Google's PageRank, multilevel solvers, and 'Gene's ranking'

Hans De Sterck
Department of Applied Mathematics
University of Waterloo in commemoration of Gene Golub, 29 Feb 2008

ranking pages in web search...

- Google search:
- keyword-based query results in list of web pages
- pages are listed in order of 'importance': PageRank
- how does PageRank work?
- Markov chains

University of
Waterloo

Web Books Results $1-10$ of about $\mathbf{7 , 9 0 0 , 0 0 0}$ for numerical analysis [definition]. ($\mathbf{0 . 1 6}$ seconds)

Numerical analysis - Wikipedia, the free

encyclopedia

Numerical analysis is the study of algorithms for the problems of continuous mathematics (as distinguished from discrete mathematics). ...
en.wikipedia.org/wiki/Numerical_analysis - 73k -
Cached - Similar pages

Sponsored Links

Numerical Math Libraries
Least Squares, FFT, Cubic Splines Signal Processing, Kalman Filters www.mathfunctions.com

Category:Numerical analysis - Wikipedia, the free encyclopedia

Numerical analysis is that branch of applied mathematics which studies the methods and algorithms to find (approximate) numerical solutions to various ...
en.wikipedia.org/wiki/Category:Numerical_analysis - 39k - Cached - Similar pages

[PDF] Numerical Analysis

File Format: PDF/Adobe Acrobat - View as HTML
Numerical analysis is the study of algorithms for solving the problems of contin- ...
Numerical analysis is built on a strong foundation: the mathematical ...
web.comlab.ox.ac.uk/oucl/work/nick.trefethen/NAessay.pdf - Similar pages
Numerical Analysis, Numerical Methods, Numerical Method
Numerical Analysis,Numerical Methods,Numerical Method,Tutorials,
Tutorial,Matlab,Mathematica,Computer,Lab,Labs,Project,Projects,Module,Modules,Book. math.fullerton.edu/mathews/numerical.html - 7 k - Cached - Similar pages

ranking pages in web search...

- how does PageRank work?
- "a page has high rank if the sum of the ranks of its backlinks is high"
('The PageRank Citation Ranking:
Bringing Order to the Web' (1998), Page, Brin, Motwani, Winograd)

ranking pages in web search...

- "a page has high rank if the sum of the ranks of its backlinks is high"
('The PageRank Citation Ranking: Bringing Order to the Web’ (1998), Page, Brin, Motwani, Winograd)

$$
B \mathbf{x}=\mathrm{x}
$$

- PageRank = stationary vector of Markov chain
- 'random surfer', random walk on graph

$$
B=\left[\begin{array}{ccccc}
0 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 & 1 \\
0 & 1 / 3 & 1 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0
\end{array}\right]
$$

University of
Waterloo

stationary vector of Markov chain

$$
\begin{aligned}
& B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1 \quad B=\left[\begin{array}{ccccc}
0 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 & 1 \\
0 & 1 / 3 & 1 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
b_{i, j} \geq 0, \quad \sum_{i} b_{i, j}=1 \forall j
$$

- if B is irreducible (every state can be reached from every other state in the directed graph)

$$
\Longrightarrow
$$

$\exists!\mathrm{x}: B \mathrm{x}=\mathrm{x} \quad$ and $\quad\|\mathrm{x}\|_{1}=1, \quad x_{i}>0 \forall i$ (no probability sinks!)

Markov chains

$$
B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1
$$

- largest eigenvalue of $B: \quad \lambda_{1}=1$
- power method: $\mathbf{x}_{i+1}=B \mathbf{x}_{i}$
- convergence factor: $\left|\lambda_{2}\right|$
- convergence is very slow when

$$
\left|\lambda_{2}\right| \approx 1
$$

(slow mixing)

Markov chains

$$
B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1
$$

- largest eigenvalue of $B: \lambda_{1}=1$
- power method: $\mathrm{x}_{i+1}=B \mathrm{x}_{i}$
- convergence factor: $\left|\lambda_{2}\right|$
- convergence is very slow when

$$
\left|\lambda_{2}\right| \approx 1
$$

(slow mixing)

web matrix regularization

- PageRank (used by Google):

convergence of power method for PageRank

- convergence factor $\left|\lambda_{2}\right|$ independent of problem size
- convergence is fast, linear in the number of web pages (15+ billion!)
- model is accurate (hence Google's \$150B market cap...)

Gene Golub and PageRank

- 'Extrapolation Methods for Accelerating PageRank Computations' (2003), Kamvar, Haveliwala, Manning, Golub
- quadratic extrapolation: subtract estimates of \vec{u}_{2} and \vec{u}_{3} from current estimate

$$
\vec{x}^{(k)}=\vec{u}_{1}+\alpha_{2} \vec{u}_{2}+\alpha_{3} \vec{u}_{3}
$$

Gene Golub and PageRank

- 'Quadratic extrapolation'
- Google liked the idea!
- all authors received Google stock options
- >\$500,000 after IPO
- Gene Golub donated his part to 'Paul and Cindy Saylor Chair' at UIUC, 2005 (his alma mater)

- Google's PageRank is also a bit 'Gene’s ranking'

but how about slowly mixing Markov chains?

- slow mixing: $\left|\lambda_{2}\right| \approx 1$
- one-level methods (Power, Jacobi, Gauss Seidel, ...) are way too slow
- need multi-level methods! (multigrid)
- applications: Google $\alpha \approx 0$, many other applications

but how about slowly mixing Markov chains?

- my own research with Tom Manteuffel, Steve McCormick, John Ruge, Quoc Nguyen, Jamie Pearson
- we want numerical methods that have computational complexity linear in the number of unknowns ($\mathrm{O}(\mathrm{n})$) (do not appear to exist yet for slowly mixing Markov chains!)
- use algebraic multigrid methods
- slow mixing: $\left|\lambda_{2}\right| \approx 1$

aggregation for Markov chains

- form three coarse, aggregated states

$$
\begin{aligned}
& B \mathbf{x}=\mathrm{x} \\
& B=\left[\begin{array}{ccccc}
0 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 & 1 \\
0 & 1 / 3 & 1 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& B_{c} \mathbf{x}_{c}=\mathbf{x}_{c} \\
& B_{c}=\left[\begin{array}{ccc}
1 / 4 & 3 / 5 & 0 \\
5 / 8 & 2 / 5 & 1 \\
1 / 8 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
b_{c, I J}=\frac{\sum_{j \in J} x_{j}\left(\sum_{i \in I} b_{i j}\right)}{\sum_{j \in J} x_{j}}
$$

aggregation in matrix form

$$
\begin{aligned}
B_{c} \mathbf{x}_{c} & =\mathbf{x}_{c} \\
b_{c, I J} & =\frac{\sum_{j \in J} x_{j}\left(\sum_{i \in I} b_{i j}\right)}{\sum_{j \in J} x_{j}}
\end{aligned}
$$

$B_{c}=Q^{T} B \operatorname{diag}(\mathrm{x}) Q \operatorname{diag}\left(Q^{T} \mathbf{x}\right)^{-1}$

$$
\begin{aligned}
& x_{c, I}=\sum_{i \in I} x_{i} \\
& \mathbf{x}_{c}=Q^{T} \mathbf{x}
\end{aligned}
$$

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(Krieger, Horton, ... 1990s)

- high-frequency error is removed by relaxation (weighted Jacobi, GaussSeidel, ...)
- low-frequency-error needs to be removed by coarse-grid correction

University of
Waterloo

multigrid hierarchy: V-cycle

- multigrid V-cycle:
- relax (=smooth) on successively coarser grids
- transfer error using restriction (P^{\top}) and interpolation (P)
- $\mathrm{W}=\mathrm{O}(\mathrm{n})$

choosing aggregates based on strength (SIAM J.

Scientific Computing, 2008)

- error equation: $(I-B) \operatorname{diag}\left(\mathrm{x}_{i}\right) \mathrm{e}_{i}=0$
- use strength of connection in $(I-B) \operatorname{diag}\left(\mathrm{x}_{i}\right)$
- define row-based strength (determine all states that strongly influence a row's state)
- state that has largest value in \mathbf{x}_{i} is seed point for new aggregate, and all unassigned states influenced by it join its aggregate
- repeat
(similar to AMG: Brandt, McCormick and Ruge, 1983)

we need 'smoothed aggregation'...

(Vanek, Mandel, and Brezina, Computing, 1996)
after relaxation:

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

coarse grid correction with Q :

$$
Q_{s}=\left[\begin{array}{ccc}
\times & 0 & 0 \\
\times & \times & 0 \\
\times & \times & 0 \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right]
$$

non-smoothed aggregation

- non-smoothed method:

$$
\begin{aligned}
& (I-B) x=0 \quad A x=0 \\
& R=Q^{T} \quad P=\operatorname{diag}\left(\mathbf{x}_{i}\right) Q \\
& A_{c}=R A P \operatorname{diag}\left(Q^{T} \mathbf{x}_{i}\right)^{-1} \quad A_{c}=I_{c}-B_{c}
\end{aligned}
$$

A_{c} is an irreducible singular M-matrix

$$
A=\left[\begin{array}{lllll}
+ & - & - & - & - \\
- & + & - & - & - \\
- & - & + & - & - \\
- & - & - & + & - \\
- & - & - & - & +
\end{array}\right]
$$

smoothed aggregation

- non-smoothed method:

$$
A_{c}=R A P \operatorname{diag}\left(Q^{T} \mathbf{x}_{i}\right)^{-1} \quad A_{c}=I_{c}-B_{c}
$$

- smooth P and R with weighted Jacobi

$$
\begin{aligned}
& A=D-L-U \\
& P_{s}=(1-w) P+w D^{-1}(L+U) P \\
& R_{s}=P_{s}^{T}\left(\operatorname{diag}\left(1_{c}^{T} P_{s}^{T}\right)\right)^{-1} \\
& A_{c}=R_{s} A P_{s}\left(\operatorname{diag}\left(P_{s}^{T} 1\right)\right)^{-1}=\left(R_{s} D P_{s}\right. \\
& \left.-R_{s}(L+U) P_{s}\right)\left(\operatorname{diag}\left(P_{s}^{T} 1\right)\right)^{-1} \neq I_{c}-B_{c}
\end{aligned}
$$

problem: A_{c} is not an irreducible singular M-matrix!...

lumped smoothed aggregation

- one solution: partially lump the 'mass matrix'

$$
A_{c}=\operatorname{Lump}\left(R_{s} D P_{s}\right)-R_{s}(L+U) P_{s}
$$

A_{c} is an irreducible singular M-matrix! (off-diagonal elements remain positive)

- theorem A_{c} is a singular M-matrix on all coarse levels, and thus allows for a unique strictly positive solution \mathbf{x}_{c} on all levels
- theorem Exact solution \mathbf{x} is a fixed point of the multigrid cycle
(SIAM J. Scientific Computing, submitted)

performance of smoothed aggregation

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.64	34	1.32	2
81	0.88	92	1.43	3
243	0.95	>100	1.47	4
729	0.97	>100	1.49	5
TABLE 5.1				

Uniform chain. G-AM with V-cycles and size-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
27	0.24	12	1.32	2
81	0.26	12	1.43	3
243	0.26	12	1.47	4
729	0.26	12	1.49	5
2187	0.26	12	1.50	6
6561	0.26	12	1.50	7
TABLE 5.2				

Uniform chain. G-SAM with V-cycles and size-three aggregates. (Smoothing with lumping.)

performance of smoothed aggregation

Fig. 5.6. Tandem queueing network.

Fig. 5.7. Graph for tandem queueing network.

performance of smoothed aggregation

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
121	0.90	>100	1.20	3
256	0.91	>100	1.19	3
676	0.90	>100	1.18	3
1681	0.95	>100	1.19	4
TABLE 5.13				

Tandem queueing network. G-AM with V-cycles and three-by-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
121	0.51	22	1.26	3	0.32	15	1.60	3
256	0.50	22	1.28	3	0.34	15	1.60	3
676	0.51	23	1.26	3	0.33	15	1.56	3
1681	0.55	28	1.27	4	0.33	15	1.61	4
3721	0.60	30	1.28	4	0.33	15	1.63	4
TABLE 5.14								

Tandem queueing network. G-SAM with V-cycles (left) and W-cycles (right), using three-bythree aggregates. (Smoothing with lumping.)

conclusions

- multilevel method applied to Google's PageRank with $\alpha=0.15$ is not faster than power method (SIAM J. Scientific Computing, 2008)
- smoothed multilevel method applied to slowly mixing Markov chains is much faster than power method (in fact, close to optimal O(n) complexity!) (SIAM J. Scientific Computing, submitted)

conclusions

- multilevel method applied to Google's PageRank with $\alpha=0.15$ is not faster than power method (SIAM J. Scientific Computing, 2008)
- smoothed multilevel method applied to slowly mixing Markov chains is much faster than power method (in fact, close to optimal O(n) complexity!) (SIAM J. Scientific Computing, submitted)
- 'Gene’s ranking' (PageRank and power method with quadratic extrapolation, $\alpha=0.15$) is hard to beat
- Gene is ranking pretty high up there ;-)

PageRank web matrix regularization as a function of coupling factor α

(a) PageRank

