Smoothed Aggregation Multigrid for Slowly Mixing Markov Chains

Hans De Sterck

Department of Applied Mathematics, University of Waterloo

Steve McCormick, John Ruge, Tom Manteuffel, Jamie Pearson

Tuesday seminar, 4 March 2008

1. Simple Markov Chain Example

• 5 states

 each outgoing edge same probability (random walk on directed graph)

Simple Markov Chain Example

 start in one state with probability 1: what is the stationary probability vector after ∞ number of steps?

$$\mathbf{x}_{i+1} = B \, \mathbf{x}_i$$

• stationary probability:

$$B\mathbf{x} = \mathbf{x} \qquad \|\mathbf{x}\|_1 = 1$$

 $\mathbf{x}^T = [2/19 \,\, 6/19 \,\, 4/19 \,\, 6/19 \,\, 1/19]$

2. Problem Statement

 $B\mathbf{x} = \mathbf{x} \qquad \|\mathbf{x}\|_1 = 1 \qquad x_i \ge 0 \,\forall i$

• *B* is column-stochastic

 $b_{i,j} \ge 0, \qquad \sum_i b_{i,j} = 1 \,\,\forall j$

• *B* is irreducible (every state can be reached from every other state in the directed graph)

$$\Rightarrow \\ \exists ! \mathbf{x} : B \mathbf{x} = \mathbf{x} \qquad \|\mathbf{x}\|_1 = 1 \qquad x_i > 0 \ \forall i$$

(no probability sinks!)

3. Power Method

 $B\mathbf{x} = \mathbf{x}$ or $(I - B)\mathbf{x} = 0$ or $A\mathbf{x} = 0$

- largest eigenvalue of *B*: $\lambda_1 = 1$
- power method: $\mathbf{x}_{i+1} = B\mathbf{x}_i$

– convergence factor: $|\lambda_2|$

- convergence is very slow when $|\lambda_2| \approx 1$ (slowly mixing Markov chain) (JAC, GS also slow)

4. Aggregation for Markov Chains

• form three coarse, aggregated states

$$x_{c,I} = \sum_{i \in I} x_i$$

$$\mathbf{x}_c^T = [8/19 \ 10/19 \ 1/19]$$

 $B_c \mathbf{x}_c = \mathbf{x}_c$

 $1/2^{}$

1

(Simon and Ando, 1961)

1

1/3

2

2

1/3

1/3

3

1/2

5

3

$$B_c = Q^T B \operatorname{diag}(\mathbf{x}) Q \operatorname{diag}(Q^T \mathbf{x})^{-1}$$

$$\begin{aligned} x_{c,I} &= \sum_{i \in I} x_i \\ \mathbf{x}_c &= Q^T \, \mathbf{x} \end{aligned}$$

(Krieger, Horton, ... 1990s)

Tuesday seminar, 4 March 2008 hdesterck@uwaterloo.ca

 $Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

5. Error Equation

 multiplicative correction: error equation, coarse level error equation, and coarse grid correction

> $\mathbf{x} = diag(\mathbf{x}_i) \mathbf{e}_i$ $A diag(\mathbf{x}_i) \mathbf{e}_i = 0$

$$Q^T A \operatorname{diag}(\mathbf{x}_i) Q \mathbf{e}_c = \mathbf{0}$$

 $A_c \mathbf{e}_c = \mathbf{0}$

$$R = Q^T \qquad P = \operatorname{diag}(\mathbf{x}_i) Q$$
$$A_c = R A P$$

Error Equation

• coarse grid correction

 $\mathbf{x} = \operatorname{diag}(\mathbf{x}_i) \, \mathbf{e}_i$ $A \operatorname{diag}(\mathbf{x}_i) \, \mathbf{e}_i = 0$

 $A_c = RAP$

$$Q^T A \operatorname{diag}(\mathbf{x}_i) Q \mathbf{e}_c = \mathbf{0}$$

 $A_c \mathbf{e}_c = \mathbf{0}$

 $R = Q^T$ $P = \operatorname{diag}(\mathbf{x}_i) Q$

$$\mathbf{x}_c = \operatorname{diag}(P^T \mathbf{1}) \mathbf{e}_c$$
$$A_c (\operatorname{diag}(P^T \mathbf{1}))^{-1} \mathbf{x}_c = \mathbf{0}$$

$$\begin{aligned} \mathbf{x}_{i+1} &= P \left(\operatorname{diag}(P^T 1) \right)^{-1} \mathbf{x}_c \\ \mathbf{x}_{i+1} &= P \operatorname{e}_c \end{aligned}$$

Error Equation

• important properties of A_c :

$$\mathbf{x} = \operatorname{diag}(\mathbf{x}_{i}) \mathbf{e}_{i}$$

$$A \operatorname{diag}(\mathbf{x}_{i}) \mathbf{e}_{i} = 0$$

$$(1) \mathbf{1}_{c}^{T} A_{c} = 0 \quad \forall \mathbf{x}_{i}$$

$$(\operatorname{since} \mathbf{1}_{c}^{T} R = \mathbf{1}^{T} \text{ and } \mathbf{1}^{T} A = 0)$$

$$A_{c} \mathbf{e}_{c} = 0$$

$$(2) A_{c} \mathbf{1}_{c} = 0 \quad \text{for } \mathbf{x}_{i} = \mathbf{x}$$

$$R = Q^{T} \quad P = \operatorname{diag}(\mathbf{x}_{i}) Q$$

6. Multilevel Aggregation Algorithm

Algorithm: Multilevel Adaptive Aggregation method (V-cycle)

$$\mathbf{x} = \mathsf{AM}_{-}\mathsf{V}(A, \mathbf{x}, \nu_{1}, \nu_{2})$$
begin

$$\mathbf{x} \leftarrow \mathsf{Relax}(A, \mathbf{x}) \quad \nu_{1} \text{ times}$$
build *Q* based on **x** and *A* (*Q* is rebuilt every level and cycle)
$$R = Q^{T} \text{ and } P = \mathsf{diag}(\mathbf{x}) Q$$

$$A_{c} = R A P$$

$$\mathbf{x}_{c} = \mathsf{AM}_{-}\mathsf{V}(A_{c} \mathsf{diag}(P^{T} \mathbf{1})^{-1}, P^{T} \mathbf{1}, \nu_{1}, \nu_{2}) \quad (\text{coarse-level solve})$$

$$\mathbf{x} = P (\mathsf{diag}(P^{T} \mathbf{1}))^{-1} \mathbf{x}_{c} \quad (\text{coarse-level correction})$$

$$\mathbf{x} \leftarrow \mathsf{Relax}(A, \mathbf{x}) \quad \nu_{2} \text{ times}$$
end

$$(\mathsf{Krieger, Horton 1994, but no good way to build Q)$$
Waterloo

7. Well-posedness: Singular M-matrices

• singular M-matrix:

 $A \in \mathbb{R}^{n \times n}$ is a singular M-matrix \Leftrightarrow

 $A = \begin{vmatrix} + & - & - & - & - \\ - & + & - & - & - \\ - & - & + & - & - \\ - & - & - & + & - \\ - & - & - & - & + \end{vmatrix}$

 $\exists B \in \mathbb{R}^{n \times n}, \ b_{ij} \ge 0 \ \forall i, j : A = \rho(B) I - B$

• our *A*=*I*-*B* is a singular M-matrix on all levels

(1) Irreducible singular M-matrices have a unique solution to the problem $A \mathbf{x} = 0$, up to scaling. All components of \mathbf{x} have strictly the same sign (i.e., scaling can be chosen s.t. $x_i > 0 \forall i$). (This follows directly from the Perron-Frobenius theorem.)

(3) Irreducible singular M-matrices have nonpositive off-diagonal elements, and strictly positive diagonal elements (n > 1).

(4) If A has a strictly positive element in its left or right nullspace and the off-diagonal elements of A are nonpositive, then A is a singular M-matrix (see also [21]).

Well-posedness: Singular M-matrices

THEOREM 3.1 (Singular M-matrix property of AM coarse-level operators). A_c is an irreducible singular M-matrix on all coarse levels, and thus has a unique right kernel vector \mathbf{e}_c with strictly positive components (up to scaling) on all levels.

THEOREM 3.2 (Fixed-point property of AM V-cycle). Exact solution \mathbf{x} is a fixed point of the AM V-cycle.

(2)
$$A_c \mathbf{1}_c = 0$$
 for $\mathbf{x}_i = \mathbf{x}$
 $A_c \mathbf{e}_c = 0$
 $\mathbf{x}_{i+1} = P \mathbf{e}_c$

8. We Need 'Smoothed Aggregation'...

(Vanek, Mandel, and Brezina, Computing, 1996)

Smoothed Aggregation

A = D - (L + U)

• smooth the columns of *P* with weighted Jacobi:

 $P_s = (1 - w) \operatorname{diag}(\mathbf{x}_i) Q + w D^{-1} (L + U) \operatorname{diag}(\mathbf{x}_i) Q$

• take $R=P^T$, and normalize its column sums to 1 $R_s = P_s^T (\operatorname{diag}(\mathbf{1}_c^T P_s^T))^{-1}$

Smoothed Aggregation

smoothed coarse level operator:

$$\begin{aligned} A_{cs} &= R_s \left(D - (L+U) \right) P_s & \mathbf{1}_c^T A_{cs} = 0 \quad \forall \mathbf{x}_i, \\ &= R_s D P_s - R_s \left(L+U \right) P_s & A_{cs} \mathbf{1}_c = 0 \quad \text{for } \mathbf{x}_i = \mathbf{x} \end{aligned}$$

• problem: *A_{cs}* is not a singular M-matrix (signs wrong)

 $\hat{A}_{cs} = \hat{S} - G$

• solution: lumping approach on S in

 $A_{cs} = S - G$

$$A = \begin{bmatrix} + & - & - & - & - \\ - & + & - & - & - \\ - & - & + & - & - \\ - & - & - & + & - \\ - & - & - & - & + \end{bmatrix}$$

Smoothed Aggregation

$$A_{cs} = R_s \left(D - (L+U) \right) P_s$$
$$= R_s D P_s - R_s \left(L+U \right) P_s$$

$$A = \begin{bmatrix} + & - & - & - & - \\ - & + & - & - & - \\ - & - & + & - & - \\ - & - & - & + & - \\ - & - & - & - & + \end{bmatrix}$$

$$A_{cs} = S - G \qquad \qquad \hat{A}_{cs} = \hat{S} - G$$

• we want to retain crucial properties

$$egin{aligned} \mathbf{1}_c^T \, \hat{A}_{cs} &= 0 \quad orall \, \mathbf{x}_i, \ \hat{A}_{cs} \, \mathbf{1}_c &= 0 \quad ext{for } \mathbf{x}_\mathrm{i} = \mathbf{x} \end{aligned}$$

- note: S is symmetric!
- we can lump to diagonal in symmetric way, conserving both row and column sums

$\hat{s}_{ij} - g_{ij} \leq 0 \quad \forall i \neq j_i$ Smoothed Aggregation

$$A_{cs} = S - G \qquad \qquad \hat{A}_{cs} = \hat{S} - G$$

- we want as little lumping as possible
- only lump 'offending' elements (*i*,*j*):

$$s_{ij} \neq 0$$
, $i \neq j$ and $s_{ij} - g_{ij} \geq 0$

$$A = \begin{bmatrix} + & - & - & - & - \\ - & + & - & - & - \\ - & - & + & - & - \\ - & - & - & + & - \\ - & - & - & - & + \end{bmatrix}$$

(we consider both off-diagonal signs and reducibility here!)

• for 'offending' elements (*i*,*j*), choose $\eta \in (0,1]$ s.t.

$$\hat{s}_{ij} - g_{ij}^m = -\eta \, g_{ij}^m$$

 $\hat{s}_{ji} - g_{ji}^m = -\eta \, g_{ji}^m$ with $g_{ij}^m = g_{ji}^m = \max(g_{ij}, g_{ji})$

• η =1 means lump full value of offending elements of S (\hat{s}_{ij} = 0)

9. Lumped Smoothed Method is Well-posed

THEOREM 4.1 (Singular M-matrix property of lumped SAM coarse-level operators). \hat{A}_{cs} is an irreducible singular M-matrix on all coarse levels, and thus has a unique right kernel vector \mathbf{e}_c with strictly positive components (up to scaling) on all levels.

THEOREM 4.2 (Fixed-point property of lumped SAM V-cycle). Exact solution \mathbf{x} is a fixed point of the SAM V-cycle (with lumping).

10. Numerical Results: Test Problems

hdesterck@uwaterloo.ca

Test Problems

• uniform 2D lattice

• anisotropic 2D lattice

Test Problems

11. Numerical Results: Geometric Aggregation (size 3)

n	γ_{res}	iter	C_{op}	levels
27	0.64	34	1.32	2
81	0.88	92	1.43	3
243	0.95	> 100	1.47	4
729	0.97	> 100	1.49	5

TABLE 5.1

Uniform chain. G-AM with V-cycles and size-three aggregates. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
27	0.24	12	1.32	2
81	0.26	12	1.43	3
243	0.26	12	1.47	4
729	0.26	12	1.49	5
2187	0.26	12	1.50	6
6561	0.26	12	1.50	7

TABLE 5.2

Uniform chain. G-SAM with V-cycles and size-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (size 3)

n	γ_{res}	iter	C_{op}	levels
27	0.66	37	1.32	2
81	0.88	>100	1.43	3
243	0.95	>100	1.47	4
729	0.97	>100	1.49	5

TABLE 5.3

Birth-death chain ($\mu = 0.96$). G-AM with V-cycles and size-three aggregates. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
27	0.24	12	1.32	2
81	0.26	13	1.43	3
243	0.26	13	1.47	4
729	0.26	14	1.49	5

TABLE 5.4

Birth-death chain ($\mu = 0.96$). G-SAM with V-cycles and size-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (size 3)

n	γ_{res}	iter	C_{op}	levels
54	0.76	56	1.43	3
162	0.92	>100	1.47	4
486	0.97	>100	1.49	5
1458	0.98	>100	1.50	6

Table 5.5

Uniform chain with two weak links ($\epsilon = 0.001$). G-AM with V-cycles and size-three aggregates. The two weak links occur between aggregates at all levels. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
54	0.24	12	1.43	3
162	0.26	12	1.47	4
486	0.26	12	1.49	5
1458	0.26	12	1.50	6
4374	0.26	12	1.50	7

TABLE 5.6

Uniform chain with two weak links ($\epsilon = 0.001$). G-SAM with V-cycles and size-three aggregates. The two weak links occur between aggregates at all levels. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (size 3)

n	γ_{res}	iter	C_{op}	levels
27	1.00	>100	1.32	2
81	1.00	>100	1.43	3
243	0.99	>100	1.47	4
729	0.98	>100	1.49	5

TABLE 5.7

Uniform chain with two weak links ($\epsilon = 0.001$). G-AM with V-cycles and size-three aggregates. The two weak links occur inside an aggregate on the finest level. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels		
27	0.99	>100	1.32	2		
81	1.00	>100	1.43	3		
243	1.00	>100	1.47	4		
729	1.00	>100	1.49	5		
TABLE 5.8						

Uniform chain with two weak links ($\epsilon = 0.001$). G-SAM with V-cycles and size-three aggregates. The two weak links occur inside an aggregate on the finest level. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (3x3)

n	γ_{res}	iter	C_{op}	levels
64	0.71	44	1.11	2
100	0.85	82	1.17	3
169	0.86	98	1.15	3
400	0.88	>100	1.13	3
900	0.95	>100	1.12	4

TABLE 5.9

Uniform 2D lattice. G-AM with V-cycles and size-three aggregates. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels	γ_{res}	iter	C_{op}	levels
64	0.49	24	1.17	2	0.39	18	1.34	2
100	0.52	25	1.25	3	0.41	19	1.57	3
169	0.53	26	1.23	3	0.43	20	1.51	3
400	0.56	27	1.21	3	0.44	20	1.48	3
900	0.57	29	1.21	4	0.44	21	1.48	4
1600	0.60	29	1.23	4	0.45	21	1.51	4
2500	0.61	30	1.22	4	0.45	21	1.48	4
4900	0.62	31	1.22	4	0.45	21	1.50	4
6724	0.62	31	1.23	5	0.45	21	1.53	5

TABLE 5.10

Uniform 2D lattice. G-SAM with V-cycles (left) and W-cycles (right), using three-by-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (3x3)

n	γ_{res}	iter	C_{op}	levels
64	0.59	30	1.11	2
100	0.72	42	1.17	3
169	0.76	47	1.15	3
400	0.84	69	1.13	3
900	0.90	>100	1.12	4
1600	0.92	>100	1.13	4

Anisotropic 2D lattice ($\epsilon = 1e - 6$). G-AM with V-cycles and three-by-three aggregates. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
64	0.04	6	1.51	2
100	0.05	6	1.97	3
169	0.08	7	1.82	3
400	0.10	7	1.79	3
900	0.11	8	1.84	4
1600	0.10	7	1.86	4
2500	0.10	7	1.81	4
4900	0.11	8	1.84	4
6724	0.11	8	1.94	5
	Т	ABLE 5.	12	

Anisotropic 2D lattice ($\epsilon = 1e - 6$). G-SAM with V-cycles and three-by-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (3x3)

n	γ_{res}	iter	C_{op}	levels
121	0.90	>100	1.20	3
256	0.91	>100	1.19	3
676	0.90	>100	1.18	3
1681	0.95	>100	1.19	4
	· · · · ·	TABLE 5.1	3	

Tandem queueing network. G-AM with V-cycles and three-by-three aggregates. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels	γ_{res}	iter	C_{op}	levels
121	0.51	22	1.26	3	0.32	15	1.60	3
256	0.50	22	1.28	3	0.34	15	1.60	3
676	0.51	23	1.26	3	0.33	15	1.56	3
1681	0.55	28	1.27	4	0.33	15	1.61	4
3721	0.60	3 0	1.28	4	0.33	15	1.63	4

TABLE 5.14

Tandem queueing network. G-SAM with V-cycles (left) and W-cycles (right), using three-bythree aggregates. (Smoothing with lumping.)

- error equation: $A \operatorname{diag}(\mathbf{x}_i) \mathbf{e}_i = 0$
- use strength of connection in $A \operatorname{diag}(\mathbf{x}_i)$
- define row-based strength (determine all states that strongly influence a row's state, similar to AMG)
- state that has largest value in x_i is seed point for new aggregate, and all unassigned states influenced by it join its aggregate
- repeat

(our Google SISC paper 2008)

n	γ_{res}	iter	C_{op}	levels
27	0.69	41	1.71	3
81	0.86	81	1.85	4
243	0.96	> 100	1.96	6
729	0.97	> 100	1.99	8
2187	0.97	> 100	2.00	9
		TABLE 6.1		

Uniform chain. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels	γ_{res}	iter	C_{op}	levels
27	0.11	9	2.18	3	0.32	16	1.39	2
81	0.19	10	2.67	4	0.33	16	1.42	3
243	0.20	10	3.23	6	0.33	16	1.48	4
729	0.20	10	3.60	7	0.33	16	1.50	5
2187	0.21	10	3.73	8	0.34	16	1.50	6
6561	0.21	10	4.05	8	0.33	16	1.50	7
	TABLE 6.2							

Uniform chain. A-SAM with V-cycles using distance-one aggregation (left) and distance-two aggregation (right). (Smoothing with lumping.)

Numerical Results: effect of η

n	γ_{res}	iter	C_{op}	levels
27	0.79	56	2.24	3
81	0.93	>100	2.67	4
243	0.98	>100	3.18	6
729	0.98	>100	3.45	8
2187	0.98	>100	3.64	9
		TABLE 6.3	3	

Uniform chain. A-SAM with V-cycles using distance-one aggregation, and lumping the full value of all off-diagonal elements of $R_s D P_s$. (Smoothing with lumping.)

n	γ_{res}	iter	C_{op}	levels	γ_{res}	iter	C_{op}	levels
27	0.13	9	1.97	3	0.16	9	2.24	3
81	0.16	9	2.57	4	0.15	9	2.59	4
243	0.23	10	3.20	6	0.26	11	3.40	6
729	0.42	12	3.70	8	0.46	13	3.64	7
2187	0.61	14	3.93	9	0.62	14	3.95	9

TABLE 6.4

Uniform chain. A-SAM with V-cycles using distance-one aggregation, lumping only the offdiagonal elements of $R_s D P_s$ that cause nonnegative off-diagonal elements of A_{cs} . Lumping their full value ($\eta = 1$, left), and part of their value ($\eta = 0.75$, right).

Numerical Results: effect of η

n	γ_{res}	iter	C_{op}	levels	γ_{res}	iter	C_{op}	levels
27	0.19	10	1.96	3	0.19	10	2.24	3
81	0.15	9	2.80	4	0.20	10	2.93	4
243	0.19	10	3.15	6	0.23	11	3.16	5
729	0.20	10	3.48	7	0.24	10	3.26	6
2187	0.24	10	3.86	9	0.22	10	3.40	7

TABLE 6.5

Uniform chain. A-SAM with V-cycles using distance-one aggregation, lumping part of the value of the off-diagonal elements of $R_s D P_s$ that cause nonnegative off-diagonal elements of A_{cs} : $\eta = 0.25$, left, and, $\eta = 0.1$, right.

n	γ_{res}	iter	C_{op}	levels	γ_{res}	iter	C_{op}	levels
27	0.11	9	2.18	3	0.12	9	2.18	3
81	0.19	10	2.67	4	0.18	10	2.65	4
243	0.20	10	3.23	6	0.20	10	3.30	6
729	0.20	10	3.60	7	0.21	10	3.53	7
2187	0.21	10	3.73	8	0.19	10	3.87	8

TABLE 6.6

Uniform chain. A-SAM with V-cycles using distance-one aggregation, lumping part of the value of the off-diagonal elements of $R_s D P_s$ that cause nonnegative off-diagonal elements of A_{cs} : $\eta = 0.01$, left, and, $\eta = 1e - 6$, right.

n	γ_{res}	iter	C_{op}	levels
27	0.75	54	1.71	3
81	0.87	>100	1.85	4
243	0.96	>100	1.96	6
729	0.97	>100	1.99	8

TABLE 6.7

Birth-death chain ($\mu = 0.96$). A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
27	0.35	17	1.32	2
81	0.35	17	1.43	3
243	0.35	18	1.47	4
729	0.35	19	1.49	5
		FABLE 6	5.8	

Birth-death chain ($\mu = 0.96$). A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

n	γ_{res}	iter	C_{op}	levels
54	0.83	61	1.86	4
162	0.90	>100	1.91	5
486	0.96	>100	1.98	7
1458	0.97	>100	1.99	9
4374	0.98	>100	2.00	10
		TABLE 6.9)	

Uniform chain with two weak links ($\epsilon = 0.001$). A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
54	0.34	16	1.40	3
162	0.33	16	1.48	4
486	0.33	16	1.49	5
1458	0.34	16	1.50	6
4374	0.33	16	1.50	7
	Т	ABLE 6.	10	

Uniform chain with two weak links ($\epsilon = 0.001$). A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

n	γ_{res}	iter	C_{op}	levels
64	0.59	30	1.60	3
100	0.80	43	1.83	4
169	0.73	53	1.79	4
400	0.88	86	1.94	6
900	0.87	>100	1.97	7
TABLE 6.11				

Uniform 2D lattice. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
64	0.42	19	1.24	2
100	0.44	21	1.29	3
169	0.43	21	1.35	3
400	0.46	23	1.50	4
900	0.47	24	1.59	4
1600	0.47	24	1.68	5
2500	0.48	24	1.66	5
4900	0.47	24	1.75	5
6724	0.47	24	1.76	5

TABLE 6.12

Uniform 2D lattice. A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

n	γ_{res}	iter	C_{op}	levels
64	0.38	18	1.65	4
100	0.43	21	1.60	4
169	0.67	33	1.90	6
400	0.69	35	1.98	7
900	0.86	67	1.99	8
1600	0.89	70	2.08	9
2500	0.92	84	2.01	10
4900	0.90	95	2.03	11
6724	0.91	>100	1.98	11
TABLE 6.13				

Anisotropic 2D lattice ($\epsilon = 1e - 6$). A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
64	0.40	19	1.76	3
100	0.27	14	2.02	3
169	0.33	16	1.91	4
400	0.33	16	2.50	5
900	0.34	16	2.82	5
1600	0.33	16	2.94	6
2500	0.33	16	3.52	7
4900	0.33	16	3.79	7
6724	0.33	16	4.01	7
TABLE 6.14				

Anisotropic 2D lattice ($\epsilon = 1e - 6$). A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

n	γ_{res}	iter	C_{op}	levels
121	0.68	40	1.89	4
256	0.88	88	2.35	7
676	0.95	>100	3.28	14
1681	0.97	>100	4.86	20
3721	0.98	>100	7.21	30
TABLE 6.15				

Tandem queueing network. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	γ_{res}	iter	C_{op}	levels
121	0.42	20	2.03	3
256	0.36	19	2.01	4
676	0.42	23	2.32	4
1681	0.42	27	2.71	5
3721	0.42	31	3.03	5

TABLE 6.16

Tandem queueing network. A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

Conclusions

- SAM: algorithm for stationary vector of slowly mixing Markov chains with near-optimal complexity
- smoothing is essential
- pretty good convergence results
- good theoretical framework (well-posedness)
- different ways of choosing R_s , P_s , lumping?
- no theory yet on optimal convergence (nonsymmetric matrices)
- Questions?

- high-frequency error is removed by relaxation (weighted Jacobi, Gauss-Seidel, ...)
- low-frequency-error needs to be removed by coarse-grid correction

Multigrid Hierarchy: V-cycle

- multigrid V-cycle:
 - relax (=smooth) on successively coarser grids
 - transfer error using restriction $(R=P^{T})$ and interpolation (P)
- W=O(n)

