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1. introduction 

goal:  
 compute a few of the largest or 
smallest singular values of a 
rectangular matrix                       
and their associated singular 
vectors 



introduction 

•  SVD of  

•  for definiteness: we seek nb dominant singular 
triplets 



introduction 

•  why interest in dominant singular triplets? 
–  the k dominant triplets give the best rank-k 

approximation to A 
– applications: principal component analysis 
– applications: term-document matrices 
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(note: nonnegative factorization is better) 



introduction 

•  why consider (algebraic) multigrid (AMG) for 
dominant singular triplets? 

–  for certain types of problems, multigrid may 
outperform other methods 

– because we can! ;-) 



introduction 

•  algebraic multigrid V-cycle 



introduction 

•  special case:  
 A symmetric positive definite (SPD) 

•  our SVD approach will be applicable to SPD 
eigenproblem as a special case (or the other 
way around) 



2. AMG for SPD eigenproblems 

1)  AMG for minimal eigenpairs by Borzi and Borzi 

–  use standard AMG interpolation to build P (for elliptic PDE) 

–  P contains slow-to-converge near-nullspace components in its 
range (including ‘small’ eigenvectors) 

–  additive correction formula:  



AMG for SPD eigenproblems 

AMG for minimal eigenpairs by Borzi and Borzi 
–  use standard AMG interpolation to build P (for elliptic PDE) 
–  P contains slow-to-converge near-nullspace components in its 

range (including ‘small’ eigenvectors) 
–  additive correction formula:  

–  plus: converges with high accuracy 
–  minus: not flexible, only works for                                          

small eigenvectors for ‘easy’ elliptic         
PDEs 



AMG for SPD eigenproblems 

2) adaptive AMG for minimal eigenpairs by 
Kushnir, Galun and Brandt  

    (and related work by Brannick, Kahl, Livshits, and others) 
–  build P via bootstrap AMG (BAMG) approach 

–  P approximately fits all desired eigenvectors in its range 

–  multiplicative update formula: 



AMG for SPD eigenproblems 

adaptive AMG for minimal eigenpairs by Kushnir, 
Galun and Brandt 

–  build P via bootstrap AMG (BAMG) approach 
–  P approximately fits all desired eigenvectors in its range 
–  multiplicative update formula: 

–  plus: flexible, adapts to            
eigenvectors sought 

–  minus: accuracy limited by accuracy         
by which the desired eigenvectors are                
collectively fitted by P 



our approach 

•  combine 2) with 1): combine multiplicative 
(setup) phase (build P) with additive (solve) 
phase      (like adaptive AMG for linear equation systems) 

•  extend to SVD computation 
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3. multiplicative phase: coarse-level 
equations 

•  goals of the multiplicative (setup) phase: 

–  find nb tentative dominant triplets 

– determine interpolation operators P and Q 
that approximately contain the tentative 
singular vectors in their ranges collectively, on 
all levels  



•  assume we know triplet              satisfying 

•  assume P and Q have u and v exactly in their 
ranges: 

•  coarse equations: 

multiplicative phase: coarse-level 
equations 

P 



multiplicative phase: coarse-level 
equations 

•  assume we know triplet 

•  define coarse-level operators and equations 

•  coarse level will help: solving coarse equations (cheaper) 
gives exact answer in one step! 

•  do this approximately, and recursively (V-cycle) 



•  recall generalized symmetric eigenvalue problem for 

•  we have to solve coarse-grid problem 

•  we have to generalize the SVD problem 

4. an uncommon (new?) generalized SVD 



•  this appears to be uncommon in the literature  

an uncommon (new?) generalized SVD 



first way to compute the generalized 
SVD                      



second way to compute the generalized 
SVD                      



third way to compute the generalized 
SVD                      



5. multiplicative phase: BAMG V-cycles 
•  find nb tentative dominant triplets 
•  start from nt random fine-level test vectors 
•  do relaxation on test vectors using the power method, to 

obtain first approximations for ‘large’ singular vectors: 
–  start from random v 
–  compute new u, σ via 
–  compute new v, σ via 
–  repeat 

•  determine P and Q to fit the nt test        
vectors u and v collectively 



multiplicative phase: V-cycles 
•  downwards sweep of first V-cycle: create coarse grids 

and coarse-level operators P, Q, Ac, Bc, Cc for all levels, 
using relaxation on nt initially random test vectors 

nt random test vectors relax test vectors, coarsen, build P, Q, Ac, Bc, Cc   

relax test vectors, coarsen, build P, Q, Ac, Bc, Cc   

relax test vectors, coarsen, build P, Q, Ac, Bc, Cc   

relax: 

build Ac, Bc, Cc: 

inject test 
 vectors 

inject test 
 vectors 

inject test 
 vectors 



multiplicative phase: V-cycles 
•  on the coarsest level: solve the generalized SVD 

problem, and select the nb dominant triplets                    
as the first (coarse) approximations of the dominant 
triplets sought (we call these ‘boot triplets’) 

compute the nb  
dominant boot triplets of  

relax test vectors, coarsen, 
build P, Q, Ac, Bc, Cc   

relax test vectors, coarsen, 
build P, Q, Ac, Bc, Cc   

relax test vectors, coarsen, 
build P, Q, Ac, Bc, Cc   

nt random test vectors 



multiplicative phase: V-cycles 
•  upward sweep of first V-cycle: interpolate the nb boot 

triplets up to finer levels, and relax (first fix σ and find u 
or v, then update σ via Rayleigh quotient formula), on 
each level 

nt random test vectors 

relax test vectors, coarsen, 
build P, Q, Ac, Bc, Cc   

compute the nb 
dominant boot triplets of  

relax: 

relax boot triplets  

relax test vectors, coarsen, 
build P, Q, Ac, Bc, Cc   

relax test vectors, coarsen, 
build P, Q, Ac, Bc, Cc   

interpolate: 

relax boot triplets  

relax boot triplets  



multiplicative phase: V-cycles 
•  repeat V-cycles until convergence stagnates (P and Q 

represent the boot vectors u and v collectively up to 
some accuracy) 

relax test and boot vectors, 
coarsen, build P, Q, Ac, Bc, Cc   

compute the nb 
dominant boot triplets of  

relax boot triplets  

relax test and boot vectors, 
coarsen, build P, Q, Ac, Bc, Cc   

relax test and boot vectors, 
coarsen, build P, Q, Ac, Bc, Cc   

relax boot triplets  

relax boot triplets  



6. multiplicative phase: relaxation 

•  test vectors: power method on 

 with inexact inversion of B and C (weighted Jacobi): 



multiplicative phase: relaxation 

•  boot vectors: block Gauss-Seidel (fix σ) on 

 with inexact inversion of B and C (weighted Jacobi): 

•  update σ using Rayleigh quotient formula 



7. multiplicative phase: building P and Q 
•  coarsening: use standard (one-pass) AMG coarsening 

on AAt for the u-variables, and on AtA for the v-variables 
(correlations ...) 

•  in the future: coarsen directly using A 
•  try ‘general’ strength of connection formula 

•  interpolation stencils for F-points are formed by strongly 
influencing C-points (sparsity of P and Q) 



multiplicative phase: building P and Q 
•  determine the weights in P and Q via least-squares fitting 

of the test (and boot) vectors (injected to the C-points) 
•  (for P) for each F-point i: 

 (one equation per test or booth vector k) 
 (over-determined LS system: more test+boot vectors 
than size of largest stencil) 

•  larger weight for boot vectors than for test vectors 
(proportional to σ) 

P 



OK, where are we... 
•  I have discussed how to do the first phase of the algorithm 

(multiplicative, find tentative triplets starting from random test 
vectors, build P and Q, bootstrap AMG) 

•  I will now discuss the second phase (additive V-cycles, use ‘frozen’ 
P and Q)  



8. additive phase: V-cycles 

•  for each tentative boot triplet, keep σ fixed, 
improve u and v in additive-correction V-cycle 

•  coarse-level equations: 

•  correction formula: 

•  P and Q from setup phase can be used: additive 
errors lie approximately in their ranges 



9. additive phase: Ritz projection 

•  on the finest level, all boot triplets (including the 
σs) are updated after each set of V-cycles 

•  seek new                        s.t 

•  leads to very small generalized singular value 
problem 



10. specializations and extensions 

•  square matrices (use A or At for coarsening) 
•  SPD matrices: only need A, B, P 
•  minimal singular triplets and eigenpairs: 

– algorithm is self-learning (adaptive), so we 
only need to change the relaxation and the 
coarsest-level solves of the multiplicative 
phase 

– use Kaczmarz relaxation                               
on blocks of 



11. numerical results 

1) high-order finite volume element Laplacian on 
unit square (square, nonsymmetric, 961x961) 

largest singular  
values 

(5 test vectors, V(4,4), θ=0.05,  
4 levels, 45x45 coarsest) 



numerical results 

high-order finite volume element Laplacian on unit 
square (square, nonsymmetric, 961x961) 

smallest singular  
values 

(5 test vectors, V(4,4), θ=0.05,  
5 levels, 51x51 coarsest) 



numerical results 



numerical results 

2) finite difference Laplacian on unit square 
(square, symmetric, 1024x1024) 

largest  
eigenvalues 

(6 test vectors, V(8,8) test and V(4,4) boot, θ=0.06,  
4 levels, 52x52 coarsest) 



numerical results 

finite difference Laplacian on unit square (square, 
symmetric, 1024x1024) 

smallest  
eigenvalues 

(6 test vectors, V(8,8) test and V(4,4) boot, θ=0.06,  
5 levels, 64x64 coarsest) 



numerical results 

3) graph Laplacian on random triangular graph in 
unit square (square, symmetric, 1024x1024) 

largest  
eigenvalues 

(6 test vectors, V(1,1) test and V(8,8) boot, θ=0.05,  
3 levels, 77x77 coarsest) 



numerical results 

graph Laplacian on random triangular graph in unit 
square (square, symmetric, 1024x1024) 

(6 test vectors, V(1,1) test and V(8,8) boot, θ=0.05,  
3 levels, 77x77 coarsest) 



numerical results 

graph Laplacian on random triangular graph in unit 
square (square, symmetric, 1024x1024) 

smallest 
eigenvalues 

(6 test vectors, V(1,1) test and V(8,8) boot, θ=0.05,  
3 levels, 59x59 coarsest) 



numerical results 

4) Medline tem-document matrix (rectangular, 
5735x1033) 

largest  
singular values 

(14 test vectors, V(1,1) test and V(4,4) boot, θ=0.03,  
5 levels, 415x198 coarsest) 



12. conclusions 

•  self-learning, collective AMG algorithm to 
compute a few dominant or minimal singular 
triplets (or eigenpairs) 

•  multiplicative setup phase, additive solve phase 
•  seems to work pretty well 
•  there are many parameters, and robustness 

needs to be improved (how many test vectors, 
relaxations, ...) 



conclusions 

•  improve coarsening (on A, compatible relaxation, 
general graph coarsening, small-world, others ...) 

•  improve multiplicative phase (‘adaptive’ approach 
instead of bootstrap?) 

•  improve additive phase (for example, use 
LOBPCG or RQMG instead of V-cycle+Ritz) 

•  parallel? 
•  approach is quite general (self-learning), high 

accuracy, so seems promising 



thank you 

questions? 


