
Algebraic Multigrid for the Singular
Value Problem

Hans De Sterck
Department of Applied Mathematics
University of Waterloo

1. introduction

goal:
 compute a few of the largest or
smallest singular values of a
rectangular matrix
and their associated singular
vectors

introduction

•  SVD of

•  for definiteness: we seek nb dominant singular
triplets

introduction

•  why interest in dominant singular triplets?
–  the k dominant triplets give the best rank-k

approximation to A
– applications: principal component analysis
– applications: term-document matrices

≈

te
rm

s

te
rm

s
documents documents

‘concept’ j
 1 3 4 1

(note: nonnegative factorization is better)

introduction

•  why consider (algebraic) multigrid (AMG) for
dominant singular triplets?

–  for certain types of problems, multigrid may
outperform other methods

– because we can! ;-)

introduction

•  algebraic multigrid V-cycle

introduction

•  special case:
 A symmetric positive definite (SPD)

•  our SVD approach will be applicable to SPD
eigenproblem as a special case (or the other
way around)

2. AMG for SPD eigenproblems

1)  AMG for minimal eigenpairs by Borzi and Borzi

–  use standard AMG interpolation to build P (for elliptic PDE)

–  P contains slow-to-converge near-nullspace components in its
range (including ‘small’ eigenvectors)

–  additive correction formula:

AMG for SPD eigenproblems

AMG for minimal eigenpairs by Borzi and Borzi
–  use standard AMG interpolation to build P (for elliptic PDE)
–  P contains slow-to-converge near-nullspace components in its

range (including ‘small’ eigenvectors)
–  additive correction formula:

–  plus: converges with high accuracy
–  minus: not flexible, only works for

small eigenvectors for ‘easy’ elliptic
PDEs

AMG for SPD eigenproblems

2) adaptive AMG for minimal eigenpairs by
Kushnir, Galun and Brandt

 (and related work by Brannick, Kahl, Livshits, and others)
–  build P via bootstrap AMG (BAMG) approach

–  P approximately fits all desired eigenvectors in its range

–  multiplicative update formula:

AMG for SPD eigenproblems

adaptive AMG for minimal eigenpairs by Kushnir,
Galun and Brandt

–  build P via bootstrap AMG (BAMG) approach
–  P approximately fits all desired eigenvectors in its range
–  multiplicative update formula:

–  plus: flexible, adapts to
eigenvectors sought

–  minus: accuracy limited by accuracy
by which the desired eigenvectors are
collectively fitted by P

our approach

•  combine 2) with 1): combine multiplicative
(setup) phase (build P) with additive (solve)
phase (like adaptive AMG for linear equation systems)

•  extend to SVD computation

+ =

3. multiplicative phase: coarse-level
equations

•  goals of the multiplicative (setup) phase:

–  find nb tentative dominant triplets

– determine interpolation operators P and Q
that approximately contain the tentative
singular vectors in their ranges collectively, on
all levels

•  assume we know triplet satisfying

•  assume P and Q have u and v exactly in their
ranges:

•  coarse equations:

multiplicative phase: coarse-level
equations

P

multiplicative phase: coarse-level
equations

•  assume we know triplet

•  define coarse-level operators and equations

•  coarse level will help: solving coarse equations (cheaper)
gives exact answer in one step!

•  do this approximately, and recursively (V-cycle)

•  recall generalized symmetric eigenvalue problem for

•  we have to solve coarse-grid problem

•  we have to generalize the SVD problem

4. an uncommon (new?) generalized SVD

•  this appears to be uncommon in the literature

an uncommon (new?) generalized SVD

first way to compute the generalized
SVD

second way to compute the generalized
SVD

third way to compute the generalized
SVD

5. multiplicative phase: BAMG V-cycles
•  find nb tentative dominant triplets
•  start from nt random fine-level test vectors
•  do relaxation on test vectors using the power method, to

obtain first approximations for ‘large’ singular vectors:
–  start from random v
–  compute new u, σ via
–  compute new v, σ via
–  repeat

•  determine P and Q to fit the nt test
vectors u and v collectively

multiplicative phase: V-cycles
•  downwards sweep of first V-cycle: create coarse grids

and coarse-level operators P, Q, Ac, Bc, Cc for all levels,
using relaxation on nt initially random test vectors

nt random test vectors relax test vectors, coarsen, build P, Q, Ac, Bc, Cc

relax test vectors, coarsen, build P, Q, Ac, Bc, Cc

relax test vectors, coarsen, build P, Q, Ac, Bc, Cc

relax:

build Ac, Bc, Cc:

inject test
 vectors

inject test
 vectors

inject test
 vectors

multiplicative phase: V-cycles
•  on the coarsest level: solve the generalized SVD

problem, and select the nb dominant triplets
as the first (coarse) approximations of the dominant
triplets sought (we call these ‘boot triplets’)

compute the nb
dominant boot triplets of

relax test vectors, coarsen,
build P, Q, Ac, Bc, Cc

relax test vectors, coarsen,
build P, Q, Ac, Bc, Cc

relax test vectors, coarsen,
build P, Q, Ac, Bc, Cc

nt random test vectors

multiplicative phase: V-cycles
•  upward sweep of first V-cycle: interpolate the nb boot

triplets up to finer levels, and relax (first fix σ and find u
or v, then update σ via Rayleigh quotient formula), on
each level

nt random test vectors

relax test vectors, coarsen,
build P, Q, Ac, Bc, Cc

compute the nb
dominant boot triplets of

relax:

relax boot triplets

relax test vectors, coarsen,
build P, Q, Ac, Bc, Cc

relax test vectors, coarsen,
build P, Q, Ac, Bc, Cc

interpolate:

relax boot triplets

relax boot triplets

multiplicative phase: V-cycles
•  repeat V-cycles until convergence stagnates (P and Q

represent the boot vectors u and v collectively up to
some accuracy)

relax test and boot vectors,
coarsen, build P, Q, Ac, Bc, Cc

compute the nb
dominant boot triplets of

relax boot triplets

relax test and boot vectors,
coarsen, build P, Q, Ac, Bc, Cc

relax test and boot vectors,
coarsen, build P, Q, Ac, Bc, Cc

relax boot triplets

relax boot triplets

6. multiplicative phase: relaxation

•  test vectors: power method on

 with inexact inversion of B and C (weighted Jacobi):

multiplicative phase: relaxation

•  boot vectors: block Gauss-Seidel (fix σ) on

 with inexact inversion of B and C (weighted Jacobi):

•  update σ using Rayleigh quotient formula

7. multiplicative phase: building P and Q
•  coarsening: use standard (one-pass) AMG coarsening

on AAt for the u-variables, and on AtA for the v-variables
(correlations ...)

•  in the future: coarsen directly using A
•  try ‘general’ strength of connection formula

•  interpolation stencils for F-points are formed by strongly
influencing C-points (sparsity of P and Q)

multiplicative phase: building P and Q
•  determine the weights in P and Q via least-squares fitting

of the test (and boot) vectors (injected to the C-points)
•  (for P) for each F-point i:

 (one equation per test or booth vector k)
 (over-determined LS system: more test+boot vectors
than size of largest stencil)

•  larger weight for boot vectors than for test vectors
(proportional to σ)

P

OK, where are we...
•  I have discussed how to do the first phase of the algorithm

(multiplicative, find tentative triplets starting from random test
vectors, build P and Q, bootstrap AMG)

•  I will now discuss the second phase (additive V-cycles, use ‘frozen’
P and Q)

8. additive phase: V-cycles

•  for each tentative boot triplet, keep σ fixed,
improve u and v in additive-correction V-cycle

•  coarse-level equations:

•  correction formula:

•  P and Q from setup phase can be used: additive
errors lie approximately in their ranges

9. additive phase: Ritz projection

•  on the finest level, all boot triplets (including the
σs) are updated after each set of V-cycles

•  seek new s.t

•  leads to very small generalized singular value
problem

10. specializations and extensions

•  square matrices (use A or At for coarsening)
•  SPD matrices: only need A, B, P
•  minimal singular triplets and eigenpairs:

– algorithm is self-learning (adaptive), so we
only need to change the relaxation and the
coarsest-level solves of the multiplicative
phase

– use Kaczmarz relaxation
on blocks of

11. numerical results

1) high-order finite volume element Laplacian on
unit square (square, nonsymmetric, 961x961)

largest singular
values

(5 test vectors, V(4,4), θ=0.05,
4 levels, 45x45 coarsest)

numerical results

high-order finite volume element Laplacian on unit
square (square, nonsymmetric, 961x961)

smallest singular
values

(5 test vectors, V(4,4), θ=0.05,
5 levels, 51x51 coarsest)

numerical results

numerical results

2) finite difference Laplacian on unit square
(square, symmetric, 1024x1024)

largest
eigenvalues

(6 test vectors, V(8,8) test and V(4,4) boot, θ=0.06,
4 levels, 52x52 coarsest)

numerical results

finite difference Laplacian on unit square (square,
symmetric, 1024x1024)

smallest
eigenvalues

(6 test vectors, V(8,8) test and V(4,4) boot, θ=0.06,
5 levels, 64x64 coarsest)

numerical results

3) graph Laplacian on random triangular graph in
unit square (square, symmetric, 1024x1024)

largest
eigenvalues

(6 test vectors, V(1,1) test and V(8,8) boot, θ=0.05,
3 levels, 77x77 coarsest)

numerical results

graph Laplacian on random triangular graph in unit
square (square, symmetric, 1024x1024)

(6 test vectors, V(1,1) test and V(8,8) boot, θ=0.05,
3 levels, 77x77 coarsest)

numerical results

graph Laplacian on random triangular graph in unit
square (square, symmetric, 1024x1024)

smallest
eigenvalues

(6 test vectors, V(1,1) test and V(8,8) boot, θ=0.05,
3 levels, 59x59 coarsest)

numerical results

4) Medline tem-document matrix (rectangular,
5735x1033)

largest
singular values

(14 test vectors, V(1,1) test and V(4,4) boot, θ=0.03,
5 levels, 415x198 coarsest)

12. conclusions

•  self-learning, collective AMG algorithm to
compute a few dominant or minimal singular
triplets (or eigenpairs)

•  multiplicative setup phase, additive solve phase
•  seems to work pretty well
•  there are many parameters, and robustness

needs to be improved (how many test vectors,
relaxations, ...)

conclusions

•  improve coarsening (on A, compatible relaxation,
general graph coarsening, small-world, others ...)

•  improve multiplicative phase (‘adaptive’ approach
instead of bootstrap?)

•  improve additive phase (for example, use
LOBPCG or RQMG instead of V-cycle+Ritz)

•  parallel?
•  approach is quite general (self-learning), high

accuracy, so seems promising

thank you

questions?

