Direct Numerical Solution of the Steady 1D Compressible Euler Equations for Transonic Flow Profiles with Shocks

Hans De Sterck, Scott Rostrup Department of Applied Mathematics, University of Waterloo, Ontario, Canada

15th Annual Conference of the CFD Society of Canada Toronto, Ontario, Canada, May 27-31, 2007

1. Introduction

 consider stationary solutions of hyperbolic conservation law

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0$$

• in particular, compressible Euler equations

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \vec{v} \\ \frac{p}{\gamma - 1} + \frac{\rho v^2}{2} \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \vec{v} \\ \rho \vec{v} \vec{v} + I p \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho v^2}{2}) \vec{v} \end{bmatrix} = 0$$

Transonic steady Euler flows

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0$$

 $\nabla \cdot \vec{F}(U) = 0$

Standard approach for steady flow simulation

• time marching (often implicit)

$$\frac{U^{n+1} - U^n}{\Delta t} + \nabla \cdot \vec{F}(U^{n+1}) = 0$$

- Newton: linearize \vec{F}
- Krylov: iterative solution of linear system in every Newton step
- Schwarz: parallel (domain decompositioning), or multigrid

 \Rightarrow NKS methodology for steady flows

Main advantages of NKS

- use the hyperbolic BCs for steady problem
- 'physical' way to find suitable initial conditions for the Newton method in every timestep
- it works! (in the sense that it allows one to converge to a solution, in many cases, with some trial-anderror)

Disadvantages of NKS

- number of Newton iterations required for convergence grows as a function of resolution
- number of Krylov iterations required for convergence of the linear system in each Newton step grows as a function of resolution
- grid sequencing/nested iteration: often does not work as well as it could (need many Newton iterations on each level)
- robustness, hard to find general strategy to increase timestep

\Rightarrow NKS methodology not very scalable, and expensive

Why not solve the steady equations directly?

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0 \qquad \nabla$$

- too hard!
- let's try anyway:
 - maybe we can understand why it is difficult
 - maybe we can find a method that is more efficient than implicit time marching
- start in 1D

CFD 2007 Toronto hdesterck@uwaterloo.ca

 $\cdot \vec{F}(U) = 0$

2. 1D model problems

radial outflow from extrasolar planet

Radial outflow from exoplanet

- http://exoplanet.eu
- 236 extrasolar planets known, as of May 2007
- 24 multiple planet systems
- many exoplanets are gas giants ("hot Jupiters")
- many orbit very close to star (~0.05 AU)
- hypothesis: strong irradiation leads to supersonic hydrogen escape

Transiting exoplanet

Transonic radial outflow solution of Euler equations of gas dynamics

Use time marching method (explicit)

Simplified 1D problem: radial isothermal Euler

• 2 equations (ODEs), 2 unknowns ($u,\,
ho$)

$$\frac{d}{dr}(\rho ur^2) = 0$$
$$\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$$

Solving the steady ODE system is hard...

- solving ODE from the left does not work...
- also: 2 equations, 2 unknowns, but only 1 BC needed! (along with transonic solution requirement)
- but... integrating outward from the critical point does work!!!

CFD 2007 Toronto hdesterck@uwaterloo.ca

3. Newton Critical Point (NCP) method for steady transonic Euler flows

• First component of NCP: integrate outward from critical point, using dynamical systems formulation

 $\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$

First component of NCP

$$\frac{du}{dr} = \frac{2 u c^2 (r - r_c)}{r^2 (u^2 - c^2)}$$

1. Write as dynamical system...

$$\frac{du(s)}{ds} = -2 u c^2 \left(r - \frac{GM}{2c^2}\right)$$
$$\frac{dr(s)}{ds} = -r^2 \left(u^2 - c^2\right)$$

$$\frac{dV}{ds} = G(V)$$

2. find critical point: G(V) = 0

3. linearize about critical point $\frac{\partial G}{\partial V}\Big|_{V_{crit}} = \begin{bmatrix} 0 & 2c^3 \\ \frac{(GM)^2}{2c^3} & 0 \end{bmatrix}$

CFD 2007 Toronto hdesterck@uwaterloo.ca

For the Full Euler Equations

$$\frac{d}{dr} \begin{bmatrix} \rho u r^2 \\ \rho u^2 r^2 + p r^2 \\ (\frac{\gamma p}{\gamma - 1} + \frac{\rho u^2}{2}) u r^2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2 p r \\ -\rho GM u + q_{heat} r^2 \end{bmatrix}$$

- 3 equations, 3 unknowns, but only 2 inflow BC
- problem: there are many possible critical points! (twoparameter family)

Full Euler dynamical system

$$\begin{aligned} \frac{dF}{ds} &= 0, \\ \frac{du}{ds} &= 2 u c^2 \left(r - \frac{GM}{2c^2}\right) - (\gamma - 1) q_{heat} \frac{r^4 u}{F}, \\ \frac{dr}{ds} &= r^2 \left(u^2 - c^2\right), \\ \frac{dT}{ds} &= (\gamma - 1) T \left(GM - 2 u^2 r\right) - (\gamma - 1) q_{heat} \frac{r^4}{F} \left(T - u^2\right). \end{aligned}$$

$$\Rightarrow \qquad T_{crit} = \frac{GM}{2\gamma r_{crit}} + (\gamma - 1) \frac{q_{heat} r_{crit}^3}{2\gamma F_{crit}},$$
$$u_{crit} = \sqrt{\gamma T_{crit}}.$$

CFD 2007 Toronto hdesterck@uwaterloo.ca

Second component of NCP: use Newton method to match critical point with BCs

Quadratic Newton covergence

Newton step k	error $ B^{(k)} - B^* _2$
1	4.41106268600662
2	2.28831581534917
3	1.43924405447424
4	0.10259052732943
5	0.00125578478131
6	0.00000037420499

NCP method for 1D steady flows

- it is possible to solve steady equations directly, if one uses critical point and dynamical systems knowledge
- (Newton) iteration is still needed
- NCP Newton method solves a 2x2 nonlinear system (adaptive integration of trajectories is explicit)
- much more efficient than solving a 1500x1500 nonlinear system, and more well-posed

4. Extension to problems with shocks

NCP method for nozzle flow with shock

- subsonic in: 2 BC
- subsonic out: 1 BC
- NCP from critical point to match 2 inflow BC
- Newton method to match shock location to outflow BC (using Rankine-Hugoniot relations, 1 free parameter)

5. Extension to problems with heat conduction

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho r^{2} \\ \rho u r^{2} \\ \left(\frac{p}{\gamma-1} + \frac{\rho u^{2}}{2}\right) r^{2} \end{bmatrix} + \frac{\partial}{\partial r} \begin{bmatrix} \rho u r^{2} \\ \rho u^{2} r^{2} + p r^{2} \\ \left(\frac{\gamma p}{\gamma-1} + \frac{\rho u^{2}}{2}\right) u r^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -\rho GM + 2pr \\ -\rho GM u + q_{heat} r^{2} + \frac{\partial}{\partial r} \left(\kappa r^{2} \frac{\partial T}{\partial r}\right) \end{bmatrix}$$

Dynamical system for Euler with heat conduction

 $\phi = \kappa r^2 \frac{dT}{dr}$

 $\frac{dr}{ds} = -r^2(u^2 - c^2)(u^2 - T),$ $\frac{dF}{ds} = 0,$ $\frac{du}{ds} = -2uc^2 \left(r - \frac{GM}{2c^2} \right) (u^2 - T) + \frac{\phi u (u^2 - c^2)}{\kappa}$ $-(\gamma-1)uT(GM-2u^2r).$ $\frac{dT}{ds} = \frac{-\phi(u^2 - c^2)(u^2 - T)}{\kappa},$ $\frac{d\phi}{ds} = \frac{-\phi F(u^2 - c^2)^2}{(\gamma - 1)\kappa} + FT(GM - 2u^2r)(u^2 - c^2)$ $+q_{heat}r^4(u^2-c^2)(u^2-T).$

Two types of critical points!

• sonic critical point (node):

$$u_{crit} = \sqrt{\gamma T_{crit}} = c_{crit}$$

• thermal critical point (saddle point):

$$u_{crit} = \sqrt{T_{crit}} = c_{crit} / \sqrt{\gamma}$$

$$\frac{\phi_{crit}}{\kappa} + GM - 2u_{crit}^2 r_{crit} = 0.$$

Transonic flow with heat conduction

- subsonic inflow: 3 BC (ρ, p, φ)
- supersonic outflow: 0 BC
- 3-parameter family of thermal critical points
- NCP matches thermal critical point with 3 inflow BC

CFD 2007 Toronto hdesterck@uwaterloo.ca

6. Conclusions

- solving steady Euler equations directly is superior to time-marching methods for 1D transonic flows
- NCP uses
 - adaptive itegration outward from critical point
 - dynamical system formulation
 - 2x2 Newton method to match critical point with BC

Conclusions

- 2D: work in progress
 - integrate separately in different domains of the flow,
 'outward' from critical curves
 - match conditions at critical curves with BCs using Newton method
 - issues:
 - change of topology
 - solve PDE in different regions
 - cost
 - potential advantages are significant: problem more wellposed
 - fixed number of Newton steps, linear iterations (scalable)
 - better grid sequencing (nested iteration)

Transonic steady Euler flows

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{F}(U) = 0$$

 $\nabla \cdot \vec{F}(U) = 0$