
Numerical Modelling of
MHD Space Plasmas

Hans De Sterck

DASP - CAP Congress 2010
Toronto, Ontario, Canada, June 6-11, 2010

Scalable Scientific Computing Group
Department of Applied Mathematics
University of Waterloo, Waterloo, Canada

Hans De Sterck (hdesterck@uwaterloo.ca) Numerical Modelling of MHD Space Plasmas 1/ 31



Collaborators

University of Waterloo
Lucian Ivan (postdoc)

University of Toronto
Prof. Clinton Groth
Scott Northrup
CFD & Propulsion Group, Institute for Aerospace Studies

Hans De Sterck (hdesterck@uwaterloo.ca) Numerical Modelling of MHD Space Plasmas 2/ 31



CSA Canadian Geospace Monitoring (CGSM) Program

Project: “Solar Drivers of Space Weather: Contributions to Forecasting”

Images courtesy of SOHO/EIT consortium Image courtesy of NASA

Goal: Develop advanced simulation
methods for MHD space plasmas and
apply to space-weather forecasting
Housed At: Applied Math., U. Waterloo
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MHD Equations

Ideal MHD Plasma
magnetized, inviscid, fully ionized, compressible gas
quasi-neutral, isotropic pressure, perfect gas
(i.e. p = ρRT )

Flow Governed by 3D Compressible MHD Equations
∂U
∂t

+ ~∇ · ~F = S

Conserved solution state: U =
[
ρ, ρ~u, ~B, ρe

]T
Flux dyad: ~F =

[
ρ~u, ρ~u~u + (p + ~B · ~B/2)~~I − ~B~B,
~u~B− ~B~u, (ρe + p + ~B · ~B/2)~u− (~u · ~B)~B

]T
Spherically symmetric
gravitational field: S = −ρGM∗

r3

[
0, ~r, 0, ~r ·~u

]T
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CSA Canadian Geospace Monitoring (CGSM) Program

Project: “Solar Drivers of Space Weather: Contributions to Forecasting”

In Collaboration with:

Prof. Groth’s Group (CFFC Computational Framework)

NRCan Geomagnetic Laboratory (Modeling & Validation)

Others (e.g. Space Weather Forecasting ‘in the cloud’)
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CSA Canadian Geospace Monitoring (CGSM) Program

Project: “Solar Drivers of Space Weather: Contributions to Forecasting”

Computational Framework Features/Design Goals
CFFC: Computational Framework for Fluids and Combustion
Hybrid unstructured-structured multi-block mesh
our approach: "cubed sphere"
Dynamic adaptive mesh refinement (AMR)
Parallel and highly scalable implementation
Implicit timestepping-multigrid/multilevel acceleration
2nd-, 3rd- and 4th-order accuracy
Hardware accelerators: GPU computing
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Discretizations of Spherical Domains

Several Options in the Literature
Latitude-longitude grid constructs
Cubed sphere
Cartesian cut-cell approach
Geodesic grid (e.g. icosahedron)
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Discretizations of Spherical Domains

Latitude-Longitude Grid Constructs

Advantages
Natural basis for spherical flows
Logically rectangular grid (r, θ, φ)
Suitable for application of spectral
methods
Fairly uniform away from poles

Issues (“pole problems”)
Singularities at the poles,
non-uniform
Severe time-step restrictions
Parallelization difficulties

Hans De Sterck (hdesterck@uwaterloo.ca) Numerical Modelling of MHD Space Plasmas 8/ 31



Discretizations of Spherical Domains

Gnomonic Projection Based Grids

Great circles are mapped into straight lines and vice-versa
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Discretizations of Spherical Domains

“Cubed Sphere”

The inverse projection maps the 6 straight faces of the cube into
6 adjoining spherical faces free of any strong singularities
Natural application of a multi-block mesh data structure
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Types of Cubed-Sphere Grids
Sadourny, 1972; Ronchi et. al., 1996

Gnomonic Grid
The most uniform

Equiangular or
equidistant projection

Min. length scales with
increasing resolution

Highly non-orthogonal
and non-conformal

Does not require extra
meshing algorithms

Accurate results with
adequate schemes
(Putman & Lin, 2007)

Suitable for AMRImage reproduced from Putman & Lin JCP2007
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3D Cubed-Sphere Multi-Block Mesh in CFFC

Cross-section of the cubed-sphere grid (left) and illustration of
connectivity among blocks (right)
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Finite-Volume Formulation

Semi-Discrete Integral Form for Hexahedral Cell (i,j,k)

dUi,j,k

dt
= − 1

Vi,j,k

Nf∑
m=1

(∫
~F ·~n dA

)
i,j,k,m

+ (S)i,j,k

Key Elements of Numerical Scheme

High-order spatial discretization (2nd, 3rd, 4th)

Multi-dimensional k-exact least-squares reconstruction
(Barth, 1993) and limiters (Barth-Jespersen, 1993;
Venkatakrishnan, 1993)

Upwinding flux evaluation (Roe’s 1981; HLLE 1983)

Multi-stage explicit time marching schemes

Parallel implicit NKS algorithms (Northrup & Groth 2009)
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Finite-Volume Formulation

dUi,j,k

dt
= − 1

Vi,j,k

NfX
m=1

„Z
~F ·~n dA

«
i,j,k,m

+ (S)i,j,k
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Finite-Volume Formulation
Overview of High-Order Benefits

What is Meant by High-Order?
Schemes with order of truncation error greater than 2
Spatial discretization error: O(∆xn), n > 2

High-Order Schemes vs. Low-Order Methods
Less numerical dissipation & dispersion
Require fewer mesh points to accurately resolve solution
Potentially less expensive
Trade-offs: Order of accuracy vs. computational cost
Our target: 4th-order accurate solutions (n = 4)

Work in Concert with Other Strategies for
Coping with High Computational Cost

Adaptive Mesh Refinement (AMR)
Efficient parallel solution schemes
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Finite-Volume Formulation

k-exact Reconstruction (Barth, 1993)
Piecewise polynomial approximation

uk
i,j(~r) =

N1∑
p1=0

N2∑
p2=0

(x − x̄i,j)
p1 (y − ȳi,j)

p2 Dk
p1p2

, N1 + N2 ≤ k

Satisfies the following conditions:
reconstruct exactly polynomials of degree ≤ k

uk
i,j(~r − ~̄ri,j)− u(~r) = O(∆xk+1)

conserve the mean solution∫∫
Ai,j

uk
i,j(~r − ~̄ri,j) dxdy =

∫∫
Ai,j

u(~r) dxdy

have compact support
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Finite-Volume Formulation

Computation of Reconstruction Coefficients, Dk
p1p2

Error, Errγ,δ, in each control volume, CVγ,δ, is minimized
using least-squares formulation:

Errγ,δ =
1

Aγ,δ

∫∫
Aγ,δ

uk
i,j(~r − ~̄ri,j) dxdy − ūγ,δ

Results in linear equality-constrained least squares
problem:

Ax− b = r

Solution of overdetermined linear system of equations:
Gaussian elimination + Householder QR factorization
(or: compute the pseudo-inverse A−1)

remove oscillations at discontinuities: detect discontinuities
and reduce order (limited piecewise linear) (CENO scheme)
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Finite-Volume Formulation

The Mach number prediction for the inviscid flow past a cylinder
at M = 0.38 obtained with the 2nd- and 4th-order CENO on a

mesh with 80x40 cells
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Finite-Volume Formulation
2nd vs. 4th Order Accuracy: 2D Example to Illustrate Potential Benefits

# Cells O(∆x2) O(∆x4)
L1: 2.68E-02 L1: 1.85E-04

4,000 L2: 3.26E-02 L2: 2.18E-04
(200x20) LMax: 7.36E-02 LMax: 9.46E-04

Time: 0:01:20 Time: 0:10:38
Mem: 20,336 Mem: 31,232
L1: 9.38E-03 L1: 1.32E-05

8,000 L2: 1.16E-02 L2: 2.02E-05
(400x20) LMax: 2.98E-02 LMax: 2.11E-04

Time: 0:04:18 Time: 0:41:03
Mem: 30,000 Mem: 50,816
L1: 1.10E-04 L1: -

80,000 L2: 2.20E-04 L2: -
(4000x20) LMax: 1.33E-03 LMax: -

Time: 8:23:38 Time: -
Mem: 203,680 Mem: -

Exact solution 4th-order CENO solution after one period

200×20 cells
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Parallel Adaptive Finite-Volume Framework
Block-Based AMR Using Hierarchical Data Structure ( Berger 1984; Gao & Groth 2010)

Mesh refinement by division and
coarsening of self-similar structured
blocks (hexahedral cells)

Hierarchical octree data structure
provides block connectivity

Solution transfer among blocks via
overlapping ghost cells

Permits local refinement of mesh

Physics-based refinement criteria
(e.g. ε1∝|~∇ρ|, ε2∝|~∇·~u|, ε3∝|~∇⊗~u|)
Permits parallel implementation via
domain partitioning

Highly efficient load balancing is
obtained by equally distributing the
solution blocks among CPUs
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Parallel Adaptive Finite-Volume Framework
AMR of Cubed-Sphere Grid

Previous Work
Multiple radial cuts and stretching (not AMR, many research groups)

AMR on Cartesian grids
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Parallel Adaptive Finite-Volume Framework
AMR of Cubed-Sphere Grid

CFFC Implementation
Truly 3D AMR, using unstructured root-block connectivity

Body-fitted mesh by constraining the points on the boundary spheres
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Parallel Adaptive Finite-Volume Framework
Assessment of CFFC Parallel Performance on SciNet GPC (Nehalem processors)

Courtesy of S. Northrup
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Numerical Results

Summary of Studied Problems
Supersonic Outflow
Transonic Wind on Fixed and AMR Meshes (Radially
Symmetric)
Supersonic Flow Past a Sphere
Supersonic Rotating Outflow
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Numerical Results
Supersonic Inflow Outflow (Hydro, 2nd Order) Ri =1 (Inflow), Ro =4 (Outflow), GM∗=0

Convergence study based on analytical solution for meshes in
the range 6,144 to 25,165,824 total cells

Hans De Sterck (hdesterck@uwaterloo.ca) Numerical Modelling of MHD Space Plasmas 22/ 31



Numerical Results
Transonic Wind (Hydro, 2nd Order) Ri =1, Ro =10, GM∗=14, Inflow: ρ=5, p=23

Predicted Mach number distribution obtained on a uniform mesh with
1,228,800 total cells and 128 cells in the radial direction
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Numerical Results
Transonic Wind (Hydro, 2nd Order) Ri =1, Ro =10, GM∗=14, Inflow: ρ=5, p=23

Comparison of flow properties along X-axis for M1 (19,200), M2 (153,600)
and M3 (1,228,800) meshes relative to a 1D “exact solution” obtained with

Newton Critical Point (NCP) method (De Sterck et. al. 2009).
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Numerical Results
Transonic Wind on AMR Mesh Ri =1, Ro =10, GM∗=14, Inflow: ρ=5, p=23

Predicted Mach number distribution obtained on the adapted cubed-sphere
mesh. Comparison of flow properties in the X-axis direction.
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Numerical Results
Supersonic Flow Past a Sphere (Hydro, 2nd Order) M∞ = 2.0, Ri =1, Ro =32, GM∗=0

Predicted density distribution on the final refined AMR mesh with 10,835
blocks and 8,321,280 computational cells (7 levels of refinement, η=0.993)
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Numerical Results
2D Rotating Outflow (MHD, 2nd Order)
Ri =1, Ro =6, GM∗=0, Inflow: ρ=1, p=1, Vr =3, Vθ=1, Br =1

Predicted density field distribution obtained on a mesh with 80×80 cells
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Numerical Results
3D Rotating Outflow (MHD, 2nd Order)
Ri =1, Ro =6, GM∗=0, Inflow: ρ=1, p=1, Vr =3, Vθ=1, Br =1

Density distribution obtained on a mesh with 20,160 total cells (70×72 radial)
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Concluding Remarks & Ongoing Research

Parallel Block-Based Adaptive Simulation Framework

Developed for 3D cubed-sphere grids and space-physics flows

Uses multi-dimensional FVM and gnomonic cubed-sphere grids

Accuracy assessment based on exact and accurate 1D solutions

Permits local solution-directed mesh refinement

Handles and resolves regions of strong discontinuities/shocks
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Concluding Remarks & Ongoing Research

Ongoing Research

High-order on cubed-sphere grid

∇ · ~B = 0 with high-order

Improved implicit time integration

Application of the method to space-physics problems (solar
wind, CME)
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