# Numerical Methods for Calculating Planetary Outflow Profiles with Critical Points

#### Hans De Sterck Department of Applied Mathematics, University of Waterloo, Ontario, Canada



CPA, July 2007

# 1. Supersonic gas escape from extrasolar planets

- http://exoplanet.eu
- 173 extrasolar planets known, as of June 2006
- 236 extrasolar planets known, as of May 2007
- 241 extrasolar planets known, as of June 2007!
- 26 multiple planet systems





CPA, July 2007 hdesterck@uwaterloo.ca

## Supersonic gas escape from extrasolar planets

- many exoplanets are gas giants ("hot Jupiters")
- many orbit very close to star (~0.05 AU)
- hypothesis: strong irradiation leads to supersonic hydrogen escape





CPA, July 2007 hdesterck@uwaterloo.ca

# Example: HD209458 (Vidal-Madjar 2003)



- 0.67 Jupiter masses, 0.05 AU, transiting
- hydrogen atmosphere and escape observed
- question: what is the mass loss rate? long-time stability of the planet? ⇒ solve Euler equations!



#### Transonic radial outflow solution





### **Euler** equations

radial outflow from extrasolar planet





# Transonic radial outflow solution: problem definition

 goal: given density and pressure at lower boundary, calculate steady solution profile

 $\rho(r), u(r), p(r)$ 

- output of interest:
  - mass flux (mass/time) (how fast does the planet evaporate?)
  - o location of critical point



CPA, July 2007 hdesterck@uwaterloo.ca



2. Simulation by time marching

• Euler Equations are conservation law

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial r} = S(U)$$

 solving the steady part alone is too hard (it is not known how to do that... more later!)

$$\frac{dF(U)}{dr} = S(U)$$

 engineers developed time-marching methods to steady state



# Numerical method

• hyperbolic conservation law

$$\frac{\partial U}{\partial t} + \frac{\partial F(U)}{\partial r} = S(U)$$

 use Computational Fluid Dynamics methods: finite volume method

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \frac{F_{i+1/2}^* - F_{i-1/2}^*}{\Delta r} = S(U_i)$$

• very slow convergence to steady state... (more later!)



#### Simulations of planet atmosphere





CPA, July 2007 hdesterck@uwaterloo.ca

Results for 1D exoplanet simulations

- HD209458b:
  - lower boundary conditions  $\rho{=}7.10^{-9}~g/cm^{-3}$  and  $T{=}750K$
  - extent of atmosphere, outflow velocity, and mass flux consistent with observations (Vidal-Madjar 2003)
  - 1% mass loss in 12 billion years ⇒ HD209458b is stable
- Tian, Toon, Pavlov, and De Sterck, Astrophysical Journal 621, 1049-1060, 2005



3. Time marching versus solving the unsteady equations directly

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0 \quad \nabla \cdot \vec{F}(U) = 0$$

- time marching converges slowly
- implicit time integration may help somewhat

$$\frac{U^{n+1} - U^n}{\Delta t} + \nabla \cdot \vec{F}(U^{n+1}) = 0$$

- Newton: linearize  $\vec{F}$
- Krylov: iterative solution of linear system in every Newton step



# Main advantages of Newton-Krylov approach

- time-marching uses the hyperbolic BCs for steady problem
- 'physical' way to find suitable initial conditions for the Newton method in every timestep
- it works! (in the sense that it allows one to converge to a solution, in many cases, with some trial-anderror)



# Disadvantages of Newton-Krylov approach

- number of Newton iterations required for convergence grows as a function of resolution
- number of Krylov iterations required for convergence of the linear system in each Newton step grows as a function of resolution
- grid sequencing/nested iteration: often does not work as well as it could (need many Newton iterations on each level)
- robustness, hard to find general strategy to increase timestep
- ⇒ Newton-Krylov methodology not very scalable, not very robust, and expensive



# Why not solve the steady equations directly?

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0 \qquad \nabla \cdot \vec{F}(U) = 0$$

- too hard!
- let's try anyway:
  - maybe we can understand why it is difficult
  - maybe we can find a method that is more efficient than implicit time marching
- start in 1D



4. Solving the steady equations directly

- Simplified 1D problem: radial isothermal Euler
- 2 equations (ODEs), 2 unknowns ( $u,\,
  ho$  )

$$\frac{d}{dr}(\rho ur^2) = 0$$

$$\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$$



# Isothermal Euler: solving the steady ODE system is hard...

- solving ODE from the left does not work...
- but... integrating outward from the critical point does work!!!
- also: 2 equations, 2 unknowns, but only 1 BC needed! (along with transonic solution requirement)



CPA, July 2007 hdesterck@uwaterloo.ca



# Newton Critical Point (NCP) method for steady transonic Euler flows

• First component of NCP: integrate outward from critical point, using dynamical systems formulation



 $\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$ 

CPA, July 2007 hdesterck@uwaterloo.ca



#### First component of NCP

$$\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$$

1. Write as dynamical system...

$$\frac{du(s)}{ds} = -2 u c^2 \left(r - \frac{GM}{2c^2}\right)$$
$$\frac{dr(s)}{ds} = -r^2 \left(u^2 - c^2\right)$$

$$\frac{dV}{ds} = G(V)$$

2. find critical point: G(V) = 0

3. linearize about critical point  $\frac{\partial G}{\partial V}\Big|_{V_{crit}} = \begin{bmatrix} 0 & 2c^3 \\ \frac{(GM)^2}{2c^3} & 0 \end{bmatrix}$ 





CPA, July 2007 hdesterck@uwaterloo.ca



### For the Full Euler Equations

$$\frac{d}{dr} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + p r^2 \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho u^2}{2}) u r^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2 p r \\ -\rho GM u + q_{heat} r^2 \end{bmatrix}$$

- 3 equations, 3 unknowns, but only 2 inflow BC
- problem: there are many possible critical points! (twoparameter family)



### Full Euler dynamical system

$$\begin{aligned} \frac{dF}{ds} &= 0, \\ \frac{du}{ds} &= 2 u c^2 \left(r - \frac{GM}{2c^2}\right) - (\gamma - 1) q_{heat} \frac{r^4 u}{F}, \\ \frac{dr}{ds} &= r^2 \left(u^2 - c^2\right), \\ \frac{dT}{ds} &= (\gamma - 1) T \left(GM - 2 u^2 r\right) - (\gamma - 1) q_{heat} \frac{r^4}{F} \left(T - u^2\right). \end{aligned}$$

$$\Rightarrow \qquad T_{crit} = \frac{GM}{2\gamma r_{crit}} + (\gamma - 1) \frac{q_{heat} r_{crit}^3}{2\gamma F_{crit}},$$
$$u_{crit} = \sqrt{\gamma T_{crit}}.$$



CPA, July 2007 hdesterck@uwaterloo.ca

# Second component of NCP: use Newton method to match critical point with BCs





CPA, July 2007 hdesterck@uwaterloo.ca

#### Quadratic Newton covergence

| Newton step $k$ | error $  B^{(k)} - B^*  _2$ |
|-----------------|-----------------------------|
| 1               | 4.41106268600662            |
| 2               | 2.28831581534917            |
| 3               | 1.43924405447424            |
| 4               | 0.10259052732943            |
| 5               | 0.00125578478131            |
| 6               | 0.00000037420499            |
|                 |                             |



NCP method for 1D steady flows

- it is possible to solve steady equations directly, if one uses critical point and dynamical systems knowledge
- (Newton) iteration is still needed
- NCP Newton method solves a 2x2 nonlinear system (adaptive integration of trajectories is explicit)
- much more efficient than solving a 1500x1500 nonlinear system, and more well-posed



5. Extension to problems with shocks





### NCP method for nozzle flow with shock

- subsonic in: 2 BC
- subsonic out: 1 BC
- NCP from critical point to match 2 inflow BC
- Newton method to match shock location to outflow BC (using Rankine-Hugoniot relations, 1 free parameter)





#### 6. Extension to problems with heat conduction

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho r^{2} \\ \rho u r^{2} \\ \left(\frac{p}{\gamma-1} + \frac{\rho u^{2}}{2}\right) r^{2} \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} \rho u r^{2} \\ \rho u^{2} r^{2} + p r^{2} \\ \left(\frac{\gamma p}{\gamma-1} + \frac{\rho u^{2}}{2}\right) u r^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2pr \\ -\rho GM u + q_{heat} r^{2} + \frac{\partial}{\partial r} \left(\kappa r^{2} \frac{\partial T}{\partial r}\right) \end{bmatrix}$$



# Dynamical system for Euler with heat conduction

 $\phi = \kappa r^2 \frac{dT}{dr}$ 

 $\frac{dr}{ds} = -r^2(u^2 - c^2)(u^2 - T),$  $\frac{dF}{ds} = 0,$  $\frac{du}{ds} = -2uc^2 \left(r - \frac{GM}{2c^2}\right) \left(u^2 - T\right) + \frac{\phi u (u^2 - c^2)}{\kappa}$  $-(\gamma-1)uT(GM-2u^2r).$  $\frac{dT}{ds} = \frac{-\phi(u^2 - c^2)(u^2 - T)}{\kappa},$  $\frac{d\phi}{ds} = \frac{-\phi F(u^2 - c^2)^2}{(\gamma - 1)\kappa} + FT(GM - 2u^2r)(u^2 - c^2)$  $+q_{heat}r^4(u^2-c^2)(u^2-T).$ 



### Two types of critical points!

• sonic critical point (node):

$$u_{crit} = \sqrt{\gamma T_{crit}} = c_{crit}$$

• thermal critical point (saddle point):

$$u_{crit} = \sqrt{T_{crit}} = c_{crit}/\sqrt{\gamma},$$
$$\frac{\phi_{crit}}{\kappa} + GM - 2u_{crit}^2 r_{crit} = 0.$$



#### Transonic flow with heat conduction

- subsonic inflow: 3 BC (ρ, p, φ)
- supersonic outflow:
   0 BC
- 3-parameter family of thermal critical points
- NCP matches thermal critical point with 3 inflow BC
- SIAM Journal on Applied Dynamical Systems, to appear



CPA, July 2007 hdesterck@uwaterloo.ca



#### 7. Second application: primordial soup as the origin of life on Earth



•Stanley Miller (1953): formation of prebiotic molecules in a <u>CH4-NH3</u> rich environment with electric discharge

-Problem: CH4-NH3 atmosphere unlikely

later experiments show that prebiotic molecules can be formed efficiently in a <u>hydrogen-rich</u> environment
alternative sources of organics:

hydrothermal system, comet

delivery



hydrogen content in Early Earth atmosphere

- hydrogen content: balance between volcanic outgassing and escape from atmosphere
- existing theory: static atmosphere with high temperature at top ⇒ fast thermal escape ⇒ hydrogen content was very low
- formation of prebiotic molecules in a hydrogen-rich atmosphere was thus discarded as a theory



# new theory: hydrogen content in Early Earth atmosphere

 our results: hydrogen escape was probably supersonic, with low temperature at top (no thermal escape), and total escape rates were low



hydrogen content in Early Earth atmosphere

- our results: hydrogen concentration in the atmosphere of Early Earth could have been as high as 30%
- formation of prebiotic molecules in early Earth's atmosphere could have been efficient
   ⇒ primordial soup on early Earth is possible
- no need for hydrothermal vents, cometary delivery
- Tian, Toon, Pavlov, and De Sterck, Science 308, 1014-1017, 2005



# 8. Conclusions

- 1D models of supersonic hydrogen escape from planetary atmospheres developed (exoplanets and early Earth)
- solving steady Euler equations directly is superior to time-marching methods for 1D transonic flows
- Newton Critical Point (NCP) uses
  - adaptive itegration outward from critical point
  - dynamical system formulation
  - 2x2 Newton method to match critical point with BC



### Conclusions

• 2D NCP: work in progress

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0$$

$$\nabla \cdot \vec{F}(U) = 0$$





## Conclusions

- 2D: work in progress
  - integrate separately in different domains of the flow,
     'outward' from critical curves (shocks and limiting lines)
  - match conditions at critical curves with BCs using Newton method
  - issues:
    - change of topology
    - solve PDE in different regions
    - cost
  - potential advantages are significant: problem more wellposed
    - separate nonlinear singularities from smooth flow calculations
    - fixed number of Newton steps, linear iterations (scalable)
    - better grid sequencing (nested iteration)

