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1. Introduction

• consider stationary solutions of hyperbolic
conservation law

• in particular, compressible Euler equations
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Transonic steady Euler flows
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Standard approach for steady flow simulation

• time marching (often implicit)

• Newton: linearize
• Krylov: iterative solution of linear system in every

Newton step
• Schwarz: parallel (domain decompositioning), or

multigrid
⇒ NKS methodology for steady flows
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Main advantages of NKS

• use the hyperbolic BCs for steady problem

• ‘physical’ way to find suitable initial conditions for the
Newton method in every timestep

• it works! (in the sense that it allows one to converge
to a solution, in many cases, with some trial-and-
error)
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Disadvantages of NKS

• number of Newton iterations required for
convergence can grow as a function of resolution

• number of Krylov iterations required for convergence
of the linear system in each Newton step grows as a
function of resolution

• grid sequencing/nested iteration: often does not work
as well as it could (need many Newton iterations on
each level)

• robustness, hard to find general strategy to increase
timestep

⇒ NKS methodology not very scalable, and expensive
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Why not solve the steady equations directly?

• too hard! (BCs, elliptic-hyperbolic, ...)
• let’s try anyway:

– maybe we can understand why it is difficult
– maybe we can find a method that is more efficient

than implicit time marching
• start in 1D
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2. 1D model problems

• radial outflow from extrasolar planet
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Radial outflow from exoplanet

• http://exoplanet.eu
• 346 extrasolar planets

known, as of April 2009
• 37 multiple planet systems
• many exoplanets are gas

giants (“hot Jupiters”)
• many orbit very close to star

(~0.05 AU)
• hypothesis: strong irradiation

leads to supersonic
hydrogen escape
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Transonic radial outflow solution of Euler
equations of gas dynamics

subsonic     ⇒|⇐     supersonic
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Use time marching method (explicit)

v - c = 0
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Simplified 1D problem: radial isothermal Euler

• 2 equations (ODEs), 2 unknowns (          )
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Solving the steady ODE system is hard...

• critical point:
2 equations, 2
unknowns, but only 1 BC
needed: ρ0 ! (along with
transonic solution
requirement)
(no u0 required!)

• solving ODE from the left
does not work...

• but... integrating outward
from the critical point
does work!!!

ρ0
no u0!
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3. Newton Critical Point (NCP) method for
steady transonic Euler flows

• First component of NCP: integrate outward from
critical point, using dynamical systems formulation
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First component of NCP

1. Write as dynamical system...

2. find critical point:
3. linearize about critical point, eigenvectors

4. integrate outward from critical point
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For the Full Euler Equations

• 3 equations, 3 unknowns, but only 2 inflow BC (ρ0, p0)
(u0 results from simulation)

• problem: there are many possible critical points! (two-
parameter family)
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Full Euler dynamical system

⇒
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Second component of NCP: use Newton
method to match critical point with BCs

guess initial critical point
1. use adaptive ODE

integrator to find
trajectory (RK45)

2. modify guess for critical
point depending on
deviation from desired
inflow boundary
conditions (2x2 Newton
method)

3. repeat

ρ0
p0

u0
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Quadratic Newton covergence
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NCP method for 1D steady flows

• it is possible to solve steady equations directly, if one
uses critical point and dynamical systems knowledge

• (Newton) iteration is still needed
• NCP Newton method solves a 2x2 nonlinear system
(adaptive integration of trajectories is explicit)
• much more efficient than solving a 1500x1500

nonlinear system, and more well-posed
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4. Extension to problems with shocks

• consider quasi-1D nozzle flow

⇒
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NCP method for nozzle flow with shock (Scott
Rostrup)

• subsonic in: 2 BC
• subsonic out: 1 BC

• NCP from critical point
to match 2 inflow BC

• Newton method to
match shock location to
outflow BC (using
Rankine-Hugoniot
relations, 1 free
parameter)
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Other application: black hole accretion
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Some thoughts

• positive at shock... (monotone, no oscillations)
• no limiter was required... (=no headache)
• as accurate as you want, with error control (adaptive

RK45 in smooth parts, Newton with small tolerance at
singularities)

• small Newton systems at singularities (one dimension
smaller than problem)

• if only we could do something like this in 2D, 3D,
time-dependent!

• ‘dream on...’ ;-)
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5. Extension to problems with heat conduction
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Dynamical system for Euler with heat
conduction
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Two types of critical points!

• sonic critical point (node):

• thermal critical point (saddle point):
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Transonic flow with heat conduction

• subsonic inflow:
3 BC (ρ, p, φ)

• supersonic
outflow: 0 BC

• 3-parameter
family of
thermal critical
points

• NCP matches
thermal critical
point with 3
inflow BC

ρ0
p0
φ0

u0
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6. Some extensions being considered
• viscosity:

 some preliminary investigation indicates that no
new critical points are introduced

 needs further investigation
• robustness:

 Newton method can ‘shoot’ to negative density or
pressure when approaching inner boundary

 often, desired solutions lie very close to ‘border’ of
feasible/physical parameter domain

 need a more robust nonlinear system solver (line
search, trust region, ...)

• if topology is not known in advance: level sets?
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7. Extension to 2D, 3D: bow shock flows
• assume isothermal flow:

ρ, u, v
• parametrize shock curve: r(θ)
• discretize: ri=r(θi)
• given ρ∞, u∞, v∞ and r(θ), use RH

relations to get
ρr, ur, vr

• solve PDE using (nonlinear) FD
method in smooth region on
right of shock, with BC ρr, ur, vr

• adjust ri until vn=0 at wall (1D
Newton procedure on F(ri)=0,
dense matrix)

• does not work since marching
FD is unstable in elliptic region!

hyp

hyp

ell

ρ∞
u∞
v∞

r(θ)

ρr
ur 
vr

vn=0
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bow shock flows

• solution: solve PDE using
(nonlinear) FD method in
smooth region on right of
shock, with BC ρr, vn,r, 
vpar,r=0, this gives vpar,r*

• adjust ri until vpar,r* = vpar,r at
shock (1D Newton
procedure on F(ri)=0,
dense matrix)

hyp

hyp

ell

ρ∞
u∞
v∞

r(θ)

ρr
vn,r 
vpar,r

vn=0

vpar,r*
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bow shock flows
• we keep from 1D:

 smaller-size Newton
problem (1D instead of 2D)

 we can use simple high-
order FD method for
smooth flow region

• worse than in 1D:
 dense Jacobian
 need to iterate to solve

nonlinear PDE in smooth
region

• this may work
• note similarity with shock

capturing
• efficiency?; robustness?

hyp

hyp

ell

ρ∞
u∞
v∞

r(θ)

ρr
vn,r 
vpar,r

vn=0

vpar,r*
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Extension to 2D, 3D: critical curves

hyp

ell
ρ0

vθ0 = 0

r(θ)

vn- c = 0

Ψ

sin Ψ = 1 / M

ρ0
no u0!
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Extension to 2D, 3D: critical curves
• assume isothermal flow:
 ρ, u, v
• simple case: vθ = 0
• critical curve

= transition from subsonic to supersonic
= transition from elliptic to hyperbolic
= limiting line for the characteristics
(envelope of characteristics, vn- c = 0)

• guess critical curve: r(θ)
• discretize: ri=r(θi)
• solve PDE using (nonlinear) FD method

in smooth region inside critical curve
• adjust ri until boundary conditions are

satisfied (1D Newton procedure on
F(ri)=0, dense matrix)

hyp

ell
ρ0

vθ0 = 0

r(θ)

vn- c = 0

Ψ

sin Ψ = 1 / M
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Extension to 2D, 3D: critical curves

hyp hyp

ell

critical curve r(θ) (limiting line)

ell-hyp transition

• assume isothermal flow: ρ, u, v
• general case: vθ ≠ 0
• critical curve

= limiting line for the characteristics
(envelope of characteristics, vn- c = 0)

• critical curve
≠ transition from subsonic to supersonic,
= transition from elliptic to hyperbolic
(vtot - c = 0)

• guess critical curve: r(θ), gives vn, vpar, guess
vn0

• solve PDE using (nonlinear) FD method in
smooth region inside critical curve (can
integrate through ell-hyp boundary), with BC
vn ρ0  vn0 , this gives vpar,0

∗ , vpar
∗

• adjust ri and vn0 until vpar,0= vpar,0
∗, vpar= vpar

∗

(1D Newton procedure on F(ri, vn0)=0, dense
matrix)

vpar,0

vn
ρ0  vn0

ρ0

vn, vpar

vpar
∗

vpar,0
∗
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Extension to 2D, 3D: critical curves

hyp hyp

ell

critical curve r(θ) (limiting line)

ell-hyp transition

• guess critical curve: r(θ), gives vn, vpar
• guess vn0

• discretize: ri=r(θi)
• solve PDE using (nonlinear) FD method

in smooth region inside critical curve
(can integrate through ell-hyp
boundary), with BC
vn ρ0  vn0 , this gives vpar,0

∗ , vpar
∗

• adjust ri and vn0 until vpar,0= vpar,0
∗, vpar=

vpar
∗ (1D Newton procedure on

F(ri, vn0)=0, dense matrix)

• open problems:
 how to derive vn, vpar from limiting

line condition
 how to continuate solution from

limiting line (dynamical system?)

vpar,0

vn
ρ0  vn0

ρ0

vn, vpar

vpar
∗

vpar,0
∗
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8. Conclusions

• solving steady Euler equations directly is superior to
time-marching methods for 1D transonic flows

• NCP uses
– adaptive integration outward from critical point
– dynamical system formulation
– 2x2 Newton method to match critical point with BC

• 1D: so what?
 can use inefficient methods (?)
 there are real 1D applications!
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1D applications: exoplanet and early earth
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Conclusions
• 2D, 3D, time-dependent: future work (‘dream on’ ;-) )

– integrate separately in different domains of the
flow, ‘outward’ from critical curves

– match conditions at critical curves with BCs using
Newton method

– issues:
– change of topology (level sets?)
– solve nonlinear PDEs in different regions

(cost?)
– smaller but dense Newton system
– conditions at limiting lines and continuation?
– time-dependent (do the same in space-time?)
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Conclusions
• 2D, 3D, time-dependent : future work (‘dream on’ ;-) )

– issues:
– change of topology (level sets?)
– solve nonlinear PDEs in different regions (cost?)
– smaller but dense Newton system
– conditions at limiting lines and continuation?
– time-dependent (do the same in space-time?)

– potential advantages are significant: problem more well-
posed

– fixed number of Newton steps, linear iterations
(scalable)

– better grid sequencing (nested iteration)
– can use simple high-order methods in smooth flow, no

limiters (at least not that headache)
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Questions?
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Transiting exoplanet


