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1. Introduction

• consider stationary solutions of hyperbolic
conservation law

• in particular, compressible Euler equations
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Transonic steady Euler flows
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Standard approach for steady flow simulation

• time marching (often implicit)

• Newton: linearize
• Krylov: iterative solution of linear system in every

Newton step
• Schwarz: parallel (domain decompositioning), or

multigrid
⇒ NKS methodology for steady flows
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Main advantages of NKS

• use the hyperbolic BCs for steady problem

• ‘physical’ way to find suitable initial conditions for the
Newton method in every timestep

• it works! (in the sense that it allows one to converge
to a solution, in many cases, with some trial-and-
error)
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Disadvantages of NKS

• number of Newton iterations required for
convergence grows as a function of resolution

• number of Krylov iterations required for convergence
of the linear system in each Newton step grows as a
function of resolution

• grid sequencing/nested iteration: often does not work
as well as it could (need many Newton iterations on
each level)

• robustness, hard to find general strategy to increase
timestep

⇒ NKS methodology not very scalable, and expensive
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Why not solve the steady equations directly?

• too hard!
• let’s try anyway:

– maybe we can understand why it is difficult
– maybe we can find a method that is more efficient

than implicit time marching
• start in 1D
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2. 1D model problems

• radial outflow from extrasolar planet
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Radial outflow from exoplanet

• http://exoplanet.eu
• 236 extrasolar planets

known, as of May 2007
• 24 multiple planet systems
• many exoplanets are gas

giants (“hot Jupiters”)
• many orbit very close to star

(~0.05 AU)
• hypothesis: strong irradiation

leads to supersonic
hydrogen escape
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Transiting exoplanet
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Transonic radial outflow solution of Euler
equations of gas dynamics

subsonic     ⇒|⇐     supersonic
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Use time marching method (explicit)
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Simplified 1D problem: radial isothermal Euler

• 2 equations (ODEs), 2 unknowns (          )
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Solving the steady ODE system is hard...

• solving ODE from the left
does not work...

• also: 2 equations, 2
unknowns, but only 1 BC
needed! (along with
transonic solution
requirement)

• but... integrating outward
from the critical point
does work!!!
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3. Newton Critical Point (NCP) method for
steady transonic Euler flows

• First component of NCP: integrate outward from
critical point, using dynamical systems formulation
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First component of NCP

1. Write as dynamical system...

2. find critical point:
3. linearize about critical point

4. integrate outward from critical point
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For the Full Euler Equations

• 3 equations, 3 unknowns, but only 2 inflow BC

• problem: there are many possible critical points! (two-
parameter family)
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Full Euler dynamical system

⇒
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Second component of NCP: use Newton
method to match critical point with BCs

guess initial critical point
1. use adaptive ODE

integrator to find
trajectory

2. modify guess for
critical point
depending on
deviation from
desired inflow
boundary conditions
(2x2 Newton
method)

3. repeat



CFD 2007 Toronto
hdesterck@uwaterloo.ca

Quadratic Newton covergence
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NCP method for 1D steady flows

• it is possible to solve steady equations directly, if one
uses critical point and dynamical systems knowledge

• (Newton) iteration is still needed

• NCP Newton method solves a 2x2 nonlinear system
(adaptive integration of trajectories is explicit)

• much more efficient than solving a 1500x1500
nonlinear system, and more well-posed
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4. Extension to problems with shocks

• consider quasi-1D nozzle flow

⇒
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NCP method for nozzle flow with shock

• subsonic in: 2 BC
• subsonic out: 1 BC

• NCP from critical point
to match 2 inflow BC

• Newton method to
match shock location to
outflow BC (using
Rankine-Hugoniot
relations, 1 free
parameter)
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5. Extension to problems with heat conduction
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Dynamical system for Euler with heat
conduction
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Two types of critical points!

• sonic critical point (node):

• thermal critical point (saddle point):
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Transonic flow with heat conduction

• subsonic inflow:
3 BC (ρ, p, φ)

• supersonic
outflow: 0 BC

• 3-parameter
family of
thermal critical
points

• NCP matches
thermal critical
point with 3
inflow BC
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6. Conclusions

• solving steady Euler equations directly is superior to
time-marching methods for 1D transonic flows

• NCP uses
– adaptive itegration outward from critical point
– dynamical system formulation
– 2x2 Newton method to match critical point with BC
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Conclusions

• 2D: work in progress
– integrate separately in different domains of the flow,

‘outward’ from critical curves
– match conditions at critical curves with BCs using Newton

method
– issues:

– change of topology
– solve PDE in different regions
– cost

– potential advantages are significant: problem more well-
posed

– fixed number of Newton steps, linear iterations (scalable)
– better grid sequencing (nested iteration)
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Transonic steady Euler flows


