Introduction to numerical MHD modeling of the solar wind

Hans De Sterck

Department of Applied Mathematics University of Waterloo

5th Canadian Solar Workshop November 5-7, 2008

solar wind

- use continuum simulation model: magnetohydrodynamics (MHD)
- challenges: transition from subsonic to supersonic flow, shocks, scales, ...

overview

1. the MHD model for plasma dynamics

2. numerical MHD methods

3. numerical MHD modeling of the solar wind

1. the MHD model for plasma dynamics

ideal MHD:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) &= 0 \\ \rho \frac{d \vec{v}}{d t} &= -\nabla p + (\nabla \times \vec{B}) \times \vec{B} \\ \frac{\partial \vec{B}}{\partial t} &= \nabla \times (\vec{v} \times \vec{B}) \\ \frac{\partial \vec{B}}{\partial t} &= \nabla \times (\vec{v} \times \vec{B}) \\ \frac{\partial p}{\partial t} + (\vec{v} \cdot \nabla) p + \gamma p \nabla \cdot \vec{v} &= 0 \end{aligned}$$
-PDE system
-8 equations in
8 unknowns
-8 equations in
9 unknowns
-9 equations
-9 e

ideal MHD

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0$$

$$MHD=gasdynamics + electromagnetics$$

$$\rho \frac{d\vec{v}}{dt} = -\nabla p + (\nabla \times \vec{B}) \times \vec{B}$$

$$\vec{E} = -\vec{v} \times \vec{B}$$

$$\vec{J} = \nabla \times \vec{B}$$

$$\vec{J} = \nabla \times \vec{B}$$

$$\nabla \cdot \vec{B} = 0$$

$$\frac{\partial p}{\partial t} + (\vec{v} \cdot \nabla)p + \gamma p \nabla \cdot \vec{v} = 0$$

total energy:
$$e = \frac{p}{\gamma - 1} + \rho \frac{\vec{v} \cdot \vec{v}}{2} + \frac{\vec{B} \cdot \vec{B}}{2}$$

Waterloo

5th Canadian Solar Workshop hdesterck@uwaterloo.ca

 $\vec{E} = -\vec{v} \times \vec{B}$

 $\vec{J} = \nabla \times \vec{B}.$

 $\nabla \cdot \vec{B} = 0$

ideal MHD plasma

- one-fluid plasma (ionized gas)
- quasi-neutral plasma
- isotropic pressure
- non-relativistic
- neglects some (important) kinetic effects
- leads to tractable models (full 3D simulations of solarterrestrial system faster than real-time on parallel computers)

ideal MHD in conservation law form

$$\begin{split} \frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \vec{B} \\ e \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \mathbf{I} \left(p + \vec{B} \cdot \vec{B} / 2 \right) - \vec{B} \vec{B} \\ \vec{v} \vec{B} - \vec{B} \vec{v} \\ \left(e + p + \vec{B} \cdot \vec{B} / 2 \right) \vec{v} - \left(\vec{v} \cdot \vec{B} \right) \vec{B} \end{bmatrix} \\ &= - \begin{bmatrix} 0 \\ \vec{B} \\ \vec{v} \\ \vec{v} \cdot \vec{B} \end{bmatrix} \nabla \cdot \vec{B} \\ \frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \vec{\mathbf{F}}(\mathbf{U}) = \mathbf{S}^{Pow} \end{split}$$

MHD=hyperbolic conservation law

conservation law

$$egin{aligned} &rac{\partial u}{\partial t} +
abla \cdot \mathbf{f}(u) = 0 \ &rac{d}{dt} \left(\int_{\Omega} u(\mathbf{x},t) d\Omega
ight) + \int_{\Omega}
abla \cdot \mathbf{f}(u) d\Omega = 0 \ &rac{d}{dt} Q_{\Omega}(t) + \oint_{\partial\Omega} (\mathbf{f}(u) \cdot \mathbf{n}) d\ell = 0 \end{aligned}$$

conserved quantity:
$$Q_{\Omega}(t) = \int_{\Omega} u(\mathbf{x}, t) d\Omega$$

-

ideal MHD in conservation law form

$$\begin{split} \frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \vec{B} \\ e \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \mathsf{I} \left(p + \vec{B} \cdot \vec{B} / 2 \right) - \vec{B} \vec{B} \\ \vec{v} \vec{B} - \vec{B} \vec{v} \\ \left(e + p + \vec{B} \cdot \vec{B} / 2 \right) \vec{v} - \left(\vec{v} \cdot \vec{B} \right) \vec{B} \end{bmatrix} \\ &= - \begin{bmatrix} 0 \\ \vec{B} \\ \vec{v} \\ \vec{v} \cdot \vec{B} \end{bmatrix} \nabla \cdot \vec{B}, \\ \frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \vec{F}(\mathbf{U}) = \mathbf{S}^{Pow} \end{split}$$

conservation of mass, momentum, magnetic flux, energy

ideal MHD waves (hyperbolic PDEs)

linear advection equation in 1D:

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$$
, $u(x,t) = f(x-at)$

ideal MHD waves

1D linear advection:

 $\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \vec{\mathbf{F}}(\mathbf{U}) = \mathbf{S}^{Pow}$$
$$\frac{\partial \mathbf{U}}{\partial t} + \mathsf{A}(\mathbf{U}) \cdot \frac{\partial \mathbf{U}}{\partial x} = 0$$

1D MHD:

 $A = R \cdot \Lambda \cdot L$ $W = L \cdot U$

$$\frac{\partial \mathbf{W}}{\partial t} + \Lambda \cdot \frac{\partial \mathbf{W}}{\partial x} = 0$$

 $\frac{\partial w_i}{\partial t} + \lambda_i \frac{\partial w_i}{\partial x} = 0$

Waterloo

ideal MHD in conservation law form

$$\begin{split} \frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \vec{B} \\ e \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \mathsf{I} \left(p + \vec{B} \cdot \vec{B} / 2 \right) - \vec{B} \vec{B} \\ \vec{v} \vec{B} - \vec{B} \vec{v} \\ \left(e + p + \vec{B} \cdot \vec{B} / 2 \right) \vec{v} - \left(\vec{v} \cdot \vec{B} \right) \vec{B} \end{bmatrix} \\ &= - \begin{bmatrix} 0 \\ \vec{B} \\ \vec{v} \\ \vec{v} \cdot \vec{B} \end{bmatrix} \nabla \cdot \vec{B}, \\ \frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot \vec{F}(\mathbf{U}) = \mathbf{S}^{Pow} \end{split}$$

conservation of mass, momentum, magnetic flux, energy

gasdynamics waves

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ e \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \ln \\ (e+p)\vec{v} \end{bmatrix} = \nabla \cdot (\mathsf{D}) \qquad \frac{\partial \mathbf{U}}{\partial t} + \mathsf{A}(\mathbf{U}) \cdot \frac{\partial \mathbf{U}}{\partial x} = 0$$

wave speeds $\lambda = v, v, v, v+c, v-c \qquad \qquad c = \sqrt{\frac{\gamma p}{\rho}} \qquad \qquad M = \frac{||\vec{v}||}{c}$

MHD waves

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \vec{B} \\ e \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + \mathsf{I} \left(p + \vec{B} \cdot \vec{B} / 2 \right) - \vec{B} \vec{B} \\ \vec{v} \vec{B} - \vec{B} \vec{v} \\ \left(e + p + \vec{B} \cdot \vec{B} / 2 \right) \vec{v} - \left(\vec{v} \cdot \vec{B} \right) \vec{B} \end{bmatrix}$$
$$= - \begin{bmatrix} 0 \\ \vec{B} \\ \vec{v} \\ \vec{v} \cdot \vec{B} \end{bmatrix} \nabla \cdot \vec{B}.$$

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A}(\mathbf{U}) \cdot \frac{\partial \mathbf{U}}{\partial x} = 0 \qquad \mathbf{A} = \begin{bmatrix} v_x & \rho & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & v_x & 0 & 0 & 0 & B_y/\rho & B_z/\rho & 1/\rho \\ 0 & 0 & v_x & 0 & 0 & -B_x/\rho & 0 & 0 \\ 0 & 0 & 0 & v_x & 0 & 0 & -B_x/\rho & 0 \\ 0 & 0 & 0 & 0 & v_x & 0 & 0 & 0 \\ 0 & B_y & -B_x & 0 & 0 & v_x & 0 & 0 \\ 0 & B_z & 0 & -B_x & 0 & 0 & v_x & 0 \\ 0 & c^2\rho & 0 & 0 & 0 & 0 & 0 & v_x \end{bmatrix}$$

MHD waves

$$\frac{\partial \mathbf{U}}{\partial t} + \mathsf{A}(\mathbf{U}) \cdot \frac{\partial \mathbf{U}}{\partial x} = 0$$

 $\lambda_{1,2} = v_x \pm c_{fx}, \quad \lambda_{3,4} = v_x \pm c_{Ax}, \quad \lambda_{5,6} = v_x \pm c_{sx}, \quad \lambda_{7,8} = v_x$

$$c_{fx}^2 = \frac{1}{2} \left(\frac{\gamma p + B^2}{\rho} + \sqrt{\left(\frac{\gamma p + B^2}{\rho}\right)^2 - 4\frac{\gamma p B_x^2}{\rho^2}} \right)$$
$$c_{Ax}^2 = \frac{B_x^2}{\rho}$$
$$c_{sx}^2 = \frac{1}{2} \left(\frac{\gamma p + B^2}{\rho} - \sqrt{\left(\frac{\gamma p + B^2}{\rho}\right)^2 - 4\frac{\gamma p B_x^2}{\rho^2}} \right)$$

fast, Alfven, slow:

$$c_{fx} \ge c_{Ax} \ge c_{sx}$$

Waterloo

(anisotropic waves)

wave steepening (nonlinear hyperbolic PDE)

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0 \qquad \qquad \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

simple example: Burgers' equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

"u is constant on characteristic curve"

characteristic curve:

$$\frac{dx(t)}{dt} = u(x(t), t)$$

wave steepening: shock waves are formed

shock speed - Rankine Hugoniot relations

1D conservation system:

$$\frac{\partial \mathbf{U}(x,t)}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0$$

traveling wave solution:

$$\mathbf{U}(x,t)=\mathbf{U}(y=x\!-\!st)$$

$$-s\frac{\partial \mathbf{U}(y)}{\partial y} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial y} = 0$$

$$-s\mathbf{U} + \mathbf{F}(\mathbf{U}) = \mathbf{F}_{const}$$

RH relation for shock wave: $\mathbf{F}(\mathbf{U}_r) - \mathbf{F}(\mathbf{U}_l) = s (\mathbf{U}_r - \mathbf{U}_l)$

MHD shocks

$$\mathbf{F}(\mathbf{U}_r) - \mathbf{F}(\mathbf{U}_l) = s \ (\mathbf{U}_r - \mathbf{U}_l)$$

s=0 in the rest frame of the shock wave

$$F(\begin{bmatrix} \rho \\ \rho v_x \\ \rho v_y \\ \rho v_z \\ B_x \\ B_y \\ B_z \\ e \end{bmatrix}) = \begin{bmatrix} \rho v_x \\ \rho v_x^2 + p + B^2/2 - B_x^2 \\ \rho v_x v_y - B_x B_y \\ \rho v_x v_z - B_x B_z \\ 0 \\ B_y v_x - B_x v_y \\ B_z v_x - B_x v_z \\ (e + p + B^2/2)v_x - B_x (\vec{v} \cdot \vec{B}) \end{bmatrix}$$

MHD shocks

3 types of MHD shocks

bow shocks in the solar wind

overview

1. the MHD model for plasma dynamics

2. numerical MHD methods

3. numerical MHD modeling of the solar wind

2. numerical MHD methods

conservative form

with numerical flux function

$$f_{i+1/2}^{n*} = \frac{a \, u_{i+1}^n + a \, u_i^n}{2} - \frac{1}{2} |a| (u_{i+1}^n - u_i^n)$$

conservative form: exact discrete conservation

gives correct shock speeds

nonlinear conservation law

nonlinear flux function f(u):

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

conservative upwind method

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{f_{i+1/2}^{n*} - f_{i-1/2}^{n*}}{\Delta x} = 0$$

with numerical flux function

$$f_{i+1/2}^{n*} = \frac{f(u_{i+1}^n) + f(u_i^n)}{2} - \frac{1}{2} |f_{i+1/2}'^{n*}| (u_{i+1}^n - u_i^n)$$

Waterloo

טווי כמוומטומוי סטומי איטואshop hdesterck@uwaterloo.ca

nonlinear conservative system

nonlinear system:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} = 0$$

 $\sim - \langle - - \rangle$

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + \frac{f_{i+1/2}^{n*} - f_{i-1/2}^{n*}}{\Delta x} = 0$$

with

$$\mathbf{F}_{i+1/2}^{n*} = \frac{\mathbf{F}(\mathbf{U}_{i+1}^n) + \mathbf{F}(\mathbf{U}_i^n)}{2} - \frac{1}{2} \max_k(|\lambda_{i+1/2}^{(k)}|) (\mathbf{U}_{i+1}^n - \mathbf{U}_i^n)$$

system in 2D: upwind finite volume method

$$rac{\partial \mathbf{U}}{\partial t} +
abla \cdot \vec{\mathbf{F}}(\mathbf{U}) = \mathbf{S}^{Pow}$$
 $rac{d}{dt} \left(\int_{\Omega} u(\mathbf{x}, t) d\Omega \right) + \int_{\Omega}
abla \cdot \mathbf{f}(u) d\Omega = 0.$

use integrated form over finite volume cell:

$$\frac{\partial \overline{\mathbf{U}}_{i,j}}{\partial t} + 1/\Omega_{i,j} \sum_{k=1}^{4} \vec{\mathbf{F}}_{k}^{*} \cdot \vec{n}_{k} \,\Delta l_{k} = \overline{\mathbf{S}}_{i,j}^{Pow}$$
$$\overline{\mathbf{U}}_{i,j} = \left(\int \int \mathbf{U}(x, y, t) \, dx \, dy \right) / \Omega_{i,j}$$

5th Canadian Solar Workshop hdesterck@uwaterloo.ca

(use upwind numerical fluxes F*)

parallel implementation

-divide work over n processors -communicate ghost cells between neighbour processors

parallel implementation: scaling

grids for outflow from spherical objects...

structured, Cartesian staircase effect

structured, spherical singularities at 2 poles

grids for outflow from spherical objects...

structured, 'cubed sphere' singularities at 8 'poles'

unstructured! triangles, uniform

grids for outflow from spherical objects...

unstructured surface grids (refine icosahedral grids)

overview

1. the MHD model for plasma dynamics

2. numerical MHD methods

3. numerical MHD modeling of the solar wind

3. numerical MHD modeling of the solar wind simple gasdynamic model of the solar wind:

radial solar wind models (1D)

(includes Parker solar wind model)

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho r^2 \\ \rho u r^2 \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + \rho r^2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ -\rho GM + 2\rho r \end{bmatrix}$$
$$\frac{U^{n+1} - U^n}{\Delta t} + R(U^{n+1}) = S(U^{n+1})$$

Parker's solar wind

- critical point: **u** = **c**
 - wave speed u-c = 0
 - very slow convergence for time-marching methods
 - singular: 0/0 in ODE

 1 boundary condition for 2 ODEs specifies unique (transonic) solution

use time marching method (explicit)

include heat source and heat conduction

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho r^{2} \\ \rho u r^{2} \\ \left(\frac{p}{\gamma-1} + \frac{\rho u^{2}}{2}\right) r^{2} \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} \rho u r^{2} \\ \rho u^{2} r^{2} + p r^{2} \\ \left(\frac{\gamma p}{\gamma-1} + \frac{\rho u^{2}}{2}\right) u r^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2pr \\ -\rho GM u + q_{heat} r^{2} + \frac{\partial}{\partial r} \left(\kappa r^{2} \frac{\partial T}{\partial r}\right) \end{bmatrix}$$

solar wind in 2D and 3D

- use time-marching for solar wind
- alternative: use implicit time integration for solar wind
- most existing codes (BATS-R-US, VAC, SCAMHD, ...) are block-structured (rectangular cells in a regular structure, using Cartesian or spherical coordinates)
- our proposed approach: use 'unstructured grids'

Mikic et al., Phys. Plasmas 1999

$$\nabla \times \mathbf{B} = \frac{4\,\pi}{c} \mathbf{J},\tag{1}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t},\tag{2}$$

$$\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} = \eta \mathbf{J},\tag{3}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0, \qquad (4)$$

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = \frac{1}{c} \mathbf{J} \times \mathbf{B} - \nabla p - \nabla p_w + \rho \mathbf{g} + \nabla \cdot (\nu \rho \nabla \mathbf{v}),$$
(5)

$$\frac{\partial p}{\partial t} + \nabla \cdot (p\mathbf{v}) = (\gamma - 1)(-p\nabla \cdot \mathbf{v} + S), \qquad (6)$$

Waterloo

Mikic et al., Phys. Plasmas 1999

Mikic et al., Phys. Plasmas 1999

Groth et al., JGR 2000

$$\frac{\partial \tilde{\rho}}{\partial \tilde{t}} + (\tilde{\mathbf{u}} \cdot \tilde{\nabla}) \tilde{\rho} + \tilde{\rho} (\tilde{\nabla} \cdot \tilde{\mathbf{u}}) = 0$$

$$\frac{\partial \tilde{\mathbf{u}}}{\partial \tilde{t}} + (\tilde{\mathbf{u}} \cdot \tilde{\nabla}) \tilde{\mathbf{u}} + \frac{1}{\tilde{\rho}} \tilde{\nabla} \tilde{p} = \frac{1}{\tilde{\rho}} (\tilde{\mathbf{j}} \times \tilde{\mathbf{B}})$$

$$+ \tilde{\mathbf{g}} - \tilde{\mathbf{\Omega}} \times (\tilde{\mathbf{\Omega}} \times \tilde{\mathbf{r}}) - 2 \tilde{\mathbf{\Omega}} \times \tilde{\mathbf{u}},$$

$$rac{\partial ilde{p}}{\partial ilde{t}} \;\; + \;\; \left(ilde{\mathbf{u}} \cdot ilde{
abla}
ight) ilde{p} + \gamma ilde{p} \left(ilde{
abla} \cdot ilde{\mathbf{u}}
ight) = \left(\gamma - 1
ight) ilde{Q} \,,$$

$$\frac{\partial \tilde{\mathbf{B}}}{\partial \tilde{t}} - \tilde{\nabla} \times \tilde{\mathbf{u}} \times \tilde{\mathbf{B}} = 0,$$

dian Solar Workshop @uwaterloo.ca

Groth et al., JGR 2000

other examples of solar wind simulations

• 3D solar wind simulation based on MDI (SOHO) (Carla Jacobs, Stefaan Poedts, using AMRVAC)

current and planned activity

- use MDI (SOHO) magnetogram input for reconstructing photospheric radial magnetic field of the whole solar surface (Schrijver & DeRosa)
- use potential field with source surface to reconstruct 3D magnetic field (PFSS)
- relax potential field within MHD solar wind model (polytropic wind model)
- implicit time integration, adaptivity are essential
- unstructured grids are suitable for this problem
- future: use new satellite observations (Hinode, SDO)

CME propagation in solar wind

- 3D simulation of flux-rope CME (Carla Jacobs, Stefaan Poedts, using AMRVAC)
- future: use STEREO data

comparison with ACE at 1AU

overview

1. the MHD model for plasma dynamics

2. numerical MHD methods

3. numerical MHD modeling of the solar wind and CMEs

questions?

