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1. simple Markov chain example 
•  start in one state with 

probability 1: what is the 
stationary probability vector 
after ∞ number of steps? 

•   stationary probability: 

•  this particular Markov chain 
is an example of a random 
walk on a graph 
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applications of Markov Chains 

•  information retrieval 
•  performance 

modelling of 
computer systems 

•  analysis of biological 
systems 

•  queueing theory"
•  Googleʼs PageRank"
•  ..."
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2. problem statement 

•  B is column-stochastic 

•  B is irreducible (every state can be 
reached from every other state in the 
directed graph) 
⇒   

(no probability sinks!) probability sinks 
not irreducible	
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3. power method 

•  largest eigenvalue of B:  

•  power method: 

–  convergence factor: 
–  convergence is very slow when   

 (slowly mixing Markov chain) (JAC, GS also slow) 
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some example Markov chains 

•  uniform 2D lattice 

 symmetric, 
 real spectrum for B 



•  tandem queuing network 
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some example Markov chains"
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some example Markov chains 

•  directed, unstructured planar graph 
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numerical results: one-level (power) iteration for 
random graph problem 

•  start from random intial guess 

•  let  

•  iterate on 

 with 

 until 

•  W=O(n^2) method 
 (A sparse, O(n) iterations) 
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when is power method slow? 

•  power method is slow on graphs with 
 local links,  

•  power method is fast on graphs with 
 global links, short distances 

•  PageRank is fast mixing: 
 you can just do power method 
 (PageRank is made fast by artificially 
 adding global links from all webpages 
 to all webpages with probability 0.15)  
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why/when is power method slow? 
why multilevel methods? 
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•  high-frequency error is removed by relaxation (weighted Jacobi, Gauss-
Seidel, ... power method) 

•  low-frequency-error needs to be removed by coarse-grid correction 

principle of multigrid (for PDEs) 
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multigrid hierarchy: V-cycle 

•  multigrid V-cycle: 
  relax (=smooth) on successively coarser grids 
  transfer error using restriction (R=PT) and interpolation (P) 

•  W=O(n) : (optimally) scalable method 
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4. aggregation for Markov chains 

•  form three coarse, 
aggregated states  

(Simon and Ando, 1961)	
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aggregation for Markov chains 
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two-level aggregation method 

repeat 

(similar to lumping method from Takahashi, 1975) 
(‘iterative aggregation/disaggregation’) 
(note: there is a convergence proof for this two-level method, 
Marek and Mayer 1998, 2003) 
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multilevel aggregation algorithm 

(Krieger, Horton 1994, but no good 
way to build Q, convergence not good)	
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well-posedness: singular M-matrices 

•  singular M-matrix: 

•  our A=I-B is a singular M-matrix on all levels 
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well-posedness: multilevel method 
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aggregation strategy 

•   fine-level relaxation should efficiently distribute 
probability within aggregates (smooth out local, high-
frequency errors) 

•   coarse-level update will efficiently distribute 
probability between aggregates (smooth out global, 
low-frequency errors) 

•   base aggregates on ‘strong connections’ in 
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aggregation strategy 

scaled problem matrix: 

strong connection: coefficient is large in either of rows i or j 

( θ ∈ (0,1), θ=0.25 ) 
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‘neighbourhood’ aggregation strategy 
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aggregation: periodic 2D lattice 
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numerical results: aggregation multigrid for 
random walk problem"

does not work so well yet (not O(n) ...) 



our work since 2006: speed up the multilevel 
aggregation method 

goal: W=O(n) (number of V-cycles independent of n) 

1.  smoothed aggregation (SIAM J. Sc. Comp., 
submitted 2008) 

2. build P by algebraic multigrid (SIAM J. Sc. Comp., 
submitted 2009) 

3.  recursive iterant recombination (SIAM J. Sc. Comp., 
submitted 2009) 

4. overcorrection (NLAA, submitted 2010) 

(inspired by algebraic multigrid for PDEs)  
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5. overlapping aggregates: we need ‘smoothed 
aggregation’... 

after smoothing: 

coarse grid 
correction with Q: 

coarse grid 
correction with Qs: 

(Vanek, Mandel, and Brezina, Computing, 1996) 
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smoothed aggregation 

•  smooth the columns of P with weighted Jacobi: 

•  smooth the rows of R with weighted Jacobi: 
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smoothed aggregation: a problem with signs 

•  smoothed coarse level operator: 

•  problem: Acs is not a singular M-matrix (signs wrong) 
•  solution: 

 lumping approach 
•  well-posedness of 

 this approach shown 
 in our paper  
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numerical results: smoothed aggregation 
multigrid for random graph problem 
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6. algebraic multigrid for Markov chains 

•  scaled problem matrix: 

•  multiplicative error equation: 

•  we can use ‘standard’ AMG on 
•  define AMG coarsening and interpolation 

•  lumping can be done as for smoothed aggregation  
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AMG (two-pass) coarsening and interpolation 
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unstructured planar graph 



7. recursively accelerated (pure) aggregation   

•  idea: recombine iterates at all levels in W cycle 
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recursively accelerated (pure) aggregation  

•  for Ax=b, use recursive Krylov acceleration 
•  for Markov: need to impose probability constraints 
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•  standard quadratic programming problem 



unstructured planar graph 
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8. over-correction, and ‘frozen’ additive cycles   

•  (with Eran Treister and Irad Yavneh) 

•  idea: ‘shape’ of correction is often good, but 
‘amplitude’ may be too small 
 therefore, overcorrect with factor α  

•  determine optimal α automatically 
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‘frozen’ additive cycles   

•  idea: replace expensive ‘multiplicative’ cycles by 
cheap ‘frozen’ additive cycles (as soon as good 
convergence) 

•  can do this ‘on-the-fly’ (OTF) 
•  can lead to large speed gains 
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‘frozen’ additive cycles   

multiplicative formulation: 

additive formulation: 

equivalent via: 
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tandem queuing network  
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tandem queuing network  
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unstructured planar graph 
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9. conclusions 

•  algebraic multilevel methods can lead to W=O(n) 
solvers for slowly mixing Markov chains 

•  we have developed several ways to accelerate ‘pure’ 
aggregation methods such that W=O(n) is reached 
  smoothed aggregation 
  algebraic multigrid 
  recursive iterant recombination 
  over-correction (and frozen additive cycles) 
(these approaches are inspired on multigrid for 

PDEs) 
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conclusions 

•  theory is very hard because the systems are non-
symmetric 

•  our methods will not be fast for: 
  high-dimensional lattices, queues, tensor-product 

structure 
  fast mixing Markov chains 
(but we can handle unstructured Markov chains) 

•  good results are obtained for many slowly mixing 
Markov chains 

•  multilevel methods can be very powerful  
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thank you 
questions? 
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6. Test Problems 

(De Sterck et al., SISC, 2008, ‘Multilevel adaptive aggregation for Markov chains, 

with application to web ranking’) 
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6.1 Uniform 1D Chain 

•  random walk on (undirected) graph 
•  all edges have the same weight 
•  transition probability for directed edge =  

  weight of edge / sum of weights of outgoing edges 
•  solution trivial - test problem 
•  random walk on undirected graph gives real-spectrum B 
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6.2 Uniform 2D Lattice 
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6.3 Anisotropic 2D Lattice 
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6.4 Unstructured Planar Graph 
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Size of Subdominant Eigenvalue 
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6.5 Tandem Queueing Network"
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6.6 ATM Queueing Network"
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7.1 Uniform 1D Chain 

7. Numerical Results 
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7.2 Uniform 2D Lattice 
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7.3 Anisotropic 2D Lattice 
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7.5 Tandem Queueing Network"
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7.6 ATM Queueing Network (MCAMG)"
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8. Conclusions 

•  A-SAM (Smoothed Aggregation for Markov Chains) and 
MCAMG (Algebraic Multigrid for Markov Chains) are scalable: 
they are algorithms for calculating the stationary vector of slowly 
mixing Markov chains with near-optimal complexity 

•  smoothing is essential for aggregation for many problems 
•  appropriate theoretical framework (well-posedness) 
•  no theory yet on (optimal) convergence (non-symmetric 

matrices) 
•  this can be done in parallel 
•  other presentations in this mini-symposium: other multilevel 

methods for the stationary Markov problem 

•  Questions? 
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Algebraic Aggregation Mechanism 

(scaled problem matrix) 

(strength matrix) 
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Error Equation 

•  multiplicative error: 
•  error equation: 

•  coarse grid equation: 

•  restriction and 
 interpolation: 

•  coarse grid correction: 
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Error Equation 

•  important properties of Ac: 
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smoothed aggregation: periodic 2D lattice 

unsmoothed smoothed 
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numerical results: smoothed aggregation 
multigrid for periodic 2D lattice problem 
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We Need ‘Smoothed Aggregation’... 

after smoothing: 

coarse grid 
correction with Q: 

coarse grid 
correction with Qs: 

(Vanek, Mandel, and Brezina, Computing, 1996) 
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Smoothed Aggregation 

•  smooth the columns of P with weighted Jacobi: 

•  smooth the rows of R with weighted Jacobi: 
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Smoothed Aggregation 

•  smoothed coarse level operator: 

•  problem: Acs is not a singular M-matrix (signs wrong) 

•  solution: lumping approach on S in  
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Smoothed Aggregation 

•  we want as little lumping as possible 
•  only lump ‘offending’ elements (i,j): 

 (we consider both off-diagonal signs and reducibility here!) 
•  for ‘offending’ elements (i,j), add S{i,j} to S: 

conserves both row and 
column sums 
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Lumped Smoothed Method is Well-posed 
(A-SAM: Algebraic Smoothed Aggregation for Markov Chains) 

(De Sterck et al., SISC (accepted, 2009), ‘Smoothed aggregation multigrid for Markov chains’) 
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AMG Properties 

•  we can show: all elements of P >= 0 
•  lumping can be done as in the Smoothed 

Aggregation case: 

•  lumping conserves row and column sums: 
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Algebraic Multigrid for Markov Chains 
(MCAMG)  
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MCAMG Properties 

(De Sterck et al., ‘Algebraic Multigrid for Markov Chains’, preprint) 



8. numerical results 

1)  random walk on 2D lattice 

note: ‘+’ means additional top-level 
acceleration with window size 3 

Copper 2010 



2) tandem queue 

Copper 2010 



quadratic programming problem 

efficient explicit solution for recombination of two iterates 

Copper 2010 



quadratic programming problem 

efficient explicit solution for recombination of two iterates 

Copper 2010 


