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1. Simple Markov Chain Example
• start in one state with

probability 1: what is the
stationary probability vector
after ∞ number of steps?

•  stationary probability:
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Applications of Markov Chains

• information retrieval
and web ranking

• performance
modelling of
computer systems

• analysis of biological
systems

• dependability and
security analysis

• ...
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2. Problem Statement

• B is column-stochastic

• B is irreducible (every state can be
reached from every other state in the
directed graph)
⇒

(no probability sinks!) probability sinks
not irreducible
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3. Power Method

• largest eigenvalue of B:

• power method:

– convergence factor:

– convergence is very slow when

(slowly mixing Markov chain) (JAC, GS also slow)
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Why/When is Power Method Slow?
Why Multilevel Methods?
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• high-frequency error is removed by relaxation (weighted Jacobi, Gauss-
Seidel, ... power method)

• low-frequency-error needs to be removed by coarse-grid correction

Principle of Multigrid (for PDEs)



SIAM CSE 2009
hdesterck@uwaterloo.ca

Multigrid Hierarchy: V-cycle

• multigrid V-cycle:
 relax (=smooth) on successively coarser grids
 transfer error using restriction (R=PT) and interpolation (P)

• W=O(n) : (optimally) scalable method
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4. Aggregation for Markov Chains

• form three coarse,
aggregated states

(Simon and Ando, 1961)
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Aggregation for Markov Chains

(Krieger, Horton, ... 1990s)
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Error Equation

• multiplicative error:
• error equation:

• coarse grid equation:

• restriction and
interpolation:

• coarse grid correction:
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Error Equation

• important properties of Ac:
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Multilevel Aggregation Algorithm

(Krieger, Horton 1994, but no good
way to build Q, convergence not good)
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Algebraic Aggregation Mechanism

(scaled problem matrix)

(strength matrix)
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Well-posedness: Singular M-matrices

• singular M-matrix:

• our A=I-B is a singular M-matrix on all levels
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Well-posedness: Unsmoothed Method
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We Need ‘Smoothed Aggregation’...

after smoothing:

coarse grid
correction with Q:

coarse grid
correction with Qs:

(Vanek, Mandel, and Brezina, Computing, 1996)
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Smoothed Aggregation

• smooth the columns of P with weighted Jacobi:

• smooth the rows of R with weighted Jacobi:
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Smoothed Aggregation

• smoothed coarse level operator:

• problem: Acs is not a singular M-matrix (signs wrong)

• solution: lumping approach on S in
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Smoothed Aggregation

• we want as little lumping as possible
• only lump ‘offending’ elements (i,j):

(we consider both off-diagonal signs and reducibility here!)
• for ‘offending’ elements (i,j), add S{i,j} to S:

conserves both row and
column sums
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Lumped Smoothed Method is Well-posed
(A-SAM: Algebraic Smoothed Aggregation for Markov Chains)

(De Sterck et al., SISC (accepted, 2009), ‘Smoothed aggregation multigrid for Markov chains’)
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5. Algebraic Multigrid for Markov Chains

• scaled problem matrix:

• multiplicative error eqaution:

• we can use ‘standard’ AMG on

• define AMG coarsening and interpolation
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AMG (two-pass) Coarsening and Interpolation
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AMG Properties

• we can show: all elements of P >= 0
• lumping can be done as in the Smoothed

Aggregation case:

• lumping conserves row and column sums:
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Algebraic Multigrid for Markov Chains
(MCAMG)
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MCAMG Properties

(De Sterck et al., ‘Algebraic Multigrid for Markov Chains’, preprint)
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6. Test Problems

(De Sterck et al., SISC, 2008, ‘Multilevel adaptive aggregation for Markov chains,

with application to web ranking’)
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6.1 Uniform 1D Chain

• random walk on (undirected) graph
• all edges have the same weight
• transition probability for directed edge =

weight of edge / sum of weights of outgoing edges
• solution trivial - test problem
• random walk on undirected graph gives real-spectrum B
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6.2 Uniform 2D Lattice
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6.3 Anisotropic 2D Lattice
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6.4 Unstructured Planar Graph
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Size of Subdominant Eigenvalue
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6.5 Tandem Queueing Network



SIAM CSE 2009
hdesterck@uwaterloo.ca

6.6 ATM Queueing Network



SIAM CSE 2009
hdesterck@uwaterloo.ca

7.1 Uniform 1D Chain

7. Numerical Results
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7.2 Uniform 2D Lattice
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7.3 Anisotropic 2D Lattice
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7.4 Unstructured Planar Graph
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7.5 Tandem Queueing Network
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7.6 ATM Queueing Network (MCAMG)
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8. Conclusions

• A-SAM (Smoothed Aggregation for Markov Chains) and
MCAMG (Algebraic Multigrid for Markov Chains) are scalable:
they are algorithms for calculating the stationary vector of slowly
mixing Markov chains with near-optimal complexity

• smoothing is essential for aggregation for many problems
• appropriate theoretical framework (well-posedness)
• no theory yet on (optimal) convergence (non-symmetric

matrices)
• this can be done in parallel
• other presentations in this mini-symposium: other multilevel

methods for the stationary Markov problem

• Questions?


