Smoothed Aggregation Multigrid for Slowly Mixing Markov Chains

Hans De Sterck
Department of Applied Mathematics, University of Waterloo

Steve McCormick, John Ruge, Tom Manteuffel, Jamie Pearson

1. Simple Markov Chain Example

- 5 states
- each outgoing edge same probability (random walk on directed graph)

Simple Markov Chain Example

- start in one state with probability 1 : what is the stationary probability vector after ∞ number of steps?

$$
B=\left[\begin{array}{ccccc}
0 & 1 / 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 & 1 \\
0 & 1 / 3 & 1 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\mathbf{x}_{i+1}=B \mathbf{x}_{i}
$$

- stationary probability:
$B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1$

$$
\mathbf{x}^{T}=[2 / 196 / 194 / 196 / 191 / 19]
$$

2. Problem Statement

$$
B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1 \quad x_{i} \geq 0 \forall i
$$

- B is column-stochastic

$$
b_{i, j} \geq 0, \quad \sum_{i} b_{i, j}=1 \forall j
$$

- B is irreducible (every state can be reached from every other state in the directed graph)

$$
\exists!\mathrm{x}: \quad B \mathrm{x}=\mathrm{x} \quad\|\mathrm{x}\|_{1}=1 \quad x_{i}>0 \forall i
$$

(no probability sinks!)

3. Power Method

$B \mathrm{x}=\mathrm{x} \quad$ or $\quad(I-B) \mathrm{x}=0$ or $A \mathrm{x}=0$

- largest eigenvalue of $B: \quad \lambda_{1}=1$
- power method: $\mathbf{x}_{i+1}=B \mathbf{x}_{i}$
- convergence factor: $\left|\lambda_{2}\right|$
- convergence is very slow when

$$
\begin{gathered}
\left|\lambda_{2}\right| \approx 1 \\
\text { (slowly mixing Markov chain) }(\text { JAC, GS also slow) }
\end{gathered}
$$

4. Aggregation for Markov Chains

- form three coarse, aggregated states

$$
\begin{aligned}
& x_{c, I}=\sum_{i \in I} x_{i} \\
& \mathbf{x}_{c}^{T}=\left[\begin{array}{lll}
8 / 19 & 10 / 19 & 1 / 19
\end{array}\right] \\
& B_{c} \mathbf{x}_{c}=\mathbf{x}_{c}
\end{aligned}
$$

$$
b_{c, I J}=\frac{\sum_{j \in J} x_{j}\left(\sum_{i \in I} b_{i j}\right)}{\sum_{j \in J} x_{j}}
$$

$$
B_{c}=\left[\begin{array}{ccc}
1 / 4 & 3 / 5 & 0 \\
5 / 8 & 2 / 5 & 1 \\
1 / 8 & 0 & 0
\end{array}\right]
$$

(Simon and Ando, 1961)

Aggregation for Markov Chains

$$
\begin{aligned}
B_{c} \mathbf{x}_{c} & =\mathbf{x}_{c} \\
b_{c, I J} & =\frac{\sum_{j \in J} x_{j}\left(\sum_{i \in I} b_{i j}\right)}{\sum_{j \in J} x_{j}}
\end{aligned}
$$

$$
B_{c}=Q^{T} B \operatorname{diag}(\mathbf{x}) Q \operatorname{diag}\left(Q^{T} \mathbf{x}\right)^{-1}
$$

$$
\begin{aligned}
& x_{c, I}=\sum_{i \in I} x_{i} \\
& \mathbf{x}_{c}=Q^{T} \mathbf{x}
\end{aligned}
$$

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(Krieger, Horton, ... 1990s)

5. Error Equation

- multiplicative correction: error equation, coarse level error equation, and coarse grid correction

$$
\begin{aligned}
& \mathbf{x}=\operatorname{diag}\left(\mathbf{x}_{i}\right) \mathbf{e}_{i} \\
& A \operatorname{diag}\left(\mathbf{x}_{i}\right) \mathbf{e}_{i}=0 \\
& Q^{T} A \operatorname{diag}\left(\mathbf{x}_{i}\right) Q \mathbf{e}_{c}=0 \\
& A_{c} \mathbf{e}_{c}=0 \\
& R=Q^{T} \quad P=\operatorname{diag}\left(\mathbf{x}_{i}\right) Q \\
& A_{c}=R A P
\end{aligned}
$$

Error Equation

- coarse grid correction

$$
\begin{array}{ll}
\mathbf{x}=\operatorname{diag}\left(\mathbf{x}_{i}\right) \mathbf{e}_{i} & \\
A \operatorname{diag}\left(\mathbf{x}_{i}\right) \mathbf{e}_{i}=0 & \mathbf{x}_{c}=\operatorname{diag}\left(P^{T} \mathbf{1}\right) \mathbf{e}_{c} \\
& \\
\left.Q^{T} A \operatorname{diag}\left(P^{T} \mathbf{1}\right)\right)^{-1} \mathbf{x}_{c}=0 \\
A_{c} \mathbf{e}_{c}=0 & \left.\mathbf{x}_{i}\right) Q \mathbf{e}_{c}=0 \\
& \mathbf{x}_{i+1}=P\left(\operatorname{diag}\left(P^{T} \mathbf{1}\right)\right)^{-1} \mathbf{x}_{C} \\
R=\mathbf{x}_{c} \\
A_{c}=R A P & P=\operatorname{diag}\left(\mathbf{x}_{i}\right) Q
\end{array}
$$

Error Equation

- important properties of A_{c} :

$$
\begin{array}{ll}
\mathrm{x}=\operatorname{diag}\left(\mathrm{x}_{i}\right) \mathrm{e}_{i} & \\
A \operatorname{diag}\left(\mathrm{x}_{i}\right) \mathrm{e}_{i}=0 & \text { (1) } \mathbf{1}_{c}^{T} A_{c}=0 \quad \forall \mathrm{x}_{i} \\
& \text { (since } \left.\mathbf{1}_{c}^{T} R=\mathbf{1}^{T} \text { and } \mathbf{1}^{T} A=0\right) \\
Q^{T} A \operatorname{diag}\left(\mathrm{x}_{i}\right) Q \mathbf{e}_{c}=0 & \text { (2) } A_{c} \mathbf{1}_{c}=0 \quad \text { for } \mathrm{x}_{\mathrm{i}}=\mathrm{x} \\
A_{c} \mathbf{e}_{c}=0 & \\
R=Q^{T} \quad P=\operatorname{diag}\left(\mathrm{x}_{i}\right) Q \\
A_{c}=R A P
\end{array}
$$

6. Multilevel Aggregation Algorithm

Algorithm: Multilevel Adaptive Aggregation method (V-cycle)
$\mathrm{x}=\mathrm{AM}-\mathrm{V}\left(A, \mathrm{x}, \nu_{1}, \nu_{2}\right)$

begin

$$
\begin{aligned}
& \mathbf{x} \leftarrow \operatorname{Relax}(A, \mathbf{x}) \quad \nu_{1} \text { times } \\
& \text { build } Q \text { based on } \mathbf{x} \text { and } A \quad(Q \text { is rebuilt every level and cycle) } \\
& R=Q^{T} \text { and } P=\operatorname{diag}(\mathbf{x}) Q \\
& A_{c}=R A P \\
& \mathbf{x}_{c}=\operatorname{AM} V\left(A_{c} \operatorname{diag}\left(P^{T} 1\right)^{-1}, P^{T} 1, \nu_{1}, \nu_{2}\right) \quad \text { (coarse-level solve) } \\
& \mathbf{x}=P\left(\operatorname{diag}\left(P^{T} \mathbf{1}\right)\right)^{-1} \mathbf{x}_{c} \quad(\text { coarse-level correction }) \\
& \mathbf{x} \leftarrow \operatorname{Relax}(A, \mathbf{x}) \quad \nu_{2} \text { times }
\end{aligned}
$$

end
(Krieger, Horton 1994, but no good way to build Q)

7. Well-posedness: Singular M-matrices

- singular M-matrix:

$$
A \in \mathbb{R}^{n \times n} \text { is a singular M-matrix } \Leftrightarrow
$$

$$
A=\left[\begin{array}{lllll}
+ & - & - & - & - \\
- & + & - & - & - \\
- & - & + & - \\
- & - & + & - \\
- & - & - & - & +
\end{array}\right]
$$

$\exists B \in \mathbb{R}^{n \times n}, b_{i j} \geq 0 \forall i, j: A=\rho(B) I-B$

- our $A=I-B$ is a singular M-matrix on all levels
(1) Irreducible singular M-matrices have a unique solution to the problem $A \mathbf{x}=0$, up to scaling. All components of \mathbf{x} have strictly the same sign (i.e., scaling can be chosen s.t. $x_{i}>0 \forall i$). (This follows directly from the Perron-Frobenius theorem.)
(3) Irreducible singular M-matrices have nonpositive off-diagonal elements, and strictly positive diagonal elements ($n>1$).
(4) If A has a strictly positive element in its left or right nullspace and the off-diagonal elements of A are nonpositive, then A is a singular M-matrix (see also [21]).

Well-posedness: Singular M-matrices

THEOREM 3.1 (Singular M-matrix property of AM coarse-level operators). A_{c} is an irreducible singular M-matrix on all coarse levels, and thus has a unique right kernel vector \mathbf{e}_{c} with strictly positive components (up to scaling) on all levels.

$$
\begin{aligned}
& \text { (1) } \mathbf{1}_{c}^{T} A_{c}=0 \quad \forall \mathbf{x}_{i} \\
& \text { (since } \left.\mathbf{1}_{c}^{T} R=\mathbf{1}^{T} \text { and } \mathbf{1}^{T} A=0\right) \quad A=\left[\begin{array}{lllll}
+ & - & - & - & - \\
- & + & - & - \\
- & + & - \\
- & - & + \\
- & - & -
\end{array}\right]
\end{aligned}
$$

Theorem 3.2 (Fixed-point property of AM V-cycle). Exact solution \mathbf{x} is a fixed point of the AM V-cycle.
(2) $A_{c} \mathbf{1}_{c}=0$ for $\mathrm{x}_{\mathrm{i}}=\mathrm{x}$

$$
\begin{aligned}
& A_{c} \mathbf{e}_{c}=0 \\
& \mathbf{x}_{i+1}=P \mathbf{e}_{c}
\end{aligned}
$$

8. We Need 'Smoothed Aggregation'...

(Vanek, Mandel, and Brezina, Computing, 1996)

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

after relaxation:

coarse grid correction with Q:

$$
Q_{s}=\left[\begin{array}{ccc}
\times & 0 & 0 \\
\times & \times & 0 \\
\times & \times & 0 \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right]
$$

coarse grid correction with $Q_{s}: \circ$

Smoothed Aggregation

$$
A=D-(L+U)
$$

- smooth the columns of P with weighted Jacobi:

$$
P_{s}=(1-w) \operatorname{diag}\left(\mathbf{x}_{i}\right) Q+w D^{-1}(L+U) \operatorname{diag}\left(\mathbf{x}_{i}\right) Q
$$

- take $R=P^{T}$, and normalize its column sums to 1

$$
R_{s}=P_{s}^{T}\left(\operatorname{diag}\left(\mathbf{1}_{c}^{T} P_{s}^{T}\right)\right)^{-1}
$$

Smoothed Aggregation

- smoothed coarse level operator:

$$
\begin{aligned}
& A_{c s}=R_{s}(D-(L+U)) P_{s} \quad \mathbf{1}_{c}^{T} A_{c s}=0 \quad \forall \mathbf{x}_{i}, \\
& =R_{s} D P_{s}-R_{s}(L+U) P_{s} \quad A_{c s} \mathbf{1}_{c}=0 \quad \text { for } \mathbf{x}_{\mathrm{i}}=\mathbf{x}
\end{aligned}
$$

- problem: $A_{c s}$ is not a singular M-matrix (signs wrong)
- solution: lumping approach on S in

$$
A=\left[\begin{array}{lllll}
+ & - & - & - & - \\
- & + & - & - & - \\
- & - & + & - & - \\
- & - & - & + & - \\
- & - & - & - & +
\end{array}\right]
$$

$$
A_{c s}=S-G \quad \hat{A}_{c s}=\hat{S}-G
$$

Smoothed Aggregation

$$
\begin{aligned}
A_{c s} & =R_{s}(D-(L+U)) P_{s} \\
& =R_{s} D P_{s}-R_{s}(L+U) P_{s} \\
A_{c s} & =S-G \quad \hat{A}_{c s}=\hat{S}-G
\end{aligned} \quad\left[\begin{array}{cccc}
+ & - & - \\
- & - & - \\
- & + & - \\
\hdashline- & - \\
- & - \\
- & - & -
\end{array}\right]
$$

- we want to retain crucial properties

$$
\begin{array}{ll}
\mathbf{1}_{c}^{T} \hat{A}_{c s}=0 & \forall \mathbf{x}_{i}, \\
\hat{A}_{c s} \mathbf{1}_{c}=0 & \text { for } \mathbf{x}_{\mathrm{i}}=\mathbf{x}
\end{array}
$$

- note: S is symmetric!
- we can lump to diagonal in symmetric way, conserving both row and column sums

$$
\hat{s}_{i j}-g_{i j} \leq 0 \quad \forall i \neq j
$$

Smoothed Aggregation

$$
A_{c s}=S-G \quad \hat{A}_{c s}=\hat{S}-G
$$

- we want as little lumping as possible
- only lump 'offending' elements (i,j):

$$
A=\left[\begin{array}{lllll}
+ & - & - & - & - \\
- & + & - & - & - \\
- & - & + & - & - \\
- & - & - & + & - \\
- & - & - & - & +
\end{array}\right]
$$

$$
s_{i j} \neq 0, i \neq j \text { and } s_{i j}-g_{i j} \geq 0
$$

(we consider both off-diagonal signs and reducibility here!)

- for 'offending' elements (i, j), choose $\eta \in(0,1]$ s.t.

$$
\begin{aligned}
& \hat{s}_{i j}-g_{i j}^{m}=-\eta g_{i j}^{m} \quad \text { with } g_{i j}^{m}=g_{j i}^{m}=\max \left(\mathrm{g}_{\mathrm{ij}}, \mathrm{~g}_{\mathrm{j} \mathrm{i}}\right), \\
& \hat{s}_{j i}-g_{j i}^{m}=-\eta g_{j i}^{m}
\end{aligned}
$$

- $\eta=1$ means lump full value of offending elements of $S\left(\hat{s}_{i j}=0\right)$

9. Lumped Smoothed Method is Well-posed

Theorem 4.1 (Singular M-matrix property of lumped SAM coarse-level operators). $\hat{A}_{c s}$ is an irreducible singular M-matrix on all coarse levels, and thus has a unique right kernel vector \mathbf{e}_{c} with strictly positive components (up to scaling) on all levels.

Theorem 4.2 (Fixed-point property of lumped SAM V-cycle). Exact solution \mathbf{x} is a fixed point of the SAM V-cycle (with lumping).

$$
\begin{aligned}
\mathbf{1}_{c}^{T} \hat{A}_{c s} & =0 \\
\hat{A}_{c s} \mathbf{1}_{c} & =0 \quad \text { for } \mathbf{x}_{\mathbf{i}}=\mathbf{x}
\end{aligned} \quad A=\left[\begin{array}{cccc}
+ & - & - & - \\
- & + & - \\
- & + & - \\
- & - & - \\
- & - & - & -
\end{array}\right]
$$

10. Numerical Results: Test Problems

- uniform chain

- birth-death chain

- uniform chain with two weak links

Test Problems

- uniform 2D lattice

- anisotropic 2D lattice

Test Problems

- tandem queueing network

FIG. 5.6. Tandem queueing network.

FIG. 5.7. Graph for tandem queueing network.

11. Numerical Results: Geometric Aggregation

 (size 3)| n | $\gamma_{\text {res }}$ | iter | $C_{o p}$ | levels |
| ---: | ---: | ---: | ---: | ---: |
| 27 | 0.64 | 34 | 1.32 | 2 |
| 81 | 0.88 | 92 | 1.43 | 3 |
| 243 | 0.95 | >100 | 1.47 | 4 |
| 729 | 0.97 | >100 | 1.49 | 5 |
| TABLE 5.1 | | | | |

Uniform chain. G-AM with V-cycles and size-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
27	0.24	12	1.32	2
81	0.26	12	1.43	3
243	0.26	12	1.47	4
729	0.26	12	1.49	5
2187	0.26	12	1.50	6
6561	0.26	12	1.50	7
TABLE 5.2				

Uniform chain. G-SAM with V-cycles and size-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (size 3)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.66	37	1.32	2
81	0.88	>100	1.43	3
243	0.95	>100	1.47	4
729	0.97	>100	1.49	5

Birth-death chain $(\mu=0.96) . G$-AM with V-cycles and size-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.24	12	1.32	2
81	0.26	13	1.43	3
243	0.26	13	1.47	4
729	0.26	14	1.49	5
TABLE 5.4				

Birth-death chain $(\mu=0.96)$. G-SAM with V-cycles and size-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (size 3)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
54	0.76	56	1.43	3
162	0.92	>100	1.47	4
486	0.97	>100	1.49	5
1458	0.98	>100	1.50	6
TABLE 5.5				

Uniform chain with two weak links $(\epsilon=0.001)$. G-AM with V-cycles and size-three aggregates. The two weak links occur between aggregates at all levels. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
54	0.24	12	1.43	3
162	0.26	12	1.47	4
486	0.26	12	1.49	5
1458	0.26	12	1.50	6
4374	0.26	12	1.50	7
TABLE 5.6				

Uniform chain with two weak links $(\epsilon=0.001)$. G-SAM with V-cycles and size-three aggregates. The two weak links occur between aggregates at all levels. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (size 3)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	1.00	>100	1.32	2
81	1.00	>100	1.43	3
243	0.99	>100	1.47	4
729	0.98	>100	1.49	5
TABLE 5.7				

Uniform chain with two weak links $(\epsilon=0.001)$. G-AM with V-cycles and size-three aggregates. The two weak links occur inside an aggregate on the finest level. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.99	>100	1.32	2
81	1.00	>100	1.43	3
243	1.00	>100	1.47	4
729	1.00	>100	1.49	5

Uniform chain with two weak links $(\epsilon=0.001)$. G-SAM with V-cycles and size-three aggregates.
The two weak links occur inside an aggregate on the finest level. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (3x3)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
64	0.71	44	1.11	2
100	0.85	82	1.17	3
169	0.86	98	1.15	3
400	0.88	>100	1.13	3
900	0.95	>100	1.12	4
TABLE 5.9				

Uniform 2D lattice. G-AM with V-cycles and size-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
64	0.49	24	1.17	2	0.39	18	1.34	2
100	0.52	25	1.25	3	0.41	19	1.57	3
169	0.53	26	1.23	3	0.43	20	1.51	3
400	0.56	27	1.21	3	0.44	20	1.48	3
900	0.57	29	1.21	4	0.44	21	1.48	4
1600	0.60	29	1.23	4	0.45	21	1.51	4
2500	0.61	30	1.22	4	0.45	21	1.48	4
4900	0.62	31	1.22	4	0.45	21	1.50	4
6724	0.62	31	1.23	5	0.45	21	1.53	5
TABLE 5.10								

Uniform 2D lattice. G-SAM with V-cycles (left) and W-cycles (right), using three-by-three aggregates. (Smoothing with lumping.)

Numerical Results: Geometric Aggregation (3x3)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
64	0.59	30	1.11	2
100	0.72	42	1.17	3
169	0.76	47	1.15	3
400	0.84	69	1.13	3
900	0.90	>100	1.12	4
1600	0.92	>100	1.13	4

Anisotropic $2 D$ lattice $(\epsilon=1 e-6) . G$-AM with V-cycles and three-by-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
64	0.04	6	1.51	2
100	0.05	6	1.97	3
169	0.08	7	1.82	3
400	0.10	7	1.79	3
900	0.11	8	1.84	4
1600	0.10	7	1.86	4
2500	0.10	7	1.81	4
4900	0.11	8	1.84	4
6724	0.11	8	1.94	5
TABLE 5.12				

Anisotropic $2 D$ lattice $(\epsilon=1 e-6)$. G-SAM with V-cycles and three-by-three aggregates.
(Smoothing with lumping.)

Numerical Results: Geometric Aggregation (3x3)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
121	0.90	>100	1.20	3
256	0.91	>100	1.19	3
676	0.90	>100	1.18	3
1681	0.95	>100	1.19	4
TABLE 5.13				

Tandem queueing network. G-AM with V-cycles and three-by-three aggregates. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
121	0.51	22	1.26	3	0.32	15	1.60	3
256	0.50	22	1.28	3	0.34	15	1.60	3
676	0.51	23	1.26	3	0.33	15	1.56	3
1681	0.55	28	1.27	4	0.33	15	1.61	4
3721	0.60	30	1.28	4	0.33	15	1.63	4
TABLE 5.14								

Tandem queueing network. G-SAM with V-cycles (left) and W-cycles (right), using three-bythree aggregates. (Smoothing with lumping.)

12. Numerical Results: Algebraic Aggregation

- error equation: $A \operatorname{diag}\left(\mathrm{x}_{i}\right) \mathrm{e}_{i}=0$
- use strength of connection in $A \operatorname{diag}\left(\mathrm{x}_{i}\right)$
- define row-based strength (determine all states that strongly influence a row's state, similar to AMG)
- state that has largest value in \mathbf{x}_{i} is seed point for new aggregate, and all unassigned states influenced by it join its aggregate
- repeat
(our Google SISC paper 2008)

Numerical Results: Algebraic Aggregation

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.69	41	1.71	3
81	0.86	81	1.85	4
243	0.96	>100	1.96	6
729	0.97	>100	1.99	8
2187	0.97	>100	2.00	9
TABLE 6.1				

Uniform chain. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
27	0.11	9	2.18	3	0.32	16	1.39	2
81	0.19	10	2.67	4	0.33	16	1.42	3
243	0.20	10	3.23	6	0.33	16	1.48	4
729	0.20	10	3.60	7	0.33	16	1.50	5
2187	0.21	10	3.73	8	0.34	16	1.50	6
6561	0.21	10	4.05	8	0.33	16	1.50	7

Uniform chain. A-SAM with V-cycles using distance-one aggregation (left) and distance-two aggregation (right). (Smoothing with lumping.)

Numerical Results: effect of η

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.79	56	2.24	3
81	0.93	>100	2.67	4
243	0.98	>100	3.18	6
729	0.98	>100	3.45	8
2187	0.98	>100	3.64	9
TABLE 6.3				

Uniform chain. A-SAM with V-cycles using distance-one aggregation, and lumping the full value of all off-diagonal elements of $R_{s} D P_{s}$. (Smoothing with lumping.)

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
27	0.13	9	1.97	3	0.16	9	2.24	3
81	0.16	9	2.57	4	0.15	9	2.59	4
243	0.23	10	3.20	6	0.26	11	3.40	6
729	0.42	12	3.70	8	0.46	13	3.64	7
2187	0.61	14	3.93	9	0.62	14	3.95	9

Uniform chain. A-SAM with V-cycles using distance-one aggregation, lumping only the offdiagonal elements of $R_{s} D P_{s}$ that cause nonnegative off-diagonal elements of $A_{c s}$. Lumping their full value ($\eta=1$, left), and part of their value ($\eta=0.75$, right).

Numerical Results: effect of η

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.19	10	1.96	3	0.19	10	2.24	3
81	0.15	9	2.80	4	0.20	10	2.93	4
243	0.19	10	3.15	6	0.23	11	3.16	5
729	0.20	10	3.48	7	0.24	10	3.26	6
2187	0.24	10	3.86	9	0.22	10	3.40	7

Uniform chain. A-SAM with V-cycles using distance-one aggregation, lumping part of the value of the off-diagonal elements of $R_{s} D P_{s}$ that cause nonnegative off-diagonal elements of $A_{c s}$: $\eta=0.25$, left, and, $\eta=0.1$, right.

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.11	9	2.18	3	0.12	9	2.18	3
81	0.19	10	2.67	4	0.18	10	2.65	4
243	0.20	10	3.23	6	0.20	10	3.30	6
729	0.20	10	3.60	7	0.21	10	3.53	7
2187	0.21	10	3.73	8	0.19	10	3.87	8

Uniform chain. A-SAM with V-cycles using distance-one aggregation, lumping part of the value of the off-diagonal elements of $R_{s} D P_{s}$ that cause nonnegative off-diagonal elements of $A_{c s}$: $\eta=0.01$, left, and, $\eta=1 e-6$, right.
Waterloo

Numerical Results: Algebraic Aggregation

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.75	54	1.71	3
81	0.87	>100	1.85	4
243	0.96	>100	1.96	6
729	0.97	>100	1.99	8

Birth-death chain $(\mu=0.96)$. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
27	0.35	17	1.32	2
81	0.35	17	1.43	3
243	0.35	18	1.47	4
729	0.35	19	1.49	5
TABLE 6.8				

Birth-death chain ($\mu=0.96$). A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

Numerical Results: Algebraic Aggregation

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
54	0.83	61	1.86	4
162	0.90	>100	1.91	5
486	0.96	>100	1.98	7
1458	0.97	>100	1.99	9
4374	0.98	>100	2.00	10
TABLE 6.9				

Uniform chain with two weak links $(\epsilon=0.001)$. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels	
54	0.34	16	1.40	3	
162	0.33	16	1.48	4	
486	0.33	16	1.49	5	
1458	0.34	16	1.50	6	
4374	0.33	16	1.50	7	
TABLE 6.10					

Uniform chain with two weak links $(\epsilon=0.001)$. A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

Numerical Results: Algebraic Aggregation

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
64	0.59	30	1.60	3
100	0.80	43	1.83	4
169	0.73	53	1.79	4
400	0.88	86	1.94	6
900	0.87	>100	1.97	7
TABLE 6.11				

Uniform 2D lattice. $A-A M$ with V-cycles and distance-one aggregation. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
64	0.42	19	1.24	2
100	0.44	21	1.29	3
169	0.43	21	1.35	3
400	0.46	23	1.50	4
900	0.47	24	1.59	4
1600	0.47	24	1.68	5
2500	0.48	24	1.66	5
4900	0.47	24	1.75	5
6724	0.47	24	1.76	5
TabLe 6.12				

Uniform 2D lattice. A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

Numerical Results: Algebraic Aggregation

n	$\gamma_{\text {res }}$	iter	$C_{o p}$	levels
64	0.38	18	1.65	4
100	0.43	21	1.60	4
169	0.67	33	1.90	6
400	0.69	35	1.98	7
900	0.86	67	1.99	8
1600	0.89	70	2.08	9
2500	0.92	84	2.01	10
4900	0.90	95	2.03	11
6724	0.91	>100	1.98	11
TABLE 6.13				

Anisotropic 2D lattice $(\epsilon=1 e-6) . A-A M$ with V-cycles and distance-one aggregation. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
64	0.40	19	1.76	3
100	0.27	14	2.02	3
169	0.33	16	1.91	4
400	0.33	16	2.50	5
900	0.34	16	2.82	5
1600	0.33	16	2.94	6
2500	0.33	16	3.52	7
4900	0.33	16	3.79	7
6724	0.33	16	4.01	7

Anisotropic 2D lattice $(\epsilon=1 e-6)$. A-SAM with V-cycles and distance-two aggregation.
(Smoothing with lumping.)

Waterloo

Numerical Results: Algebraic Aggregation

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
121	0.68	40	1.89	4
256	0.88	88	2.35	7
676	0.95	>100	3.28	14
1681	0.97	>100	4.86	20
3721	0.98	>100	7.21	30
TABLE 6.15				

Tandem queueing network. A-AM with V-cycles and distance-one aggregation. (No smoothing.)

n	$\gamma_{\text {res }}$	iter	$C_{\text {op }}$	levels
121	0.42	20	2.03	3
256	0.36	19	2.01	4
676	0.42	23	2.32	4
1681	0.42	27	2.71	5
3721	0.42	31	3.03	5
TABLE 6.16				

Tandem queueing network. A-SAM with V-cycles and distance-two aggregation. (Smoothing with lumping.)

Conclusions

- SAM: algorithm for stationary vector of slowly mixing Markov chains with near-optimal complexity
- smoothing is essential
- pretty good convergence results
- good theoretical framework (well-posedness)
- different ways of choosing R_{s}, P_{s}, lumping?
- no theory yet on optimal convergence (nonsymmetric matrices)
- Questions?

Principle of Multigrid (for PDEs)

$$
-u_{x x}-u_{y y}=f(x, y) \quad A x=b
$$

- high-frequency error is removed by relaxation (weighted Jacobi, GaussSeidel, ...)
- low-frequency-error needs to be removed by coarse-grid correction

Multigrid Hierarchy: V-cycle

- multigrid V -cycle:
- relax (=smooth) on successively coarser grids
- transfer error using restriction $\left(R=P^{T}\right)$ and interpolation (P)
- $W=O(n)$

