Algebraic Multigrid for the Singular Value Problem

UNIVERSITY OF WATERLOO

uwaterloo.ca

Hans De Sterck
Department of Applied Mathematics
University of Waterloo

1. introduction

goal:

compute a few of the largest or smallest singular values of a rectangular matrix $A \in \mathbb{R}^{m \times n}$ and their associated singular vectors

introduction

- SVD of $A \in \mathbb{R}^{m \times n}$

\[

\]

- for definiteness: we seek n_{b} dominant singular triplets $\left(\sigma_{j}, u_{j}, v_{j}\right)$

$$
\begin{aligned}
A v_{j} & =\sigma_{j} u_{j}, \\
A^{t} u_{j} & =\sigma_{j} v_{j} .
\end{aligned}
$$

UNIVERSITY OF
WATERLOO

introduction

- why interest in dominant singular triplets?
- the k dominant triplets give the best rank- k approximation to A
- applications: principal component analysis
- applications: term-document matrices

(note: nonnegative factorization is better)

introduction

- why consider (algebraic) multigrid (AMG) for dominant singular triplets?
- for certain types of problems, multigrid may outperform other methods
- because we can! ;-)

introduction

- algebraic multigrid V-cycle

2h

4h

UNIVERSITY OF
WATERLOO

introduction

$$
A=U \Sigma V^{t}
$$

- special case:

A symmetric positive definite (SPD)

$$
\begin{aligned}
& A=V \Lambda V^{t} \\
& A v_{j}=\lambda_{j} v_{j}
\end{aligned}
$$

- our SVD approach will be applicable to SPD eigenproblem as a special case (or the other way around)

UNIVERSITY OF
WATERLOO

2. AMG for SPD eigenproblems

1) AMG for minimal eigenpairs by Borzi and Borzi
```
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2006; 65:1186-1196
Published online 19 September 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1478
Algebraic multigrid methods for solving generalized
    eigenvalue problems
Alfio Borzi }\mp@subsup{}{}{1,+}\mathrm{ and Giuseppe Borzi}\mp@subsup{}{}{2,*,\dagger
```

- use standard AMG interpolation to build P (for elliptic PDE)
- $\quad P$ contains slow-to-converge near-nullspace components in its range (including 'small' eigenvectors)
- additive correction formula: $v_{j}^{(i+1)}=v_{j}^{(i)}+P e_{c}$

AMG for SPD eigenproblems

AMG for minimal eigenpairs by Borzi and Borzi

- use standard AMG interpolation to build P (for elliptic PDE)
- $\quad P$ contains slow-to-converge near-nullspace components in its range (including 'small' eigenvectors)
- additive correction formula:

$$
v_{j}^{(i+1)}=v_{j}^{(i)}+P e_{c}
$$

- plus: converges with high accuracy
- minus: not flexible, only works for small eigenvectors for 'easy' elliptic PDEs

AMG for SPD eigenproblems

2) adaptive AMG for minimal eigenpairs by Kushnir, Galun and Brandt

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL 32, NO. xX, XxxxxxX 2010
Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks

(and related work by Brannick, Kahl, Livshits, and others)

- build P via bootstrap AMG (BAMG) approach
- $\quad P$ approximately fits all desired eigenvectors in its range
- multiplicative update formula: $v_{j}^{(i+1)}=P v_{c, j}$

AMG for SPD eigenproblems

adaptive AMG for minimal eigenpairs by Kushnir, Galun and Brandt

- build P via bootstrap AMG (BAMG) approach
- $\quad P$ approximately fits all desired eigenvectors in its range
- multiplicative update formula:

$$
v_{j}^{(i+1)}=P v_{c, j}
$$

- plus: flexible, adapts to eigenvectors sought
- minus: accuracy limited by accuracy by which the desired eigenvectors are collectively fitted by P

UNIVERSITY OF

our approach

- combine 2) with 1): combine multiplicative (setup) phase (build P) with additive (solve) phase
(like adaptive AMG for linear equation systems)
- extend to SVD computation

UNIVERSITY OF
WATERLOO
3. multiplicative phase: coarse-level equations

- goals of the multiplicative (setup) phase:
- find n_{b} tentative dominant triplets $\left(\sigma_{j}, u_{j}, v_{j}\right)$
- determine interpolation operators P and Q that approximately contain the tentative singular vectors in their ranges collectively, on all levels

multiplicative phase: coarse-level equations

- assume we know triplet (σ, u, v) satisfying

$$
\begin{aligned}
A v & =\sigma u, & A \in \mathbb{R}^{m \times n} \\
A^{t} u & =\sigma v . &
\end{aligned}
$$

- assume P and Q have u and v exactly in their ranges:

$$
\begin{aligned}
& u=P u_{c}, \\
& v=Q v_{c},
\end{aligned}
$$

\square

$$
P \in \mathbb{R}^{m \times m_{c}}
$$

$$
Q \in \mathbb{R}^{n \times n_{c}}
$$

- coarse equations:

$$
\begin{aligned}
& P^{t} A Q v_{c}=\sigma P^{t} B P u_{c}, \\
& Q^{t} A^{t} P u_{c}=\sigma Q^{t} C Q v_{c}, \\
& B=I_{m} C=I_{n}
\end{aligned}
$$

multiplicative phase: coarse-level equations

- assume we know triplet (σ, u, v)

$$
\begin{aligned}
& A v=\sigma u, \quad u=P u_{c}, \\
& P^{t} A Q v_{c}=\sigma P^{t} B P u_{c}, \\
& A^{t} u=\sigma v . \quad v=Q v_{c}, \\
& Q^{t} A^{t} P u_{c}=\sigma Q^{t} C Q v_{c},
\end{aligned}
$$

- define coarse-level operators and equations

$$
\begin{aligned}
A_{c} & =P^{t} A Q \\
B_{c} & =P^{t} B P \\
C_{c} & =Q^{t} C Q
\end{aligned}
$$

$$
\begin{aligned}
& A_{c} v_{c}=\sigma B_{c} u_{c} \\
& A_{c}^{t} u_{c}=\sigma C_{c} v_{c}
\end{aligned}
$$

- coarse level will help: solving coarse equations (cheaper) gives exact answer in one step!
- do this approximately, and recursively (V-cycle)

UNIVERSITY OF
WATERLOO

4. an uncommon (new?) generalized SVD

- recall generalized symmetric eigenvalue problem for

$$
\begin{array}{ll}
A, B \in \mathbb{R}^{m \times m} & (B \mathrm{SPD}) \\
A v=\lambda B v & A=B V \Lambda V^{t}
\end{array} \quad V^{t} B V=I_{m}
$$

- we have to solve coarse-grid problem

$$
\begin{aligned}
A v & =\sigma B u, & & A \in \mathbb{R}^{m \times n} \\
A^{t} u & =\sigma C v, & & B \in \mathbb{R}^{m \times m} C \in \mathbb{R}^{n \times n}(B, C \mathrm{SPD})
\end{aligned}
$$

- we have to generalize the SVD problem

$$
\begin{aligned}
A v & =\sigma u, \quad A=U \Sigma V^{t} \\
A^{t} u & =\sigma v .
\end{aligned}
$$

UNIVERSITY OF
WATERLOO

an uncommon (new?) generalized SVD

$$
\begin{array}{rl}
A \in \mathbb{R}^{m \times n} & A v
\end{array}=\sigma B u,
$$

Definition 3.1 (Generalized singular value decomposition). The generalized singular value decomposition of $A \in \mathbb{R}^{m \times n}$ with respect to $B \in \mathbb{R}^{m \times m}$ and $C \in$ $\mathbb{R}^{n \times n}$, with B and $C S P D$, is given by

$$
\begin{equation*}
A=B U \Sigma V^{t} C \tag{3.7}
\end{equation*}
$$

with $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$. The columns of U are called the left generalized singular vectors, and the columns of V are called the right generalized singular vectors. They satisfy the orthogonality relations $U^{t} B U=I_{m}=U B U^{t}$ and $V^{t} C V=I_{n}=V C V^{t}$. Matrix Σ has the $l=\min (m, n)$ real nonnegative generalized singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{l} \geq 0$ on its diagonal. Eqs. (3.6) are called the generalized singular value problem for matrix A with respect to matrices B and C.

- this appears to be uncommon in the literature

first way to compute the generalized SVD $A=B U \Sigma V^{t} C$,

Theorem 3.2. Generalized SVD (3.7) has the same existence and uniqueness properties as the standard SVD.

Proof. This follows from a simple change of variables: with

$$
\begin{align*}
T & =B^{1 / 2} U \\
W & =C^{1 / 2} V \tag{3.8}\\
D & =B^{-1 / 2} A C^{-1 / 2}
\end{align*}
$$

generalized SVD (3.7) can be rewritten as a standard SVD

$$
\begin{equation*}
D=T \Sigma W^{t} \tag{3.9}
\end{equation*}
$$

second way to compute the generalized SVD $A=B U \Sigma V^{t} C$,

Theorem 3.3. Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{m \times m}$ and $C \in \mathbb{R}^{n \times n}$, with B and $C S P D$. Let $l=\min (m, n)$. Then generalized eigenvalue problem

$$
\left(\left[\begin{array}{cc}
0 & A \tag{3.13}\\
A^{t} & 0
\end{array}\right]-\sigma\left[\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right]\right)\left[\begin{array}{l}
u \\
v
\end{array}\right]=0
$$

has $m+n$ solution triplets (σ, u, v) with linearly independent eigenvectors $\left[u^{t} v^{t}\right]^{t} \neq 0$. There are l independent solutions with $\sigma_{j} \geq 0$ and vectors u_{j} and v_{j} satisfying orthogonality relations $u_{j}^{t} B u_{i}=\delta_{i, j}$ and $v_{j}^{t} C v_{i}=\delta_{i, j}(j=1, \ldots, l)$. The triplets $\left(\sigma_{j}, u_{j}, v_{j}\right)$ are the generalized singular triplets of A with respect to B and C. Furthermore, there are l independent solutions $\left(-\sigma_{j}, u_{j},-v_{j}\right)$. Finally, there are $\operatorname{abs}(m-n)=m+n-2 l$ independent solutions with $\sigma=0$ and either $u=0$ or $v=0$.

third way to compute the generalized SVD $A=B U \Sigma V^{t} C$,

$$
\begin{aligned}
& \left(A^{t} B^{-1} A\right) v=\sigma^{2} C v \\
& \left(A C^{-1} A^{t}\right) u=\sigma^{2} B u
\end{aligned}
$$

5. multiplicative phase: BAMG V-cycles

- find n_{b} tentative dominant triplets $\left(\sigma_{j}, u_{j}, v_{j}\right)$
- start from n_{t} random fine-level test vectors
- do relaxation on test vectors using the power method, to obtain first approximations for 'large' singular vectors:
- start from random v
- compute new u, σ via $A v=\sigma u$,
- compute new v, σ via $A^{t} u=\sigma v$.
- repeat
- determine P and Q to fit the n_{t} test $\quad u=P u_{c}$, vectors u and v collectively
$v=Q v_{c}$,

multiplicative phase: V-cycles

- downwards sweep of first V-cycle: create coarse grids and coarse-level operators $P, Q, A_{c}, B_{c}, C_{c}$ for all levels, using relaxation on n_{t} initially random test vectors
n_{t} random test vectors
relax: $A_{c} v_{c}=\sigma B_{c} u_{c}$,

$$
A_{c}^{t} u_{c}=\sigma C_{c} v_{c}
$$

build $A_{c}, B_{c}, C_{c}: A_{c}=P^{t} A Q$,

$$
B_{c}=P^{t} B P
$$

$$
C_{c}=Q^{t} C Q
$$

relax test vectors, coarsen, build $P, Q, A_{c}, B_{c}, C_{c}$
vectors
relax test vectors, coarsen, build $P, Q, A_{c}, B_{c}, C_{c}$ inject test
vectors
relax test vectors, coarsen, build $P, Q, A_{c}, B_{c}, C_{c}$
inject test
vectors
$A_{c} v_{c}=\sigma B_{c} u_{c}$,
$A_{c}^{t} u_{c}=\sigma C_{c} v_{c}$.

multiplicative phase: V-cycles

- on the coarsest level: solve the generalized SVD problem, and select the n_{b} dominant triplets $\left(\sigma_{j}, u_{j}, v_{j}\right)$ as the first (coarse) approximations of the dominant triplets sought (we call these 'boot triplets')

multiplicative phase: V-cycles

- upward sweep of first V-cycle: interpolate the n_{b} boot triplets up to finer levels, and relax (first fix σ and find u or v, then update σ via Rayleigh quotient formula), on each level
n_{t} random test vectors

interpolate: $u=P u_{c}$,

$$
\begin{gathered}
v=Q v_{c} \\
\text { relax: } \quad A_{c} v_{c}=\sigma B_{c} u_{c} \\
A_{c}^{t} u_{c}=\sigma C_{c} v_{c} \\
\sigma=\frac{u^{t} A v}{\left(u^{t} B u\right)^{1 / 2}\left(v^{t} C v\right)^{1 / 2}}
\end{gathered}
$$

multiplicative phase: V-cycles

- repeat V-cycles until convergence stagnates (P and Q represent the boot vectors u and v collectively up to some accuracy)

$A_{c} v_{c}=\sigma B_{c} u_{c}$,
$A_{c}^{t} u_{c}=\sigma C_{c} v_{c}$.

6. multiplicative phase: relaxation

- test vectors: power method on

$$
\begin{aligned}
A v & =\sigma B u \\
A^{t} u & =\sigma C v
\end{aligned}
$$

with inexact inversion of B and C (weighted Jacobi):
$A^{t} u_{j}=C \bar{v}_{j}$,
$A v_{j}=B \bar{u}_{j}$,
$v_{j}=\bar{v}_{j} /\left(\bar{v}_{j}^{t} C \bar{v}_{j}\right)^{1 / 2}$
$u_{j}=\bar{u}_{j} /\left(\bar{u}_{j}^{t} B \bar{u}_{j}\right)^{1 / 2}$
$\bar{v}_{j}^{(i+1)}=\bar{v}_{j}^{(i)}-\omega_{J} D_{C}^{-1}\left(C \bar{v}_{j}^{(i)}-A^{t} u_{j}\right)$

multiplicative phase: relaxation

- boot vectors: block Gauss-Seidel (fix σ) on

$$
\begin{aligned}
A v & =\sigma B u+\kappa \\
A^{t} u & =\sigma C v+\tau
\end{aligned}
$$

with inexact inversion of B and C (weighted Jacobi):
$u_{j}^{(i+1)}=u_{j}^{(i)}-\omega_{J} D_{B}^{-1}\left(B u_{j}^{(i)}-\left(A v_{j}-\kappa\right) / \sigma_{j}\right)$.

- update σ using Rayleigh quotient formula

$$
\sigma=\frac{u^{t} A v}{\left(u^{t} B u\right)^{1 / 2}\left(v^{t} C v\right)^{1 / 2}}
$$

7. multiplicative phase: building P and Q

- coarsening: use standard (one-pass) AMG coarsening on $A A^{t}$ for the u-variables, and on $A^{t} A$ for the v-variables (correlations ...)
- in the future: coarsen directly using A
- try 'general' strength of connection formula
variable i is strongly influenced by variable j

$$
\begin{gathered}
\Uparrow \\
\left|n_{i, j}\right| \geq \theta \sum_{k}\left|n_{i, k}\right|
\end{gathered}
$$

- interpolation stencils for F-points are formed by strongly influencing C-points (sparsity of P and Q)

multiplicative phase: building P and Q

- determine the weights in P and Q via least-squares fitting of the test (and boot) vectors (injected to the C-points)
- (for P) for each F-point i :

$$
u_{k}^{i}=\sum_{j \in C_{u}^{i}} p_{i, j} u_{k, c}^{j} \quad\left(k=1, \ldots, n_{f}\right)
$$

(one equation per test or booth vector k)
(over-determined LS system: more test+boot vectors than size of largest stencil)

- larger weight for boot vectors than for test vectors (proportional to σ)

OK, where are we...

- I have discussed how to do the first phase of the algorithm (multiplicative, find tentative triplets starting from random test vectors, build P and Q, bootstrap AMG)
- I will now discuss the second phase (additive V -cycles, use 'frozen' P and Q)

8. additive phase: V-cycles

- for each tentative boot triplet, keep σ fixed, improve u and v in additive-correction V-cycle
- coarse-level equations:

$$
\begin{aligned}
& A v_{j}-\sigma_{j} B u_{j}=\kappa_{j}, \\
& A^{t} u_{j}-\sigma_{j} C v_{j}=\tau_{j},
\end{aligned} \quad \Longrightarrow \begin{aligned}
& A_{c} v_{j, c}-\sigma_{j} B_{c} u_{j, c}=P^{t} r_{j}, \\
& A_{c}^{t} u_{j, c}-\sigma_{j} C_{c} v_{j, c}=Q^{t} s_{j},
\end{aligned}
$$

- correction formula: $u_{j}^{(i+1)}=u_{j}^{(i)}+P u_{j, c}$,

$$
v_{j}^{(i+1)}=v_{j}^{(i)}+Q v_{j, c},
$$

- P and Q from setup phase can be used: additive errors lie approximately in their ranges

9. additive phase: Ritz projection

- on the finest level, all boot triplets (including the os) are updated after each set of V-cycles
- seek new $u_{j} \in \mathcal{U}, v_{j} \in \mathcal{V}$ s.t

$$
\begin{array}{ll}
\left\langle u, A v_{j}-\sigma_{j} B u_{j}\right\rangle_{B}=0 & \forall u \in \mathcal{U}, \\
\left\langle v, A^{t} u_{j}-\sigma_{j} C v_{j}\right\rangle_{C}=0 & \forall v \in \mathcal{V} .
\end{array}
$$

- leads to very small generalized singular value problem

$$
\begin{array}{ll}
\left\langle y, \hat{U}^{t} A \hat{V} z_{j}-\sigma_{j} \hat{U}^{t} B \hat{U} y_{j}\right\rangle=0 & \forall y \in \mathbb{R}^{m_{c}}, \\
\left\langle z, \hat{V}^{t} A^{t} \hat{U} y_{j}-\sigma_{j} \hat{V}^{t} C \hat{V} z_{j}\right\rangle=0 & \forall z \in \mathbb{R}^{c_{c}} .
\end{array}
$$

10. specializations and extensions

- square matrices (use A or A^{t} for coarsening)
- SPD matrices: only need A, B, P
- minimal singular triplets and eigenpairs:
- algorithm is self-learning (adaptive), so we only need to change the relaxation and the coarsest-level solves of the multiplicative phase
- use Kaczmarz relaxation $A v=\sigma B u+\kappa$, on blocks of

$$
A^{t} u=\sigma C v+\tau .
$$

11. numerical results

1) high-order finite volume element Laplacian on unit square (square, nonsymmetric, 961x961)

largest singular values

$$
\text { error }=\frac{\left|\sigma_{\text {exact }}-\sigma_{\text {approx }}\right|}{\sigma_{\text {exact }}}
$$

(5 test vectors, $\mathrm{V}(4,4), \theta=0.05$,
4 levels, 45×45 coarsest)

numerical results

high-order finite volume element Laplacian on unit square (square, nonsymmetric, 961x961)

(5 test vectors, $\mathrm{V}(4,4), \theta=0.05$,
UNIVERSITY OF
5 levels, 51×51 coarsest)

numerical results

FVE lge	FVE sm	FD lge	FD sm	Graph lge	Graph sm	Term-Doc
7.9791546	0.01924183	7.9818877	0.01811231	13.509036	0.01000000	84.148337
7.9491729	0.04794913	7.9548012	0.04519876	13.352613	0.03456116	64.707532
7.9468326	0.04801773	7.9548012	0.04519876	13.350454	0.03901593	55.976437
7.9172573	0.07655365	7.9277148	0.07228521	12.472837	0.07966567	50.265499
7.8965349	0.09557904	7.9099298	0.09007021	12.416200	0.09490793	49.265360
7.8960066	0.09558103	7.9099298	0.09007021	11.874669	0.09918138	45.242034
7.8692955	0.12359047	7.8828433	0.11715666			44.400811
7.8616683	0.12415144	7.8828433	0.11715666			41.772394

Singular values and eigenvalues sought for each problem (high-accuracy approximations).

numerical results

2) finite difference Laplacian on unit square (square, symmetric, 1024x1024)

(6 test vectors, $\mathrm{V}(8,8)$ test and $\mathrm{V}(4,4)$ boot, $\theta=0.06$,
UNIVERSITY OF 4 levels, 52×52 coarsest)

numerical results

finite difference Laplacian on unit square (square, symmetric, 1024x1024)

smallest
eigenvalues

(6 test vectors, $\mathrm{V}(8,8)$ test and $\mathrm{V}(4,4)$ boot, $\theta=0.06$,
UNIVERSITYOF 5 levels, 64×64 coarsest)

numerical results

3) graph Laplacian on random triangular graph in unit square (square, symmetric, 1024x1024)

largest
eigenvalues

(6 test vectors, $\mathrm{V}(1,1)$ test and $\mathrm{V}(8,8)$ boot, $\theta=0.05$,

numerical results

graph Laplacian on random triangular graph in unit square (square, symmetric, 1024x1024)

(6 test vectors, $\mathrm{V}(1,1)$ test and $\mathrm{V}(8,8)$ boot, $\theta=0.05$,

numerical results

graph Laplacian on random triangular graph in unit square (square, symmetric, 1024x1024)

smallest
eigenvalues
(6 test vectors, $\mathrm{V}(1,1)$ test and $\mathrm{V}(8,8)$ boot, $\theta=0.05$,
UNIVERSITY OF 3 levels, 59×59 coarsest)

numerical results

4) Medline tem-document matrix (rectangular, 5735×1033)

(14 test vectors, $\mathrm{V}(1,1)$ test and $\mathrm{V}(4,4)$ boot, $\theta=0.03$,
UNIVERSITY OF
5 levels, 415×198 coarsest)

12. conclusions

- self-learning, collective AMG algorithm to compute a few dominant or minimal singular triplets (or eigenpairs)
- multiplicative setup phase, additive solve phase
- seems to work pretty well
- there are many parameters, and robustness needs to be improved (how many test vectors, relaxations, ...)

conclusions

- improve coarsening (on A, compatible relaxation, general graph coarsening, small-world, others ...)
- improve multiplicative phase ('adaptive’ approach instead of bootstrap?)
- improve additive phase (for example, use LOBPCG or RQMG instead of V-cycle+Ritz)
- parallel?
- approach is quite general (self-learning), high accuracy, so seems promising

thank you

questions?

UNIVERSITY OF
WATERLOO

