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Parker Solar Wind

 heat from sun core accelerates radial flow from subsonic to
supersonic

e bow shock at the earth
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transonic radial outflow solution of Euler
equations of gas dynamics
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Supersonic gas escape from extrasolar planets

http://exoplanet.eu

173 extrasolar planets known, as of June 2006

209 extrasolar planets known, as of November 2006
21 multiple planet systems
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Supersonic gas escape from extrasolar planets

* many exoplanets are gas giants (“hot Jupiters™)
« many orbit very close to star (~0.05 AU)

* hypothesis: strong irradiation leads to supersonic
hydrogen escape
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example: HD209458 (Vidal-Madjar 2003)
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 0.67 Jupiter masses, 0.05 AU, transiting
* hydrogen atmosphere and escape observed

* question: what is the mass loss rate? long-time
stability of the planet? = solve Euler equations!
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Euler equations of gas dynamics

« find p(r,t),u(r,t),p(r,t)s.t.
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» conservation of mass,
momentum, energy
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transonic radial outflow solution: problem
definition

« Euler equations: 3 equations
in three variables

p(r,t), u(r,t), p(r,t)

* |ower boundary at planet
surface: subsonic, needs two
boundary conditions: density
and pressure

e upper boundary: supersonic,
needs no boundary
conditions (all information
flows out)
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numerical method

« Euler Equations are conservation law

B+ %o = SW)

 solving the steady part alone is too hard (it is not
known how to do that... more later!)

dFd(rU) — S(U)

* engineers developed time-marching methods to
steady state
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numerical method

hyperbolic conservation law

o+ 250 = sy

use Computatlonal FIU|d Dynamics methods: finite
volume method
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very slow convergence to steady state... (more later!)
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Simulations of planet atmosphere

s 2 Oy

TimeStep: 10 T soundspeed

—*— density

 n=50 points in space
* needs 1500 steps to converge
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results for 1D exoplanet simulations

« HD209458Db:

- lower boundary conditions p=7.10 g/cm
and T=750K

- extent of atmosphere, outflow velocity, and
mass flux consistent with observations
(Vidal-Madjar 2003)

- 1% mass loss in 12 billion years =
HD209458b is stable
* Tian, Toon, Pavlov, and De Sterck,
Astrophysical Journal 621, 1049-1060, 2005
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Can we solve the steady Euler equations faster
and more accurrately?

o0U + 98U = s(U)

* new approach: solve the steady equations directly

dFd(TU) — S(U)

* yes!
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Solving the steady ODE system is hard...

« consider toy problem (isothermal Parker model): single ODE

du __ 2w c? (r—re)
dr — 12 (u2=c2) |

 normally need 1 boundary condition to determine solution
« transonic solution: no boundary condition needed!
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Solving the steady ODE system is hard...

« solving ODE from the left does not work...
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« but... integrating outward from the critical point does
work!!!
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Direct calculation of steady solution
du _ 2uc? (r=re)
dr — 72 (u2=c2)
1. Write as dynamical system...

du(s) 5 GM
dV = —2uc r — 5
eV _ ds 2c
ds G(V) dr(s)
— —7“2 (uQ o 62)
ds

2. find critical point G(v) =0

3. integrate outward from critical point
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For the Full Euler Equations
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e problem: there are many possible critical points!

University Third Canadian Solar

of
Watel’lOO Workshop, Montreal, 2006
% hdesterck@uwaterloo.ca

<%



New algorithm for calculating steady transonic
Euler outflows

guess initial critical | | | | | | | |
I welocit
p0|nt _*_temp.eyrature

1. use adaptive ODE ‘ Iteration: 1 "
integrator to find sound spest
trajectory

2. modify guess for
critical point
depending on
deviation from
desired inflow

boundary
conditions (Newton
method)
3. repeat
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2D numerical models (Scott Rostrup)

* Euler equations in multiple dimensions
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2D Simulations

e assume rotational symmetry
about the y axis

= allows for non-uniform = 0
heating
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ongoing work: include stellar wind

Densiy | 17 Jun 20086

llllllllllllll

.020000.000_mhd2;

2

4

X

B

B8

1

Temperalure | 17 Jun 2006 | 0ul.050000.000_m M

Ll l Ll l Ll l Ll
2 4 6 g8
X

ach Number | 17 Jun 2006

| 0ul.050000.000_mhd?2

Third Canadian Solar
Workshop, Montreal, 2006
hdesterck@uwaterloo.ca



ongoing work: include stellar wind
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3D numerical models (Paul Ullrich)
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Primordial soup as the origin of life on Earth

Tungsten electroj
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Stanley Miller (1953): formation of
prebiotic molecules in a CH4-NH3
rich environment with electric
discharge
-Problem: CH4-NH3 atmosphere
unlikely
olater experiments show that
prebiotic molecules can be formed
efficiently in a hydrogen-rich
environment
«alternative sources of organics:
hydrothermal system, comet
delivery
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Supersonic gas escape from Early Earth

Maxwellian Yelocity Distribution

* thereis no
' § 13 Particles with velocities
Supersonlc . 2 "2: exceeding the escape velocity
hydrodynamic ¢ - can be lost
escape from I W |

Earth 4 ! H- etc.
* exo-base vhe O S =

temperature is QDCQQD S,
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hydrogen content in Early Earth atmosphere

* hydrogen content: balance between volcanic
outgassing and escape from atmosphere

 existing theory: static atmosphere with high
temperature at top = fast thermal escape =

hydrogen content was very low

» formation of prebiotic molecules in a
hydrogen-rich atmosphere was thus
discarded as a theory

University of rd
Waterloo Works
% hdesterck@uwaterloo.ca



new theory: hydrogen content in Early Earth
atmosphere

e our results: hydrogen escape was probably
supersonic, with low temperature at top (no thermal
escape), and total escape rates were low
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hydrogen content in Early Earth atmosphere

* our results: hydrogen concentration in the
atmosphere of Early Earth could have been
as high as 30%

 formation of prebiotic molecules in early
Earth’s atmosphere could have been efficient
=> primordial soup on early Earth is possible

* no need for hydrothermal vents, cometary
delivery

 Tian, Toon, Pavlov, and De Sterck, Science
308, 1014-1017, 2005
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The End

Questions?
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