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this presentation is about ...

• stationary compressible fluid flows
• flow solutions with transitions from subsonic to

supersonic regions separated by critical points and
shocks

• efficient numerical simulation methods for such flow
solutions

• PDEs (multi-D) and ODEs (1D)
• some elements of dynamical systems
• applications: solar wind, nozzle flows, black hole

accretion, exoplanets, early earth atmosphere, ...
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Overview

1. Stationary transonic fluid flow
2. Numerical simulation using time marching
3. Solving the stationary equations directly (ODE)

I. Isothermal case
II. Full Euler case
III. Shocks
IV. Heat conduction

4. An application
5. Extension of numerical method to 2D (PDE)
6. Some further potential applications
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1. Stationary transonic fluid flow

• example: solar wind
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Parker’s solar wind model

subsonic     ⇒|⇐     supersonic
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1D Compressible Euler equations (radial)

• time-dependent (nonlinear PDE system):
find s.t.

• hyperbolic system, wave speeds
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1D Compressible Euler equations (radial)

• stationary (nonlinear ODE system):
find    s.t.

subsonic     ⇒| ⇐     supersonic
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• find

s.t.

2D Compressible Euler equations
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• stationary flow:

• transition from supersonic
to subsonic flow at shock
and critical curve

2D Compressible Euler equations

ell

hyp

hyp

(supersonic)

(subsonic)

(supersonic)
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Applications

• solar wind

• extrasolar planets

• aerodynamics

• ...
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2. Numerical simulation using time marching

• march initial condition toward steady state in time

• often implicit time integration
• use, for example, finite volume method
• nonlinear: perform Newton linearization
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Numerical simulation using time marching

• advantages of this approach:
 use more ‘simple’ hyperbolic boundary conditions
 ‘physical’ initial guess for Newton
 it works!

• problems with this approach:
 it works, but (very) slow convergence to steady state
 does not scale well: computational work (Newton iterations,

...) grows very fast as a function of resolution (much faster
than O(n))

 robustness
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Use time marching method (explicit)

u - c = 0
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Why not solve the steady equations directly?

• too hard! (BCs, elliptic-hyperbolic, ...)
• let’s try anyway:

– maybe we can understand why it is
difficult

– maybe we can find a method that is
more efficient than implicit time
marching

• start in 1D (ODE)
ell

hyp

hyp

(supersonic)

(subsonic)

(supersonic)
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3. Solving the stationary equations directly (ODE)

• stationary Euler, radial:

• simplified system: isothermal Euler (T=constant)

find s.t.
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3.I Isothermal case

• 2 equations (ODEs), 2 unknowns (          )

• critical point:
 du/dr is undefined
 equilibrium point of

associated dynamical system
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Solving the ODE system numerically is hard...

• critical point:
2 equations, 2
unknowns, but only 1 BC
needed: ρ0 ! (along with
transonic solution
requirement)
(no u0 required!)

• solving ODE numerically
from the left does not
work...

• but... integrating outward
from the critical point
does work!!!

ρ0
no u0!
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Solution: integration outward from critical point

1. Write as dynamical system...

2. find critical point:
3. linearize about critical point, eigenvectors

4. integrate outward from critical point
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3.II Full Euler case (T not constant)

• 3 equations, 3 unknowns, but only 2 inflow BC (ρ0, p0)
(u0 results from simulation)

• problem: there are many possible critical points! (two-
parameter family)
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Full Euler dynamical system

⇒
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Newton Critical Point (NCP) method: use
Newton method to match critical point with BCs

nonlinear shooting method:
guess initial critical point
1. use adaptive ODE

integrator to find trajectory
(RK45)

2. modify guess for critical
point depending on
deviation from desired
inflow boundary conditions
(2x2 Newton method)

3. repeat

ρ0
p0

u0
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Quadratic Newton covergence
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NCP method for 1D steady flows

• it is possible to solve steady equations directly, if one
uses critical point and dynamical systems knowledge

• (Newton) iteration is still needed
• NCP Newton method solves a 2x2 nonlinear system
(adaptive integration of trajectories is explicit)
• much more efficient than solving a 1500x1500

nonlinear system, and more well-posed
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3.III Extension to problems with shocks

• consider quasi-1D nozzle flow

⇒
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at shock:

NCP method for nozzle flow with shock

• subsonic in: 2 BC
• subsonic out: 1 BC

• NCP from critical point
to match 2 inflow BC

• Newton method to
match shock location to
outflow BC (using
Rankine-Hugoniot
relations, 1 free
parameter)
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Other application: black hole accretion
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Some thoughts

• it is hard to find numerical approximations of discontinous
functions without oscillations (Gibbs ...)

• ingenious methods have been invented attempting to obtain
monotone solutions for nonlinear PDEs (using ‘limiters’ etc. ...)

• NCP gives monotone solution, as accurate as you want, with
error control (adaptive RK45 in smooth parts, Newton with small
tolerance at singularities)

• small Newton systems at singularities (one dimension smaller
than problem), low cost, good scaling

• this is 1D... would be nice if we could do something like this in
2D, 3D, time-dependent!
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3.IV Extension to problems with heat conduction
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Dynamical system for Euler with heat
conduction
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Two critical points of different type!

• sonic critical point (node):

• thermal critical point (saddle point):
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Transonic flow with heat conduction

• subsonic inflow:
3 BC (ρ, p, φ)

• supersonic
outflow: 0 BC

• 3-parameter
family of
thermal critical
points

• NCP matches
thermal critical
point with 3
inflow BC

ρ0
p0
φ0

u0
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4. An application: radial outflow from exoplanet

• http://exoplanet.eu
• 403 extrasolar planets known,

as of November 2009
• 42 multiple planet systems
• many exoplanets are gas

giants (“hot Jupiters”)
• many orbit very close to star

(~0.05 AU)
• hypothesis: strong irradiation

leads to supersonic hydrogen
escape
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example: HD209458 (Vidal-Madjar 2003)

• 0.67 Jupiter masses, 0.05 AU, transiting
• hydrogen atmosphere and escape observed
• question: what is the mass loss rate? long-time stability of

the planet? ⇒ solve Euler equations!
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results for 1D exoplanet simulations

• HD209458:
- lower boundary conditions ρ=7.10-9 g/cm-3 and

T=750K
- extent of atmosphere, outflow velocity, and mass

flux consistent with observations (Vidal-Madjar
2003)

- 1% mass loss in 12 billion years ⇒ HD209458b is
stable
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5. Extension of numerical method to 2D (PDE)
• assume isothermal flow:

ρ, u, v
• parametrize shock curve: r(θ)
• discretize: ri=r(θi)
• given ρ∞, u∞, v∞ and r(θ), use RH

relations to get
ρr, ur, vr

• solve PDE using (nonlinear) FD
method in smooth region on right of
shock, with BC ρr, ur, vr

• adjust ri until vn=0 at wall (1D
Newton procedure on F(ri)=0, dense
matrix)

• does not work since marching FD is
unstable in elliptic region!

ρ∞
u∞
v∞

r(θ)

ρr
ur 
vr

vn=0

hyp
hyp

ell
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bow shock flows

• solution: solve PDE using
(nonlinear) FD method in
smooth region on right of
shock, with BC ρr, vn,r, 
vpar,r=0, this gives vpar,r*

• adjust ri until vpar,r* = vpar,r at
shock (1D Newton
procedure on F(ri)=0,
dense matrix)

ρ∞
u∞
v∞

r(θ)

ρr
vn,r 
vpar,r

vn=0

vpar,r*

hyphyp
ell
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bow shock flows
• we keep from 1D:

 smaller-size Newton
problem (1D instead of 2D)

 we can use simple high-
order FD method for
smooth flow region

• worse than in 1D:
 dense Jacobian
 need to iterate to solve

nonlinear PDE in smooth
region

• this may work

• efficiency?; robustness?

ρ∞
u∞
v∞

r(θ)

ρr
vn,r 
vpar,r

vn=0

vpar,r*

hyp
hyp

ell
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Extension to 2D, 3D: critical curves
critical curve r(θ) (limiting line)

ell-hyp transition

• critical curves appear much harder to handle

• critical curve
= limiting line for the characteristics
(envelope of characteristics, vn- c = 0)

• critical curve
≠ transition from subsonic to supersonic,
= transition from elliptic to hyperbolic
(vtot - c = 0)

• guess critical curve: r(θ), but how to relate
flow quantities to limiting line position?

• open problems:
 how to derive vn, vpar from limiting line

condition
 how to continuate solution from limiting

line (dynamical system?)

vn
ρ0  vn0

vn, vpar

hyphyp

ell
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6. Some further potential applications

(1) “Solar Drivers of Space Weather: Contributions to
Forecasting” (project funded by CSA, 2009-2012)

• Lucian Ivan (postdoc)
• 3D simulation of solar wind, coronal mass ejections
• ultimate goal: “predict Space Weather”
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Solar wind simulation

• “cubed sphere” block-adaptive high-order MHD code
• for now, we use time marching for calculating 3D

solar wind
• collaboration with Prof. Groth, UofT Aerospace Eng.
• but ... perhaps 3D version of NCP can be developed
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Solar wind simulation

• “cubed sphere” block-adaptive high-order MHD code
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Solar wind simulation

• “cubed sphere” block-adaptive high-order MHD code
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Some further potential applications

(2) Volcano eruption
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Explosive volcanic eruptions
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thank you... questions?


