# Supersonic Planetary Flow Simulations and the Origin of Life

#### Hans De Sterck

Department of Applied Mathematics, University of Waterloo

Waterloo Symposium in Undergraduate Mathematics
9 June 2007



#### Collaborators

- from the Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, USA
- Feng Tian, PhD student, Planetary Scientist

 Brian Toon, Professor in Atmospheric Science









## Do you know how to solve these equations?...

• find  $\rho(r,t), u(r,t), p(r,t)$  s.t.

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho r^2 \\ \rho u r^2 \\ (\frac{p}{\gamma - 1} + \frac{\rho u^2}{2}) r^2 \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + p r^2 \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho u^2}{2}) u r^2 \end{bmatrix}$$

- Euler Equations of Gas Dynamics
- conservation of mass, momentum, energy

$$= \begin{bmatrix} 0 \\ -\rho GM + 2pr \\ -\rho GM u + q_{heat} r^2 \end{bmatrix}$$



## Do you know how to solve these equations?...

• find  $\rho(r,t), u(r,t), p(r,t)$  s.t.

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho r^2 \\ \rho u r^2 \\ (\frac{p}{\gamma - 1} + \frac{\rho u^2}{2}) r^2 \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + p r^2 \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho u^2}{2}) u r^2 \end{bmatrix}$$

- Nonlinear Partial
   Differential Equation
   System, of "hyperbolic"
   type
- assumes spherical symmetry, radial motion

$$= \begin{bmatrix} 0 \\ -\rho GM + 2pr \\ -\rho GM u + q_{heat} r^2 \end{bmatrix}$$





## **Euler Equations of Gas Dynamics**

- describe compressible gases
- describe waves in gases: sound waves
- when the sound source moves...:



analogy: small perturbation in a moving river





## Application 1: Aerospace Engineering

- flow of air around supersonic aircraft
- shock waves! (nonlinear effect)
- aerospace engineers were the first to develop numerical methods for the Euler equations





## Application 2: Supersonic Solar Wind Physics



- heat from sun core accelerates radial flow from subsonic to supersonic
- bow shock at the earth!



## Application 3: Sedimentation in Mechanical Engineering







#### Time for some reflection...

- 3 different applications, same mathematics!
- "power of mathematical abstraction"
- driving force of the computational and applied mathematician!



# Application 4: Supersonic gas escape from extrasolar planets

- http://exoplanet.eu
- 173 extrasolar planets known, as of June 2006
- 236 extrasolar planets known, as of May 2007
- 241 extrasolar planets known, as of June 2007!
- 26 multiple planet systems





WATSUM, 9 June 2007 hdesterck@uwaterloo.ca

### Supersonic gas escape from extrasolar planets

- many exoplanets are gas giants ("hot Jupiters")
- many orbit very close to star (~0.05 AU)
- hypothesis: strong irradiation leads to supersonic hydrogen escape





WATSUM, 9 June 2007 hdesterck@uwaterloo.ca

## example: HD209458 (Vidal-Madjar 2003)



- 0.67 Jupiter masses, 0.05 AU, transiting
- hydrogen atmosphere and escape observed
- question: what is the mass loss rate? long-time stability of the planet? ⇒ solve Euler equations!



#### transonic radial outflow solution





## transonic radial outflow solution: problem definition

 goal: given density and pressure at lower boundary, calculate steady solution profile

$$\rho(r), u(r), p(r)$$

- output of interest:
  - o mass flux (mass/time) (how fast does the planet evaporate?)
  - o location of critical point





#### numerical method

Euler Equations are conservation law

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial r} = S(U)$$

 solving the steady part alone is too hard (it is not known how to do that... more later!)

$$\frac{dF(U)}{dr} = S(U)$$

 engineers developed time-marching methods to steady state



#### numerical method

hyperbolic conservation law

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial r} = S(U)$$

use Computational Fluid Dynamics methods: finite volume method

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \frac{F_{i+1/2}^* - F_{i-1/2}^*}{\Delta r} = S(U_i)$$

- CM452: Numerical Partial Differential Equations
- very slow convergence to steady state... (more later!)



## Simulations of planet atmosphere





### results for 1D exoplanet simulations

- HD209458b:
  - lower boundary conditions  $\rho$ =7.10<sup>-9</sup> g/cm<sup>-3</sup> and T=750K
  - extent of atmosphere, outflow velocity, and mass flux consistent with observations (Vidal-Madjar 2003)
  - 1% mass loss in 12 billion years ⇒ HD209458b is stable
- Tian, Toon, Pavlov, and De Sterck,
   Astrophysical Journal 621, 1049-1060, 2005



## 2D numerical models (Scott Rostrup, NSERC USRA summer 2005, and now Master's)

Euler equations in multiple dimensions

$$\begin{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \frac{p}{\gamma - 1} + \frac{\rho v^2}{2} \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + I p \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho v^2}{2}) \vec{v} \end{bmatrix} = \begin{bmatrix} 0 \\ \vec{F}_{ext} \\ \vec{F}_{ext} \cdot \vec{v} + q_{heat} \end{bmatrix}$$



### **2D Simulations**

 assume rotational symmetry about the y axis

⇒ allows for non-uniform heating





### non-uniform heating



- heated by a thin layer in the northern hemisphere
- outflow mass flux similar to 1D case
- 1D gives reasonable approximation



## ongoing work: include stellar wind





# 3D numerical models (Paul Ullrich, NSERC USRA summer 2005, now Master's)







we want to include effects of planetary rotation

#### Some more reflection now...

What is computational mathematics? (my take...)

- 1) apply existing mathematical methods to solve problems on computers
  - science, engineering, finance, health, internet, technology, ....
- 2) develop new mathematical methods to solve problems faster, more accurately, more reliably
  - can be very theoretical! (convergence or complexity proofs, ...)
- ⇒ both in close collaboration with application specialists!



## 2) Can we solve the steady Euler equations faster and more accurrately?

• yes!  $\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial x} = S(U)$ 

new approach: solve the steady equations directly

$$\frac{dF(U)}{dr} = S(U)$$

$$\frac{d}{dr} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + p r^2 \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho u^2}{2}) u r^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2 p r \\ -\rho GM u + q_{heat} r^2 \end{bmatrix}$$



## Solving the steady ODE system is hard...

consider toy problem (simplified): single ODE

$$\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$$



- normally need 1 boundary condition to determine solution
- transonic solution: no boundary condition needed!



## Solving the steady ODE system is hard...

solving ODE from the left does not work...



• but... integrating outward from the critical point does work!!!



## Direct calculation of steady solution

$$\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$$

1. Write as dynamical system...

$$\frac{du(s)}{ds} = -2uc^2\left(r - \frac{GM}{2c^2}\right)$$

$$\frac{dV}{ds} = -r^2(u^2 - c^2)$$

$$\frac{dV}{ds} = G(V)$$

- 2. find critical point: G(V) = 0
- 3. linearize about critical point

$$\frac{\partial G}{\partial V}\Big|_{V_{crit}} = \begin{bmatrix} 0 & 2c^3 \\ \frac{(GM)^2}{2c^3} & 0 \end{bmatrix}$$

4. integrate outward from critical point



### For the Full Euler Equations

$$\frac{d}{dr} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + p r^2 \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho u^2}{2}) u r^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2 p r \\ -\rho GM u + q_{heat} r^2 \end{bmatrix}$$

problem: there are many possible critical points!



## New algorithm for calculating steady transonic Euler outflows

## guess initial critical point

- use adaptive ODE integrator to find trajectory
- 2. modify guess for critical point depending on deviation from desired inflow boundary conditions (Newton method)
- 3. repeat





## New algorithm for calculating steady transonic Euler outflows

#### new algorithm:

- much faster than time marching
- much more accurate (adaptive RK45)
- CM352: Numerical Ordinary Differential Equations
- ⇒ Computational
   Mathematics
   research finds new,
   better methods to
   solve problems on
   computers





#### Application 5: Primordial soup as the origin of life on Earth



- •Stanley Miller (1953): formation of prebiotic molecules in a <a href="CH4-NH3">CH4-NH3</a> rich environment with electric discharge
  - -Problem: CH4-NH3 atmosphere unlikely
- •later experiments show that prebiotic molecules can be formed efficiently in a <a href="https://nyangen-rich.com/hydrogen-rich">hydrogen-rich</a> environment
- •alternative sources of organics: hydrothermal system, comet delivery



### hydrogen content in Early Earth atmosphere

- hydrogen content: balance between volcanic outgassing and escape from atmosphere
- existing theory: static atmosphere with high temperature at top ⇒ fast thermal escape ⇒ hydrogen content was very low
- formation of prebiotic molecules in a hydrogen-rich atmosphere was thus discarded as a theory



## new theory: hydrogen content in Early Earth atmosphere

 our results: hydrogen escape was probably supersonic, with low temperature at top (no thermal escape), and total escape rates were low



### hydrogen content in Early Earth atmosphere

- our results: hydrogen concentration in the atmosphere of Early Earth could have been as high as 30%
- formation of prebiotic molecules in early Earth's atmosphere could have been efficient
   ⇒ primordial soup on early Earth is possible
- no need for hydrothermal vents, cometary delivery
- Tian, Toon, Pavlov, and De Sterck, Science 308, 1014-1017, 2005



#### Lessons learned...

computational mathematics is...

- 1) apply existing mathematical methods to solve problems on computers
- 2) develop new mathematical methods to solve problems faster, more accurately, more reliably
- ⇒ both in close collaboration with application specialists!



### We need bright students to help in research...

- 1) NSERC undergraduate student research award program (4 months in summer)
- Waterloo's brand new one-year Master's program in Computational Mathematics (broad introduction to a variety of Computational Mathematics areas, starts September 2008)
- 3) Master's and PhD in Computational Mathematicsrelated research areas at Waterloo's Math faculty



Questions?



## Supersonic gas escape from Early Earth

- there is no supersonic hydrodynamic escape from present-day Earth
- exo-base temperature is high: collisional, thermal escape dominates





## Supersonic gas escape from Early Earth

- hypothesis: when the Earth was young, the exo-base temperature may have been low, and supersonic hydrodynamic escape may have been ongoing
- test of hypothesis: do 1D simulation, find exobase temperature, and outflow flux
- ⇒ our simulations confirm cold exobase and hydrodynamic escape with small mass flux

this finding also has implications for hydrogen content in Early Earth atmosphere!



#### Lessons learned...

Computational mathematics is cool!

CM undergraduate program:

(http://www.math.uwaterloo.ca/navigation/CompMath)

choose 2 out of our 5 streams: differential equations, linear algebra, discrete math, optimization, statistics

or choose one of our 4 new options:

- 1) biomedical
- 2) earth and space
- 3) data mining
- 4) economics



## Application 3: Sedimentation in Mechanical Engineering







## transonic radial outflow solution: problem definition

 Euler equations: 3 equations in three variables

$$\rho(r,t), u(r,t), p(r,t)$$

- lower boundary at planet surface: subsonic, needs two boundary conditions: density and pressure
- upper boundary: supersonic, needs no boundary conditions (all information flows out)



