf{r}_0)$

- apply non-preconditioned GMRES to preconditioned linear system $\mathbf{A}\mathbf{M}^{-1}(\mathbf{M}\mathbf{u}) = \mathbf{b}$ or $(\mathbf{A}\mathbf{M}^{-1})\mathbf{y} = \mathbf{b}$
- preconditioner changes the spectrum of the operator such that (non-preconditioned) GMRES applied to the preconditioned operator converges better
- this alternative viewpoint of preconditioned GMRES leads to the same formulas as what we derived in the previous slides

conjugate gradient (CG)

Algorithm 5.2 (CG).

Given
$$x_0$$
;
Set $r_0 \leftarrow Ax_0 - b$, $p_0 \leftarrow -r_0$, $k \leftarrow 0$;
while $r_k \neq 0$

$$\alpha_k \leftarrow \frac{r_k^T r_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k;$$

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k};$$

$$p_{k+1} \leftarrow -r_{k+1} + \beta_{k+1} p_k;$$

$$k \leftarrow k + 1;$$

end (while)

(Nocedal and Wright, 2006)

preconditioned conjugate gradient (PCG)

Algorithm 5.3 (Preconditioned CG).

Given x_0 , preconditioner M; Set $r_0 \leftarrow Ax_0 - b$; Solve $My_0 = r_0$ for y_0 ; Set $p_0 = -y_0$, $k \leftarrow 0$; while $r_k \neq 0$

$$\alpha_k \leftarrow \frac{r_k^T y_k}{p_k^T A p_k};$$

$$x_{k+1} \leftarrow x_k + \alpha_k p_k;$$

$$r_{k+1} \leftarrow r_k + \alpha_k A p_k;$$
Solve $M y_{k+1} = r_{k+1};$

$$\beta_{k+1} \leftarrow \frac{r_{k+1}^T y_{k+1}}{r_k^T y_k};$$

$$p_{k+1} \leftarrow -y_{k+1} + \beta_{k+1} p_k;$$

$$k \leftarrow k + 1;$$

end (while)

(Nocedal and Wright, 2006)

nonlinear conjugate gradient (N-CG)

Algorithm 5.4 (FR).

Given x_0 ;

Evaluate $f_0 = f(x_0)$, $\nabla f_0 = \nabla f(x_0)$;

Set $p_0 \leftarrow -\nabla f_0, k \leftarrow 0$;

while $\nabla f_k \neq 0$

Compute α_k and set $x_{k+1} = x_k + \alpha_k p_k$;

Evaluate ∇f_{k+1} ;

$$\beta_{k+1}^{\text{FR}} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k}; \tag{5.41a}$$

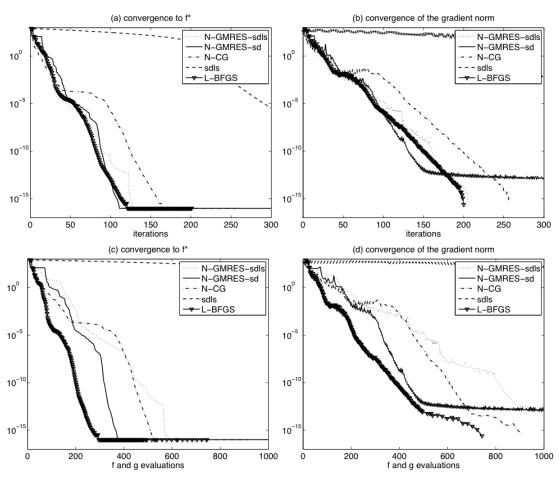
$$p_{k+1} \leftarrow -\nabla f_{k+1} + \beta_{k+1}^{\text{FR}} p_k;$$
 (5.41b)

$$k \leftarrow k + 1; \tag{5.41c}$$

end (while)

(Nocedal and Wright, 2006)

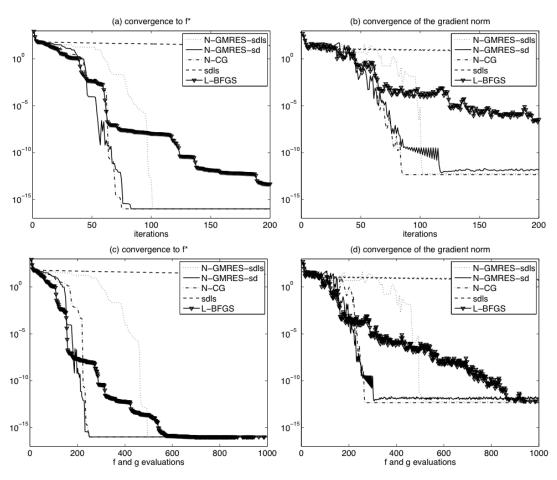
9. numerical results: steepest-descent preconditioning



$$f(\mathbf{u}) = \frac{1}{2} \mathbf{y} (\mathbf{u} - \mathbf{u}^*)^T D \mathbf{y} (\mathbf{u} - \mathbf{u}^*) + 1,$$
with $D = \text{diag}(1, 2, \dots, n)$ and $\mathbf{y}(\mathbf{x})$ given by $y_1(\mathbf{x}) = x_1$ and $y_i(\mathbf{x}) = x_i - 10 x_1^2 \ (i = 2, \dots, n).$

- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS
- option A slower than option B (small step)

numerical results: steepest-descent preconditioning



$$f(\mathbf{u}) = \frac{1}{2} \sum_{j=1}^{n} t_{j}^{2}(\mathbf{u}), \text{ with } n \text{ even and}$$

$$t_{j} = 10 (u_{j+1} - u_{j}^{2}) \qquad (j \text{ odd}),$$

$$t_{j} = 1 - u_{j-1} \qquad (j \text{ even}).$$

- extended
 Rosenbrock function
- steepest descent by itself is slow
- N-GMRES with steepest descent preconditioning is competitive with N-CG and L-BFGS