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collaborators

•  Killian Miller, Manda Winlaw
Department of Applied Mathematics, University of
Waterloo

•  Steve McCormick, Tom Manteuffel, John Ruge,
Geoff Sanders
Department of Applied Mathematics, University of
Colorado at Boulder

• our area of research is numerical linear algebra
methods for PDEs, in particular so-called algebraic
multigrid methods, and we have recently started to
apply these techniques to numerical linear algebra
methods for Markov chains
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1. problem formulation and example

• develop efficient numerical method for calculating
stationary distributions of Markov chains:
 finite-state (n states)
 irreducible
 large
 sparse
 slowly mixing

•  goal: O(n) method
⇒  approach: use iterative method with multilevel

aggregation to distribute probability on all scales
quickly
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problem formulation

• B is column-stochastic

• B is irreducible (every state can be
reached from every other state in the
directed graph)
⇒

•  singular M-matrix formulation
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example
• example: random walk on directed planar graph
• choose n uniformly

distributed random points in
the unit square

• perform Delaunay
triangulation on points

• choose a maximal subset
of triangles that are not
neighbours

• randomly delete one
directed edge from each
triangle in this subset

⇒ find stationary distribution
of random walk
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2. power method convergence

•  power method:

•  largest eigenvalue of B:

•  power method (nonperiodic B):

–  convergence rate: 1-

–  convergence is slow when 1-         → 0 for increasing n

(we call this a slowly mixing Markov chain)

–  every power iteration is O(n) work
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numerical results: one-level iteration for random
graph problem

• start from random intial guess

• let

• iterate on

with

until
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why/when is power method slow?
why multilevel methods?
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3. multilevel aggregation
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aggregation

• form three coarse,
aggregated states

(Simon and Ando, 1961)



RSA 2009
hdesterck@uwaterloo.ca

matrix form of aggregation

(Krieger, Horton, ... 1990s)
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two-level aggregation method

repeat

(note: there is a convergence proof for this two-level method,
Marek and Mayer 1998, 2003)
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multilevel aggregation method

(note: O(n) work per cycle:
n + n/2 + n/4 + n/8 + ... < 2 n)

(Krieger, Horton 1994)



RSA 2009
hdesterck@uwaterloo.ca

aggregation strategy

•  fine-level relaxation should efficiently distribute
probability within aggregates (smooth out local, high-
frequency errors)

•  coarse-level update will efficiently distribute
probability between aggregates (smooth out global,
low-frequency errors)

•  base aggregates on ‘strong connections’ in
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aggregation strategy

scaled problem matrix:

strong connection: coefficient is large in either of rows i or j

( θ ∈ (0,1), θ=0.25 )
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‘neighbourhood’ aggregation strategy
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aggregation: periodic 2D lattice
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numerical results: aggregation multigrid for
random walk problem

does not work as well as we would like!
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4. overlapping aggregates: we need ‘smoothed
aggregation’...

after smoothing:

coarse grid
correction with Q:

coarse grid
correction with Qs:

(Vanek, Mandel, and Brezina, Computing, 1996)



RSA 2009
hdesterck@uwaterloo.ca

smoothed aggregation

• smooth the columns of P with weighted Jacobi:

• smooth the rows of R with weighted Jacobi:
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smoothed aggregation: a problem with signs

• smoothed coarse level operator:

• problem: Acs is not a singular M-matrix (signs wrong)
• solution:

lumping approach
• well-posedness of

this approach shown
in De Sterck et al., SIAM
J. Sci. Comp., 2009
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smoothed aggregation: periodic 2D lattice

unsmoothed smoothed
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numerical results: smoothed aggregation
multigrid for random graph problem
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numerical results: smoothed aggregation
multigrid for periodic 2D lattice problem



RSA 2009
hdesterck@uwaterloo.ca

numerical results: smoothed aggregation
multigrid for tandem queueing network problem
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numerical results: smoothed aggregation for
tandem queueing network problem
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6. discussion

•  multilevel smoothed aggregation gets us close to
O(n) algorithm for some slowly mixing Markov chains

•  slowly mixing Markov chains are OK (their stationary
distribution can be calculated efficiently)

•  very little theory exists for these methods
 convergence
 optimal convergence (O(n))

•  there is optimal convergence theory for SPD matrix
discretizations of some elliptic PDEs (Brandt,
Stueben, ...)
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discussion

• we have several variants of these algorithms that
also work well

• we are working on similar multilevel aggregation
approach to speed up Markov Chain Monte Carlo
methods for lattice spin systems (make groups of
groups ... of spins and flip them together)
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7. questions

• any suggestions for further test problems for our
algorithms? (large, sparse, irreducible, slowly mixing)
 real-life problems
 theoretical models that people care about

• any suggestions for ‘pathological’ chains that will
‘break’ our algorithm?

• which classes of Markov chains will this work well for,
and which classes not? (how can these classes be
characterized?)

• (optimal) convergence proof?
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thanks!


