# Fast Multilevel Numerical Methods for Random Walks on Directed Graphs 

Hans De Sterck<br>Department of Applied Mathematics<br>University of Waterloo

University of
Waterioo

RSA 2009
14th International Conference on Random
Structures and Algorithms

## collaborators

- Killian Miller, Manda Winlaw

Department of Applied Mathematics, University of Waterloo

- Steve McCormick, Tom Manteuffel, John Ruge, Geoff Sanders
Department of Applied Mathematics, University of Colorado at Boulder
- our area of research is numerical linear algebra methods for PDEs, in particular so-called algebraic multigrid methods, and we have recently started to apply these techniques to numerical linear algebra methods for Markov chains


## 1. problem formulation and example

- develop efficient numerical method for calculating stationary distributions of Markov chains:
- finite-state (n states)
- irreducible
- large
- sparse
- slowly mixing
- goal: O(n) method
$\Rightarrow$ approach: use iterative method with multilevel aggregation to distribute probability on all scales quickly


## problem formulation

$$
B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1 \quad x_{i} \geq 0 \forall i
$$

- $B$ is column-stochastic

$$
0 \leq b_{i j} \leq 1 \forall i, j \quad \mathbf{1}^{T} B=\mathbf{1}^{T}
$$

- $B$ is irreducible (every state can be reached from every other state in the directed graph)

$$
\Rightarrow!\mathrm{x}: \quad B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1 \quad x_{i}>0 \forall i
$$

- singular M-matrix formulation

$$
A \mathbf{x}=0 \quad A=I-B
$$

$$
A=\left[\begin{array}{lllll}
+ & - & - & - & - \\
- & + & - & - \\
- & - & - \\
- & - & - \\
- & - & - \\
- & - \\
- & +
\end{array}\right]
$$

## example

- example: random walk on directed planar graph
- choose $n$ uniformly distributed random points in the unit square
- perform Delaunay triangulation on points
- choose a maximal subset of triangles that are not neighbours
- randomly delete one directed edge from each triangle in this subset
$\Rightarrow$ find stationary distribution
 of random walk


## 2. power method convergence

- power method: $\mathbf{x}_{i+1}=B \mathbf{x}_{i}$
- largest eigenvalue of $B: \lambda_{1}=1$
- power method (nonperiodic $B$ ):

- convergence rate: $1-\left|\lambda_{2}\right|$
- convergence is slow when 1- $\left|\lambda_{2}\right| \rightarrow 0$ for increasing $n$
(we call this a slowly mixing Markov chain)
- every power iteration is $\mathrm{O}(\mathrm{n})$ work


## numerical results: one-level iteration for random graph problem

- start from random intial guess $\mathbf{x}_{0}$
- let $A=D-(L+U)$
- iterate on $\mathbf{x}_{i+1}=\left(I+w D^{-1} A\right) \mathbf{x}_{i}$
with $\quad w=0.7$
until

$$
\frac{\left\|A \mathbf{x}_{i}\right\|_{1}}{\left\|A \mathbf{x}_{0}\right\|_{1}}<10^{-8}
$$



| $n$ | it |
| ---: | ---: |
| 128 | 322 |
| 256 | 494 |
| 512 | 1010 |
| 1024 | 1768 |

## why/when is power method slow? why multilevel methods?



Waterloo

## 3. multilevel aggregation



$$
B=\left[\begin{array}{ccccc}
0 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 & 1 \\
0 & 1 / 3 & 1 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
B \mathbf{x}=\mathbf{x} \quad\|\mathbf{x}\|_{1}=1
$$

$$
\mathrm{x}^{T}=\left[\begin{array}{llll}
2 / 19 & 6 / 19 & 4 / 19 & 6 / 19 \\
1 / 19
\end{array}\right]
$$

## aggregation

- form three coarse, aggregated states

$$
\begin{aligned}
& B_{c} \mathbf{x}_{c}=\mathbf{x}_{c} \\
& b_{c, I J}=\frac{\sum_{j \in J} x_{j}\left(\sum_{i \in I} b_{i j}\right)}{\sum_{j \in J} x_{j}} \\
& B_{c}=\left[\begin{array}{ccc}
1 / 4 & 3 / 5 & 0 \\
5 / 8 & 2 / 5 & 1 \\
1 / 8 & 0 & 0
\end{array}\right]
\end{aligned}
$$



$$
x_{c, I}=\sum_{i \in I} x_{i}
$$

$$
\mathbf{x}_{c}^{T}=\left[\begin{array}{lll}
8 / 19 & 10 / 19 & 1 / 19
\end{array}\right]
$$

(Simon and Ando, 1961)

## matrix form of aggregation

$$
\begin{aligned}
B_{c} \mathbf{x}_{c} & =\mathbf{x}_{c} \\
b_{c, I J} & =\frac{\sum_{j \in J} x_{j}\left(\sum_{i \in I} b_{i j}\right)}{\sum_{j \in J} x_{j}}
\end{aligned}
$$



$$
\begin{aligned}
& B_{c}=Q^{T} B \mathrm{dia} \\
& x_{c, I}=\sum_{i \in I} x_{i} \\
& \mathbf{x}_{c}=Q^{T} \mathbf{x}
\end{aligned}
$$

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(Krieger, Horton, ... 1990s)

## two-level aggregation method

repeat
fine-level relaxation: $\mathbf{x}^{*}=B \mathbf{x}_{i}$
build $Q$
build $B_{c}=Q^{T} B \operatorname{diag}\left(\mathbf{x}^{*}\right) Q\left(\operatorname{diag}\left(Q^{T} \mathbf{x}^{*}\right)\right)^{-1}$
coarse-level solve: $B_{c} \mathbf{x}_{c}=\mathbf{x}_{c}$
fine-level update: $\mathbf{x}_{i+1}=\operatorname{diag}\left(\mathbf{x}^{*}\right) Q\left(\operatorname{diag}\left(Q^{T} \mathbf{x}^{*}\right)\right)^{-1} \mathbf{x}_{c}$
(note: there is a convergence proof for this two-level method, Marek and Mayer 1998, 2003)

## multilevel aggregation method

Algorithm: Multilevel Adaptive Aggregation method (V-cycle)

$$
\mathrm{x}=\mathrm{AM} \mathrm{~V}\left(A, \mathrm{x}, \nu_{1}, \nu_{2}\right)
$$

begin

$\mathbf{x} \leftarrow \operatorname{Relax}(A, \mathbf{x}) \quad \nu_{1}$ times
build $Q$ based on x and $A \quad$ ( $Q$ is rebuilt every level and cycle)
$R=Q^{T}$ and $P=\operatorname{diag}(\mathbf{x}) Q$
$A_{c}=R A P$
$\mathbf{x}_{c}=\mathrm{AM} \vee\left(A_{c} \operatorname{diag}\left(P^{T} 1\right)^{-1}, P^{T} 1, \nu_{1}, \nu_{2}\right) \quad$ (coarse-level solve)
$\mathbf{x}=P\left(\operatorname{diag}\left(P^{T} \mathbf{1}\right)\right)^{-1} \mathbf{x}_{c} \quad$ (coarse-level correction)
$\mathbf{x} \leftarrow \operatorname{Relax}(A, \mathbf{x}) \quad \nu_{2}$ times
end
(Krieger, Horton 1994)

Waterioo

> (note: O(n) work per cycle: $\mathrm{n}+\mathrm{n} / 2+\mathrm{n} / 4+\mathrm{n} / 8+\ldots<2 \mathrm{n}$ )

## aggregation strategy

- fine-level relaxation should efficiently distribute probability within aggregates (smooth out local, highfrequency errors)
- coarse-level update will efficiently distribute probability between aggregates (smooth out global, low-frequency errors)
- base aggregates on 'strong connections' in $A \operatorname{diag}\left(\mathbf{x}_{i}\right)$


## aggregation strategy

scaled problem matrix:

$$
\hat{A}=A \operatorname{diag}\left(\mathbf{x}_{i}\right)
$$

strong connection: coefficient is large in either of rows $i$ or $j$

$$
\begin{aligned}
& -\hat{a}_{i j} \geq \theta \max _{k \neq i}\left\{-\hat{a}_{i k}\right\} \quad \text { or } \quad-\hat{a}_{j i} \geq \theta \max _{k \neq j}\left\{-\hat{a}_{j k}\right\} \\
& (\theta \in(0,1), \theta=0.25)
\end{aligned}
$$

## 'neighbourhood’ aggregation strategy

```
Algorithm 2: neighborhood-based aggregation, \(\left\{Q_{J}\right\}_{J=1}^{m} \longleftarrow\) Neighbour-
hoodAgg \((A \operatorname{diag}(\mathbf{x}), \theta)\)
    For all points \(i\), build strong neighbourhoods \(\mathcal{N}_{i}\) based on \(A \operatorname{diag}(\mathbf{x})\) and \(\theta\).
    Set \(\mathcal{R} \leftarrow\{1, \ldots, n\}\) and \(J \leftarrow 0\).
    /* 1st pass: assign entire neighborhoods to aggregates */
    for \(i \in\{1, \ldots, n\}\) do
        if \(\left(\mathcal{R} \cap \mathcal{N}_{i}\right)=\mathcal{N}_{i}\) then
            \(J \leftarrow J+1\).
            \(Q_{J} \leftarrow \mathcal{N}_{i}, \hat{Q}_{J} \leftarrow \mathcal{N}_{i}\).
            \(\mathcal{R} \leftarrow \mathcal{R} \backslash \mathcal{N}_{i}\).
        end
    end
    \(m \leftarrow J\).
    /* 2nd pass: put remaining points in aggregates they are most
        connected to */
    while \(\mathcal{R} \neq \emptyset\) do
        Pick \(i \in \mathcal{R}\) and set \(J \leftarrow \operatorname{argmax}_{K=1, \ldots, m} \operatorname{card}\left(\mathcal{N}_{i} \cap Q_{K}\right)\).
        Set \(\hat{Q}_{J} \leftarrow Q_{J} \cup\{i\}\) and \(\mathcal{R} \leftarrow \mathcal{R} \backslash\{i\}\).
    end
    for \(J \in\{1, \ldots, m\}\) do \(Q_{J} \leftarrow \hat{Q}_{J}\).
```


## aggregation: periodic 2D lattice



$$
B_{c}=Q^{T} B \operatorname{diag}\left(\mathbf{x}^{*}\right) Q\left(\operatorname{diag}\left(Q^{T} \mathbf{x}^{*}\right)\right)^{-1}
$$

## numerical results: aggregation multigrid for


does not work as well as we would like!

## 4. overlapping aggregates: we need 'smoothed aggregation'...

(Vanek, Mandel, and Brezina, Computing, 1996)
after smoothing:


$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

coarse grid correction with Q:


$$
Q_{s}=\left[\begin{array}{ccc}
\times & 0 & 0 \\
\times & \times & 0 \\
\times & \times & 0 \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right]
$$

coarse grid correction with $Q_{s}$ :


## smoothed aggregation

$$
A_{c}=Q^{T} A \operatorname{diag}\left(\mathbf{x}_{i}\right) Q=R A P
$$

- smooth the columns of $P$ with weighted Jacobi:

$$
\begin{array}{r}
P_{s}=\left(I+w D^{-1} A\right) \operatorname{diag}\left(\mathbf{x}_{i}\right) Q \\
w=0.7
\end{array}
$$

- smooth the rows of $R$ with weighted Jacobi:

$$
R_{s}=Q^{T}\left(I+w A D^{-1}\right)
$$

## smoothed aggregation: a problem with signs

- smoothed coarse level operator:

$$
\begin{aligned}
A_{c s} & =R_{s}(D-(L+U)) P_{s} \\
& =R_{s} D P_{s}-R_{s}(L+U) P_{s}
\end{aligned} \quad A=\left[\begin{array}{cccc}
+ & - & - & - \\
- & + \\
- & - & - \\
- & + & - \\
- & - & + \\
- & - & -
\end{array}\right]
$$

- problem: $A_{c s}$ is not a singular M-matrix (signs wrong)
- solution:
lumping approach
- well-posedness of this approach shown $S_{\{i, j\}}=$ in De Sterck et al., SIAM
J. Sci. Comp., 2009
$\left.S_{\{i, j\}}=\begin{array}{ccccc} & i & & j \\ \\ j \\ & \vdots & & \vdots & \\ \cdots & \beta_{\{i, j\}} & \cdots & -\beta_{\{i, j\}} & \cdots \\ & \vdots & & \vdots & \\ \cdots & -\beta_{\{i, j\}} & \cdots & \beta_{\{i, j\}} & \cdots \\ & \vdots & & \vdots & \end{array}\right]$


## smoothed aggregation: periodic 2D lattice


unsmoothed

smoothed

$$
A_{c}=R_{s} A P_{s}
$$



## numerical results: smoothed aggregation multigrid for random graph problem

|  | 1-level | aggregation |  |  | smoothed aggregation |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n$ | iterations | iterations | $C_{o p}$ | levels | iterations | $C_{o p}$ | levels | $R_{\text {lump }}$ |
| 128 | 322 | 95 | 1.12 | 3 |  |  |  |  |
| 256 | 494 | 107 | 1.13 | 3 |  |  |  |  |
| 512 | 1010 | 156 | 1.14 | 3 | 36 | 1.28 | 3 | $2.5 \mathrm{e}-4$ |
| 1024 | 1768 | 220 | 1.15 | 4 | 39 | 1.31 | 4 | $1.2 \mathrm{e}-4$ |
| 2048 |  | 352 | 1.15 | 4 | 33 | 1.31 | 4 | $6.0 \mathrm{e}-5$ |
| 4096 |  |  |  |  | 46 | 1.35 | 4 | $2.3 \mathrm{e}-4$ |
| 8192 |  |  |  |  | 35 | 1.37 | 4 | $2.0 \mathrm{e}-4$ |
| 16384 |  |  |  |  | 51 | 1.36 | 5 | $9.4 \mathrm{e}-5$ |
| 32768 |  |  |  |  | 43 | 1.38 | 5 | $1.6 \mathrm{e}-4$ |

$C_{o p}=\frac{\sum_{l=0} \operatorname{nonzeros}\left(A_{l}\right)}{\text { nonzeros }\left(A_{0}\right)}$

## numerical results: smoothed aggregation multigrid for periodic 2D lattice problem



|  | 1-level | aggregation |  |  | smoothed aggregation |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n$ | iterations | iterations | $C_{o p}$ | levels | iterations | $C_{o p}$ | levels | $R_{\text {lump }}$ |
| 64 | 197 | 47 | 1.23 | 3 | 16 | 1.26 | 3 | 0 |
| 256 | 760 | 96 | 1.26 | 3 | 17 | 1.34 | 3 | 0 |
| 1024 | 2411 | 242 | 1.25 | 4 | 17 | 1.32 | 4 | 0 |
| 4096 |  | 328 | 1.26 | 5 | 18 | 1.34 | 5 | 0 |
| 16384 |  |  |  |  | 18 | 1.33 | 5 | 0 |
| 32768 |  |  |  |  | 19 | 1.34 | 6 | 0 |

## numerical results: smoothed aggregation multigrid for tandem queueing network problem



FIG. 5.6. Tandem queueing network.


FIG. 5.7. Graph for tandern queueing network.

## numerical results: smoothed aggregation for tandem queueing network problem



|  | 1-level | aggregation |  |  | smoothed aggregation |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n$ | iterations | iterations | $C_{o p}$ | levels | iterations | $C_{o p}$ | levels | $R_{\text {lump }}$ |
| 256 | 967 | 103 | 1.23 | 3 | 17 | 1.25 | 3 | $1.7 \mathrm{e}-3$ |
| 1024 | 4004 | 256 | 1.21 | 4 | 20 | 1.25 | 4 | $1.4 \mathrm{e}-3$ |
| 4096 |  | 425 | 1.22 | 4 | 19 | 1.24 | 4 | $9.5 \mathrm{e}-4$ |
| 16384 |  |  |  |  | 22 | 1.24 | 5 | $5.1 \mathrm{e}-4$ |
| 65536 |  |  |  |  | 18 | 1.25 | 6 | $3.5 \mathrm{e}-4$ |

## 6. discussion

- multilevel smoothed aggregation gets us close to $\mathrm{O}(\mathrm{n})$ algorithm for some slowly mixing Markov chains
- slowly mixing Markov chains are OK (their stationary distribution can be calculated efficiently)
- very little theory exists for these methods
- convergence
- optimal convergence (O(n))
- there is optimal convergence theory for SPD matrix discretizations of some elliptic PDEs (Brandt, Stueben, ...)


## discussion

- we have several variants of these algorithms that also work well
- we are working on similar multilevel aggregation approach to speed up Markov Chain Monte Carlo methods for lattice spin systems (make groups of groups ... of spins and flip them together)


## 7. questions

- any suggestions for further test problems for our algorithms? (large, sparse, irreducible, slowly mixing)
- real-life problems
- theoretical models that people care about
- any suggestions for 'pathological' chains that will 'break' our algorithm?
- which classes of Markov chains will this work well for, and which classes not? (how can these classes be characterized?)
- (optimal) convergence proof?


## thanks!

